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Abstract

The harmonic projection method can be used to find interior eigen-
pairs of large matrices. Given a target point or shift σ to which the
needed interior eigenvalues are close, the desired interior eigenpairs are
the eigenvalues nearest σ and the associated eigenvectors. In this arti-
cle we use the harmonic projection algorithm for computing the interior
eigenpairs of a large unsymmetric generalized eigenvalue problem.
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1 Introduction

The eigenvalue problem is one of the most important subjects in the applied
sciences and engineering. One of the most important and practical topics
in computational mathematics is computing some of the interior generalized
eigenvalues close to target point or shift σ and the associated eigenvectors.
Consider the large unsymmetric generalized eigenproblem.

CXi = θiBXi (1)

Where C and B are N×N large matrices, we are interested in computing some
eigenvalues close to a given shift σ and also associated eigenvectors of pair
(C,B) . Since the matrices are large the standard numerical methods cannot
be used, they are fine for small or medium-size matrices. For computing the
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eigenpairs of problem (1) we consider two methods. First method: This is a
shift-and-invert Arnoldi method Second method: This is a new computational
harmonic projection algorithm
in this paper we comparative first metod with second method and the results
shown that the first maetod is better than the second method .

2 Definition

Let A be a n×n matrix and v ∈ Rn is a vector, then the subspace generated by
vectors v, Av, . . . , Am−1v is called as Krylov subspace and denoted by km(A, v)
, i.e.

km(A, v) = span{v, Av, . . . , Am−1‘v}

3 Algorithm 1: (Arnoldi MGS process)

Choose a vector v1 of norm 1
For j = 1, . . . , m do
w := Avj

For i = 1, . . . , j do
hij := (w, vi)
w := w − hi,jvi

End do
hj+1,j := ‖w‖2

vj+1 := w
hj+1,j

End do.

4 Theorems

Theorem 4.1: The vectors v1, v2, . . . , vm produced by the Arnoldi algorithm
form an orthonormal basis of the subspace km = span{v1, Av1, . . . , Am−1v1} .
Proof in [2].

Theorem 4.2:Denote by Vm a n×m matrix with column vectors v1, v2, . . . , vm

and by Hm a m × m Hessenberg matrix whose nonzero entries are defined by
the algorithm. Then the following relations hold:

AVm = VmHm + hm+1,mvm+1e
H
m,

V H
m AVm

∼= Hm.

Proof in [2].



Computational harmonic projection algorithm 1329

5 The shift-and-invert Arnoldi method

If the matrix C- σ B is invertible for some shift σ , the eigenproblem (1) can
be transformed into the standard eigenproblem. CXi = θiBXi

⇒ CXi − σBXi = θiBXi − σBXi

⇒ (C − σB)Xi = (θi − σ)BXi

⇒ 1

θi − σ
Xi = (C − σB)−1BXi

⇒ (C − σB)−1BXi =
1

θi − σ
Xi

Now we suppose, λi = 1
θi−σ

and A = (C − σB)−1B Therefore the problem
is:

AXi = λiXi (2)

It is easy to show that:
the ( θi, Xi ) is eigenpair of problem (1) if and only if ( λi, Xi ) is the eigenpair
of problem (2).
Therefore, the shift-and-invert Arnoldi method for eigenproblem (1) is math-
ematically equivalent to the standard Arnoldi method for the transformed
eigenproblem (2). It starts with a given unit length vector v1 (usually chosen
randomly) and builds up an orthonormal basis Vm for the Krylov subspace
km(A, v1) by means of the Gram-Schmidt orthogonalization process.
In finite precision, reorthogonalization is performed whenever same sever can-
cellation occurs [2]. Then the approximate eigenpairs for the transformed
eigenproblem (2) can be extracted from km(A, v1) . The approximate solu-
tions for problem (1) can be recovered from these approximate eigenpairs.
By theorem 4.2 the shift-and-invert Arnoldi process can be written in matrix
from

(C − σB)−1BVm = VmHm + hm+1,mvm+1e
H
m

or

(C − σB)−1BVm
∼= Vm+1H̃m (3)

