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Abstract. In this paper, the impulsive fuzzy recurrent neural network with
both time-varying delays and distributed delays is considered. Applying the
idea of vector Lyapunov function, M-matrix theory and analytic methods,
several sufficient conditions are obtained to ensure the existence, uniqueness
and global exponential stability of equilibrium point for the addressed neural
network. Moreover, the estimation of the exponential convergence rate index
is provided. These results generalize a few previous known results and remove
some restrictions on the neural networks. Two examples are given to show the
effectiveness of the obtained results. The method of this paper, which does not
make use of Lyapunov functional, is simple and valid for the stability analysis
of fuzzy recurrent neural networks with variable delays or/and distributed
delays, it is believed that these results are significant and useful for the design
and applications of fuzzy neural networks.

1. Introduction

Recurrent neural networks have been extensively studied in the past decades.
Two popular examples of such kinds of neural networks are the Hopfield neural

1This work was supported by the Natural Science Foundation of CQ CSTC under grant
2007BB0430, and the Scientific Research Fund of Chongqing Municipal Education Commis-
sion under Grant KJ070401.
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networks and cellular neural networks. They have been successfully applied
in signal processing, pattern recognition, associative memories, optimization
solvers, and other engineering and scientific areas [1], [2]. In such applications,
it is of prime importance to ensure that the designed neural networks are
stable.

In an hardware implementation of a recurrent neural network using analog
electronic circuits, the time delay will be inevitable and occur in the signal
transmission among the neurons, which will affect the stability of the neural
system and may lead to some complex dynamic behaviors such as oscillation,
divergence, chaos, instability or other poor performance of the neural networks
[2]. In this case, the time delay may substantially affect the performance of
the recurrent neural networks. Thus, the study of stability for delayed re-
current neural networks is of both theoretical and practical importance. In
recent years, the dynamical behaviors of recurrent neural networks with con-
stant delays or time-varying delays or/and distributed delays have been deeply
investigated, for example, see [2]-[20] and references therein.

However, besides delay effect, impulsive effects are also likely to exist in the
recurrent neural networks [21]. For instance, in implementation of electronic
networks, the state of the networks is subject to instantaneous perturbations
and experiences abrupt change at certain instants, which may be caused by
switching phenomenon, frequency change or other sudden noise, that is, does
exhibit impulsive effects. Therefore, it is necessary to consider both impulsive
effect and delay effect on the stability of the recurrent neural networks. Several
interesting results on impulsive effect have been gained for neural networks
with delays, for example, see [21]-[32] and references therein.

It is well-known that the fuzzy cellular neural networks (FCNN), was in-
troduced by Yang in 1996 [33], is also a kind of important recurrent neural
networks. It combines fuzzy logic with the traditional cellular neural net-
works. Studies have shown that the FCNN is very useful paradigm for image
processing problems, which is a cornerstone in image processing and pattern
recognition. Recently, some results on stability have been derived for the
FCNN without time delays and with time delays, for example, see [34]-[37]. In
[34], Yang and Yang obtained some conditions for the existence and the global
stability of the equilibrium point of the FCNN without delay. In [35], Liu
and Tang considered the FCNN with either constant delays or time-varying
delays, several sufficient conditions were obtained to ensure the existence and
uniqueness of the equilibrium point and its global exponential stability. In
[36], Yuan, Cao and Deng gave several criteria of exponential stability and
periodic solutions for FCNN with time-varying delays. In [37], Huang consid-
ered the stability of FCNN with diffusion terms and time-varying delay. To
the best of our knowledge, few authors have considered fuzzy recurrent neural
network model with both time delays and impulsive effects. From the view
of mathematical model, the fuzzy recurrent neural networks with both time
delays and impulsive effects belongs to new category of dynamical systems,
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which is neither purely continuous-time nor purely discrete-time one. Such
a model displays a combination of characteristics of both the continuous-time
and discrete-time systems and has complex dynamical behaviors. Therefore, it
is necessary to further investigate the dynamical behaviors of fuzzy recurrent
neural network model with both time delays and impulsive effects.