Where em is mth coordinate vector of dimension m , Vm+1 = (Vm, vm+1) =
(v1, v2, ..., vm+1) is an N × (m+1) matrix whose columns from an orthonormal
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basis of the (m+1) -dimensional Krylov subspace km+1(A, v1) , and H̃m is the
(m + 1) × m upper Hessenberg matrix that is the same as Hm except for an
additional row whose only nonzero entry is hm+1,m in the position (m+1, m) .
Suppose that (λ̃i, ỹi), i = 1, 2, ..., m are the eigenpairs of the matrix Hm ,

Hỹi = λ̃iỹi

Let λ̃i = 1
θ̃i−σ

and X̃i = Vmỹi. (4)

Then the shift-and-invert Arnoldi method uses (θ̃i, X̃i) to approximate the
eigenpairs (θi, Xi) of problem (1). The θ̃i and X̃i are called the Ritz values
and Ritz vectors of C with respect to km(A, v1) , respectively. Define the
corresponding residual

r̃i = (C − θ̃iB)X̃i

Then we have the following theorem.
Theorem 5.1: The residual r̃i corresponding to the approximate eigenpairs
(θ̃i, X̃i) by the shift-and-invert Arnoldi method satisfy

‖r̃i‖ ≤ hm+1,m

∣∣∣θ̃i − σ
∣∣∣ ‖C − σB‖ ∣∣eh

mỹi

∣∣
proof: From relations (3), (4), we obtain

‖r̃i‖ =
∥∥∥(C − θ̃iB)X̃i

∥∥∥ =
∥∥∥(C − θ̃iB)Vmỹi

∥∥∥ =
∥∥∥((C − σB) − (θ̃i − σ)B)Vmỹi

∥∥∥
=

∥∥∥(C − σB)(I − (θ̃i − σ)(C − σB)−1B)Vmỹi

∥∥∥
=

∣∣∣θ̃i − σ
∣∣∣ ∥∥∥(C − σB)((C − σB)−1B − λ̃iI)Vmỹi

∥∥∥
≤

∣∣∣θ̃i − σ
∣∣∣ ‖(C − σB)‖

∥∥∥Vm+1(H̃m − λ̃iĨm)ỹi

∥∥∥
= hm+1,m

∣∣∣θ̃i − σ
∣∣∣ ‖(C − σB)‖ ∣∣eh

mỹi

∣∣ .

Ruhe has developed a shift-and-invert Arnoldi algorithm: see e.g. sptarn.m in
Matlab where it is designed to compute all the eigenvalues in a rectangle and
the associated eigenvctors. The algorithm can be modified to compute the l
eigenvalues near a target point σ and the associated eigenvectors. We call the
resulting algorithmAlgorithm 2.
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6 The new computational harmonic projec-

tion algorithm

We have shown in section 4 that the eigenproblem CXi = θiBXi can be
transformed to the problem AXi = λiXi such that θi = 1

λi
+ σ and A = (C −

σB)−1B . As we are interested in computing some of the interior eigenvalues
close to σ , therefore the large λi must be considered.
If τ is large and not to be an eigenvalue of A such that (A − τ I ) is not
invertible then we have from AXi = λiXi that

(A − τ I)−1Xi =
1

λi − τ
Xi

Therefore, the interior eigenvalues near τ are transformed into exterior ones
with largest magnitudes of (A−τ I)−1 .For the given τ and a subspace km(A, v)
the harmonic projection method seeks the pairs
( λ̃i, X̃i ) satisfying the harmonic projection (for more details see [3, 4]),{

X̃i ∈ km(A, v1) (7a)

AX̃i − λ̃iX̃i⊥(A − τ I)km(A, v1) (7b)

and uses them to approximate some eigenvalues of A near τ and the associated
eigenvectors.
Theorem 6.1: Let X̃