Motivated by the above discussions, the objective of this paper is to study
the global exponential stability of the impulsive fuzzy recurrent neural net-
work with both time-varying delays and distributed delays, and estimate the
exponential convergence rate index.

2. Model description and preliminaries

In this paper, we consider the following model⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dui(t)
dt

= −ciui(t) +
n∑

j=1

aijfj(uj(t)) +
n∑

j=1

bijvj + Ji

+
n∧

j=1

αijfj(uj(t− τij(t))) +
n∨

j=1

βijfj(uj(t− τij(t)))

+
n∧

j=1

δij
t∫

−∞
Kij(t− s)fj(uj(s))ds

+
n∨

j=1

ηij

t∫
−∞

Kij(t− s)fj(uj(s))ds

+
n∧

j=1

Tijvj +
n∨

j=1

Hijvj, t �= tk, t ≥ 0,

�ui(tk) = ui(t
+
k ) − ui(t

−
k ) = Iik(ui(tk)),

i = 1, 2, · · · , n; k = 1, 2, · · · ,

(1)

where n corresponds to the number of units in a neural network; u(t) =
(u1(t), u2(t), · · · , un(t))

T , ui(t) corresponds to the state of the ith unit at time t;
fj denotes the activation function; τij(t) corresponds to the transmission delay
along the axon of the jth unit from the ith unit and satisfies 0 ≤ τij(t) ≤ τij
(τij is a constant); Kij(t) is delay kernel function; C = diag(c1, c2, · · · , cn),
ci represents the rate with which the ith unit will reset its potential to the
resting state in isolation when disconnected from the network and external
inputs; A = (aij)n×n, B = (bij)n×n, aij and bij are elements of feedback tem-
plate and feed forward template, respectively; α = (αij)n×n, β = (βij)n×n,
δ = (δij)n×n, η = (ηij)n×n, αij , βij, δij and ηij are elements of the discrete
fuzzy feedback MIN template, the discrete fuzzy feedback MAX template, the
distributed fuzzy feedback MIN template and the distributed fuzzy feedback
MAX template, respectively; T = (Tij)n×n, H = (Hij)n×n, Tij and Hij are
elements of fuzzy feed forward MIN template and fuzzy feed forward MAX
template, respectively; V = (v1, v2, · · · , vn)T , J = (J1, J2, · · · , Jn)

T , vi and
Ji denote input and bias of the ith neuron, respectively; tk is called impul-
sive moments and satisfy 0 ≤ t0 < t1 < t2 < · · · , limk→+∞ tk = +∞;
ui(t

−
k ) and ui(t

+
k ) denote the left limit and right limit at tk, respectively;
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Ik(u(tk)) = (I1k(u1(tk)), I2k(u2(tk)), · · · , Ink(un(tk)))
T , Iik(ui(tk)) shows im-

pulsive perturbation of the ith neuron at tk.

Remark 1. Since the solution (u1(t, x), · · · , un(t, x))T of model (1) is discon-
tinuous at the point tk, by theory of impulsive differential equations, we as-
sume that (u1(tk), u2(tk), · · · , un(tk))

T ≡ (u1(tk+0, x), u2(tk+0, x), · · · , un(tk+

0, x))T . It is clear that, in general, the derivatives dui(tk)
dt

do not exist. On the
other hand, according to the first equation of model (1) there exist the limits
dui(tk∓0)

dt
. According to the above convention, we assume dui(tk)

dt
≡ dui(tk+0)

dt
.

Remark 2. If Iik(ui(tk)) = 0 for i = 1, 2, · · · , n; k = 1, 2, · · · , then model
(1) becomes continuous fuzzy recurrent neural network

dui(t)

dt
= −ciui(t) +

n∑
j=1

aijfj(uj(t)) +

n∑
j=1

bijvj + Ji

+
n∧

j=1

αijfj(uj(t− τij(t))) +
n∨

j=1

βijfj(uj(t− τij(t)))

+
n∧

j=1

δij

t∫
−∞

Kij(t− s)fj(uj(s))ds

+
n∨

j=1

ηij

t∫
−∞

Kij(t− s)fj(uj(s))ds+
n∧

j=1

Tijvj +
n∨

j=1

Hijvj(2)

for t ≥ 0, i = 1, 2, · · · , n.
For convenience, we introduce several notations. u = (u1, u2, · · · , un)T ∈ Rn

denotes a column vector; |u| denotes the absolute-value vector given by|u| =
(|u1|, |u2|, · · · , |un|)T . For matrix A = (aij)n×n ∈ Rn×n, |A| denotes the
absolute-value matrix given by |A| = (|aij |)n×n; diag(b1, b2, · · · , bn) denotes
the diagonal matrix with diagonal entries b1, b2, · · · , bn; ρ(A) denotes the spec-
tral radius of A; ‖u‖ denotes a vector norm defined by ‖u‖ = max

1≤i≤n
|ui|,

while ‖A‖ denotes a matrix norm defined by ‖A‖ = max
1≤i≤n

{
n∑

j=1

|aij|}. For

A,B ∈ Rm×n, A ≥ B(A > B) means that each pair of corresponding ele-
ments of A and B satisfies the inequality ”≥ (>)”. C[X, Y ] denotes the space
of continuous mappings from the topological space X to the topological space

Y . PC[I, Rn] = {ψ : I → Rn
∣∣∣ ψ(t+) = ψ(t) for t ∈ I, ψ(t−) exists for

t ∈ (t0,+∞), ψ(t−) = ψ(t) for all but points tk ∈ (t0,+∞)}, where I ⊆ R is
an interval.

Definition 1. A function u(t) : R → Rn is called a solution of model (1) with
the initial condition u(s) = φ(s) ∈ PC((−∞, t0], R

n), if u(t) is continuous at
t �= tk and t ≥ t0, u(tk) = u(t+k ) and u(t−k ) exists, u(t) satisfies model (1) for
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t ≥ t0 under the initial condition. Especially, a point u∗ ∈ Rn is called an
equilibrium point of model (1), if u(t) = u∗ is a solution of model (1).

Definition 2. An equilibrium point u∗ = (u∗1, u
∗
2, · · · , u∗n)T of model (1) is said

to be globally exponentially stable, if there exist constants ε > 0 and M > 0
such that

‖u(t) − u∗‖ ≤M‖φ − u∗‖e−ε(t−t0)

for all t > t0, where u(t) = (u1(t), u2(t), · · · , un(t))
T is any solution of model

(1) with initial value ui(s) = φi(s) ∈ PC((−∞, t0], R), i = 1, 2, · · · , n, and
‖φ− u∗‖ = max

1≤i≤n
|φi(s) − u∗i |∞ with |φi(s) − u∗i |∞ = sup

s∈(−∞,t0]

|φi(s) − u∗i |.

Definition 3. [32] A real matrix A = (aij)n×n is said to be an M-matrix if
aij ≤ 0(i, j = 1, 2, · · · , n; i �= j) and A−1 ≥ 0.

To prove our results, the following lemmas are necessary.

Lemma 1. [32] Let Q be n×n matrix with non-positive off-diagonal elements,
then Q is an M-matrix if and only if one of the following conditions holds.

(i) There exists a vector ξ > 0 such that ξTQ > 0.
(ii) There exists a vector ξ > 0 such that Qξ > 0.

when A is an M-matrix, denote

Ω(A) = {ξ ∈ Rn|Aξ > 0, ξ > 0}, (3)

from Lemma 1, we know that Ω(A) is nonempty.

Lemma 2. [38] Let A be a nonnegative matrix, then ρ(A) is a eigenvalue of
A, and A has at least one positive eigenvector which is provided by ρ(A).

When A is an nonnegative matrix, denote

Γ(A) = {ξ ∈ Rn|Aξ = ρ(A)ξ}, (4)

from Lemma 2, we know that Γ(A) is nonempty.