(m)
i = Vmg

(m)
i be the harmonic Ritz vector, λ̃i be the

harmonic Ritz value then:

r̃i =
∥∥∥(A − λ̃

(m)
i I)X

(m)
i

∥∥∥
Proof: Since we have AVm = VmHm + hm+1,mvm+1e

H
m then

AX
(m)
i = AVmg

(m)
i = VmHmg

(m)
i + hm+1,mvm+1e

H
mg

(m)
i

So

(A − λ̃
(m)
i I)X

(m)
i = AVmg

(m)
i − λ̃

(m)
i Vmg

(m)
i

= VmHmg
(m)
i + hm+1,mvm+1e

H
mg

(m)
i − λ̃

(m)
i Vmg

(m)
i

= Vm(Hm − λ̃
(m)
i I)g

(m)
i + hm+1,mvm+1e

H
mg

(m)
i = Vm+1

[
(Hm − λ̃

(m)
i I)g

(m)
i

hm+1,meH
mg

(m)
i

]
.

Algorithm 3.(The new computational Harmonic projection algo-
rithm)
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1. Input, τ , σ , v1 with ‖v1‖ = 1 , l: the numbers of desired eigenvalues,
k: the accuracy, A, B: are N × N large matrices

2. Set A = (C − σB)−1B

3. Run algorithm1. (For computing Vm+1 = [v1, v2, ..., vm+1] and Hm .)

4. f Hm − τ I is nonsingular then Solving

((Hm − τ I) + (Hm − τ I)−HemhH
m+1,mhm+1,meH

m)gi = (λ̃i − τ)gi

else solving

((Hm − τ I)H(Hm − τ I) + emhH
m+1,mhm+1,meH

m)gi = (λ̃i − τ)(Hm − τ I)Hgi

end if;(For computing (λ̃i, gi) , i = 1, ..., m .)

5. Select λ̃,
i s with respect to the smallest value of (λ̃i − τ), s is to approxi-

mate the desired eigenvalues i = 1, ..., l.

6. Take the harmonic Ritz pairs (λ̃i, X̃i = Vmgi) , i = 1, ..., l as approxima-
tions.

7. Computing r̃i =
∥∥∥(A − λ̃

(m)
i I)X̃

(m)
i

∥∥∥ i = 1, ..., l

8. If r̃i = < k, i = 1, ..., l then Stop and set θ̃i = 1
λ̃i

+ σ else go to step (9)

end;

9. Restarted: use the harmonic Ritz vectors X̃i, i = 1, ..., l , for a new initial
guess, i.e. v1 , and go to step 3

7 Numerical experiments

The algorithm has been tested using MATLAB 7.0.1 on a Pentium IV 2.8 GHz
with main memory 512 Megabytes. Let C and B are 1001 × 1001 matrices as

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−510 1 0 0 0 0 0 0 0 0 0 · · · 0
−1 −509 1 0 0 0 0 0 0 0 0 · · · 0

0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

0 · · · 0 −1 −12 1 0 0 0 0 0 · · · 0
0 · · · 0 0 −1 −11 1 0 0 0 0 · · · 0
0 · · · 0 0 0 −1 0 1 0 0 0 · · · 0
0 · · · 0 0 0 0 −1 11 1 0 0 · · · 0
0 · · · 0 0 0 0 0 −1 12 1 0 · · · 0
... · · · . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
... · · · . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
0 · · · 0 0 0 0 0 0 0 0 −1 509 1
0 · · · 0 0 0 0 0 0 0 0 0 −1 510

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1001×1001
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B = diag(2, 3, · · · , 1002)1001×1001

We apply Algorithm shift-and-invert Arnoldi algorithm (Algoritm2) and Al-
gorithm 3.
the results shown for Iterative=100, m = 3, τ = 600, σ = 2
Algorithm(2) after Iterative=100 the residual norm is 510 i.e. it is not con-
verge.but algorithm 3 after Iterative=100 the residual norm is .002 we see that
algorithm 3 is better than algorithm 2.
the results shown for Iterative=200, m = 4, τ = 550, σ = 2
Algorithm(2) after Iterative=200 the residual norm is 550 i.e. it is not con-
verge.but algorithm 3 after Iterative=200 the residual norm is .003 we see that
algorithm 3 is better than algorithm 2.
As the results show the new computational harmonic method projection algo-
rithm (algorithm 3) works better than shift-and-invert method (algorithm 2)
and it gives the results with high accuracy.
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