Lemma 3. [34] Suppose u and u′ are two state of model (1), then we have∣∣∣ n∧
j=1

αijfj(uj) −
n∧

j=1

αijfj(u
′
j)

∣∣∣ ≤ n∑
j=1

∣∣∣αij

∣∣∣ · ∣∣∣fj(uj) − fj(u
′
j)

∣∣∣,
∣∣∣ n∨

j=1

βijfj(uj) −
n∨

j=1

βijfj(u
′
j)

∣∣∣ ≤ n∑
j=1

∣∣∣βij

∣∣∣ · ∣∣∣fj(uj) − fj(u
′
j)

∣∣∣.
Throughout this paper, we make the following assumptions:

(H1) If (u∗1, u
∗
2, · · · , u∗n)T is an equilibrium point of model (2), then impulsive

jumps Ik of model (1) satisfy the following conditions [23]-[26]

Iik(u
∗
i ) = 0, k = 1, 2, · · · , ; i = 1, 2, · · · , n.
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(H2) For function fj, there exists a positive diagonal matrix F = diag(F1, F2,
· · · , Fn) such that

Fj = sup
x1 	=x2

∣∣∣fj(x1) − fj(x2)

x1 − x2

∣∣∣
for all x1 �= x2, j = 1, 2, · · · , n.

(H3) The delay kernel Kij : [0,+∞) → [0,+∞) is real valued nonnegative
continuous function and satisfies [18]∫ +∞

0

eβsKij(s)ds = rij(β),

where pij(β) is continuous function in [0,σ), σ > 0, and pij(0) = 1,
i, j = 1, 2, · · · , n.

(H4) Let u + Ik(u) := pk(u), then there exist nonnegative matrices Pk =

(p
(k)
ij )n×n such that

|pk(x1) − pk(x2)| ≤ Pk|x1 − x2|
for all x1, x2 ∈ Rn, k = 1, 2, · · · .

3. Main results

Theorem 1. Under assumptions (H1)- (H4), model (1) has a unique equilib-
rium point, which is globally exponentially stable and the exponential conver-
gence rate index equals ε− λ, if the following conditions are satisfied

(i) W = C − (|A| + |α| + |β| + |δ| + |η|)F is an M−matrix.

(ii) Δ = Ω(W )
∞⋂

k=1

Γ(Pk) is nonempty.

(iii) Let

γk ≥ max{1, ρ(Pk)}, (5)

and there exists a constant λ such that

ln γk

tk − tk−1
≤ λ < ε, k = 1, 2, · · · , (6)

where the scalar ε > 0 is determined by the inequality

ξi(ε− ci) +

n∑
j=1

ξjFj

(
|aij| + eετ (|αij| + |βij |) + rij(ε)(|δij| + |ηij|)

)
< 0 (7)

for a given ξ = (ξ1, ξ2, · · · , ξn)T ∈ Δ, τ = max
1≤i≤n,1≤j≤n

{τij}.
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Proof. Since equilibrium point u∗ = (u∗1, u
∗
2, · · · , u∗n)T of model (2) satisfy the

following equation

ciu
∗
i =

n∑
j=1

aijfj(u
∗
j) +

n∧
j=1

αijfj(u
∗
j) +

n∨
j=1

βijfj(u
∗
j)

+
n∧

j=1

δij

t∫
−∞

Kij(t− s)fj(u
∗
j)ds+

n∨
j=1

ηij

t∫
−∞

Kij(t− s)fj(u
∗
j)ds

+
n∑

j=1

bijvj + Ii +
n∧

j=1

Tijvj +
n∨

j=1

Hijvj

for i = 1, 2, · · · , n. From assumption (H3), we get

ciu
∗
i =

n∑
j=1

aijfj(u
∗
j) +

n∧
j=1

αijfj(u
∗
j) +

n∨
j=1

βijfj(u
∗
j) +

n∧
j=1

δijfj(u
∗
j)

+

n∨
j=1

ηijfj(u
∗
j) +

n∑
j=1

bijvj + Ii +

n∧
j=1

Tijvj +

n∨
j=1

Hijvj

for i = 1, 2, · · · , n. By using of Lemma 3 and theory of homeomorphism, the
proof for the existence and uniqueness of the equilibrium point of model (2) is
similar to the proof of Theorem 1 in [18], we omit it. From assumption (H1),
we know that model (1) have a unique equilibrium point. So, we will only
prove that this unique equilibrium point of model (1) is global exponentially
stable.

Let u∗ = (u∗1, u
∗
2, · · · , u∗n)T be the unique equilibrium point of model (1).

Denote

yi(t) = ui(t) − u∗i , f̃j(yj(t)) = fj(yj(t) + u∗j) − fj(u
∗
j), ,

p̃ik(yi(t)) = pik(yi(t) + u∗i ) − pik(u
∗
i )

then model (1) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dyi(t)
dt

= −ciyi(t) +
n∑

j=1

aij f̃j(yj(t)) +
n∧

j=1

αij f̃j(yj(t− τij(t)))

+
n∨

j=1

βij f̃j(yj(t− τij(t))) +
n∧

j=1

δij
t∫

−∞
Kij(t− s)f̃j(yj(s))ds

+
n∨

j=1

ηij

t∫
−∞

Kij(t− s)f̃j(yj(s))ds,

yi(t
+
k ) = p̃ik(yi(t

−
k )).

(8)

Since W is an M-matrix and the set Δ is nonempty, from lemma 1, there
exists a positive vector ξ = (ξ1, ξ2, · · · , ξn)T ∈ Δ ⊆ Ω(W ) such that

−ξici +

n∑
j=1

ξjFj

(
|aij | + (|αij| + |βij| + |δij| + |ηij|

)
< 0. (9)
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Considering functions

Li(x) = ξi(x− ci) +
n∑

j=1

ξjFj

(
|aij| + exτ (|αij| + |βij |) + rij(x)(|δij | + |ηij |)

)
,

i = 1, 2, · · · , n.

From (9) and assumption (H3), we know that Li(0) < 0 and Li(x) is continu-

ous. Since dLi(x)
dx

> 0, Li(x) is strictly monotone increasing, there exist εi > 0
such that

Li(εi) = ξi(εi − ci)

+

n∑
j=1

ξjFj

(
|aij| + eεiτ (|αij| + |βij |) + rij(εi)(|δij| + |ηij|)

)
< 0,

i = 1, 2, · · · , n.
Choosing 0 < ε < min{ε1, ε2, · · · , εn}, then

ξi(ε− ci) +

n∑
j=1

ξjFj

(
|aij | + eετ (|αij | + |βij |) + rij(ε)(|δij| + |ηij|)

)
< 0, (10)

i = 1, 2, · · · , n.
Let

xi(t) = eε(t−t0)|yi(t)|, i = 1, 2, · · · , n.
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Calculating the upper right derivative D+xi(t) of xi(t) along the solutions of
(8), from Lemma 3 and the assumption (H2), we can get

D+xi(t) = εeε(t−t0)|yi(t)| + eε(t−t0)sgn(yi(t))
{
− ciyi(t) +

n∑
j=1

aij f̃j(yj(t))

+
n∧

j=1

αij f̃j(yj(t− τij(t))) +
n∨

j=1

βij f̃j(yj(t− τij(t)))

+
n∧

j=1

δij

t∫
−∞

Kij(t− s)f̃j(yj(s))ds

+
n∨

j=1

ηij

t∫
−∞

Kij(t− s)f̃j(yj(s))ds
}

≤ eε(t−t0)
{

(ε− ci)|yi(t)| +
n∑

j=1

|aij|Fj |yj(t)|

+

n∑
j=1

(|αij| + |βij|)Fj |yj(t− τij(t))|

+

n∑
j=1

(|δij | + |ηij |)Fj

t∫
−∞

Kij(t− s)|yj(s)|ds
}

= (ε− ci)xi(t) +

n∑
j=1

|aij|Fjxj(t)

+
n∑

j=1

(|αij| + |βij|)Fje
ετij(t)xj(t− τij(t))

+
n∑

j=1

(|δij | + |ηij |)Fj

t∫
−∞

eε(t−s)Kij(t− s)xj(s)ds

≤ (ε− ci)xi(t) +
n∑

j=1

|aij|Fjxj(t)

+

n∑
j=1

(|αij| + |βij|)Fje
ετxj(t− τij(t))

+

n∑
j=1

(|δij | + |ηij |)Fj

t∫
−∞

eε(t−s)Kij(t− s)xj(s)ds(11)

for i = 1, 2, · · · , n; tk−1 < t < tk, k = 1, 2, · · · .



1344 Qinggao He and Qiankun Song

Let l0 = ‖φ−u∗‖
min

1≤i≤n
{ξi} , then

xi(s) = eε(s−t0)|yi(s)| ≤ |yi(s)| = |φi(s) − u∗i | ≤ ‖φ− u∗‖ ≤ ξil0 (12)

for −∞ < s ≤ t0 i = 1, 2, · · · , n. We can prove that

xi(t) ≤ ξil0, t0 ≤ t < t1, i = 1, 2, · · · , n. (13)

In fact, if inequality (13) is not true, then there must exist some i and t∗ ∈
[t0, t1) such that

xi(t
∗) = ξil0, D+xi(t

∗) ≥ 0 and xj(t) ≤ ξjl0

for −∞ < t ≤ t∗, j = 1, 2, · · · , n. However, from (10), (11) and (H2), we get

D+xi(t
∗) ≤

(
(ε− ci)ξi +

n∑
j=1

|aij|Fjξj +
n∑

j=1

(|αij| + |βij|)Fje
ετξj

+

n∑
j=1

(|δij| + |ηij|)Fjrij(ε)ξj

)
l0 < 0,(12)

this is a contradiction. So inequality (13) is true. Thus, we have

|yi(t)| ≤ ξil0e
−ε(t−t0), t0 ≤ t < t1, i = 1, 2, · · · , n. (14)

In the following, we will use the mathematical induction to prove that

|yi(t)| ≤ γ0γ1 · · · γk−1ξil0e
−ε(t−t0), tk−1 ≤ t < tk, 15

i = 1, 2, · · · , n; k = 1, 2, · · · ,
hold, where γ0 = 1.

When k = 1, from inequality (14) we know that inequality (15) hold.
Suppose that the inequalities

|yi(t)| ≤ γ0γ1 · · · γm−1ξil0e
−ε(t−t0), tk−1 ≤ t < tk, i = 1, 2, · · · , n, (16)

hold for k = 1, 2, · · · , m.
From assumption (H4) and (16), we know that the second equation of model

(8) satisfies

|yi(tm)| ≤
n∑

j=1

p
(m)
ij |yj(t

−
m)|

≤
n∑

j=1

p
(m)
ij γ0γ1 · · · γm−1ξjl0e

−ε(tm−t0)(17)

for i = 1, 2, · · · , n.
From ξ = (ξ1, ξ2, · · · , ξn)T ∈ Δ, we know that ξ ∈ Γ(Pm). That is

Pmξ = ρ(Pm)ξ,
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i.e.,
n∑

j=1

p
(m)
ij ξj = ρ(Pm)ξi, i = 1, 2, · · · , n. (18)

Applying (18) to (17), we get

|yi(tm)| ≤ γ0γ1 · · · γm−1ρ(Pm)ξil0e
−ε(tm−t0), i = 1, 2, · · · , n. (19)

From (5) and (19), we have

|yi(tm)| ≤ γ0γ1 · · ·γm−1γmξil0e
−ε(tm−t0), i = 1, 2, · · · , n. (20)

This, together with both (12), (16) and (20), lead to

|yi(t)| ≤ γ0γ1 · · · γm−1γmξil0e
−ε(t−t0), i = 1, 2, · · · , n; t ∈ (−∞, tm], (21)

i.e.,

xi(t) ≤ γ0γ1 · · · γm−1γmξil0, i = 1, 2, · · · , n; t ∈ (−∞, tm]. (22)

In the following, we will prove that

xi(t) ≤ γ0γ1 · · · γm−1γmξil0, i = 1, 2, · · · , n; t ∈ [tm, tm+1), (23)

hold.
If (23) is not true, then there must exists some i and t∗∗ ∈ [tm, tm+1) such

that

xi(t
∗∗) = γ0γ1 · · ·γm−1γmξil0, D+xi(t

∗∗) ≥ 0

and

xj(t) ≤ γ0γ1 · · ·γm−1γmξjl0

for −∞ < t ≤ t∗∗, j = 1, 2, · · · , n. However, from (11) and (10), we get

D+xi(t
∗∗) ≤

[
(ε− ci)ξi +

n∑
j=1

|aij |Fjξj +
n∑

j=1

(|αij| + |βij |)Fje
ετξj

+

n∑
j=1

(|δij| + |ηij|)Fjrij(ε)ξj

]
γ0γ1 · · · γm−1γml0

< 0,

this is a contradiction. So (23) holds.
By the mathematical induction, we can conclude that (15) holds.
From (6), we have

γk ≤ eλ(tk−tk−1), k = 1, 2, · · · .
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From (15), we get

|yi(t)| ≤ eλ(t1−t0)eλ(t2−t1) · · · eλ(tk−1−tk−2)ξil0e
−ε(t−t0)

=
ξi

min
1≤i≤n

{ξi}‖φ− u∗‖eλ(tk−1−t0)e−ε(t−t0)

≤ ξi
min

1≤i≤n
{ξi}‖φ− u∗‖eλ(t−t0)e−ε(t−t0)

=
ξi

min
1≤i≤n

{ξi}‖φ− u∗‖e−(ε−λ)(t−t0)

for any t ∈ [tk−1, tk), k = 1, 2, · · · , that is

|ui(t) − u∗i | ≤
ξi

min
1≤i≤n

{ξi}‖φ− u∗‖e−(ε−λ)(t−t0)

for t ≥ t0. So
‖u(t) − u∗‖ ≤M‖φ− u∗‖e−(ε−λ)(t−t0)

for t ≥ t0, where M = max
1≤i≤n

{ξi}/ min
1≤i≤n

{ξi} ≥ 1. This means that the equilib-

rium point u∗ of model (1) is globally exponentially stable, and the exponential
convergence rate index equals ε− λ. The proof is completed.

Remark 3. We may properly choose the matrix Pk in assumption (H4) to
guarantee Δ in Theorem 1 be nonempty. Especially, when Pk = pkE (pk is
nonnegative constant), Δ is certainly nonempty. So, by using Theorem 1, we
easily obtain the following corollary.

Corollary 1. Under assumptions (H1)- (H3) and Pk = P = diag(p1, p2, · · · ,
pn), model (1) has a unique equilibrium point, which is globally exponentially
stable and the exponential convergence rate index equals ε− λ, if the following
conditions are satisfied

(i) W = C − (|A| + |α| + |β| + |δ| + |η|)F is an M−matrix.
(ii) Let γk ≥ max{1, pk}, and there exists a constant λ such that

ln γk

tk − tk−1
≤ λ < ε, k = 1, 2, · · · ,

where the scalar ε > 0 is determined by the inequality

ξi(ε− ci) +

n∑
j=1

ξjFj

(
|aij | + eετ (|αij| + |βij|) + rij(ε)(|δij| + |ηij|)

)
< 0

for a given ξ = (ξ1, ξ2, · · · , ξn)T ∈ Ω(W ), τ = max
1≤i≤n,1≤j≤n

{τij}.

Remark 4. Theorem 1 and Corollary 1 show the fact that the exponential
stability of model (1) still remains even under strong impulsive perturbations
if model (2) exponentially converges as fast as possible.
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Corollary 2. Let assumptions (H2) and (H3) hold, if

W = C − (|A| + |α| + |β| + |δ| + |η|)F
is an M−matrix, then model (2) has a unique equilibrium point, which is
globally exponentially stable, and the exponential convergence rate index ε > 0
is determined by the inequality

ξi(ε− ci) +

n∑
j=1

ξjFj

(
|aij | + eετ (|αij| + |βij|) + rij(ε)(|δij| + |ηij|)

)
< 0

for i = 1, 2, · · · , n, and ξ = (ξ1, ξ2, · · · , ξn)T ∈ Ω(W ), τ = max
1≤i≤n,1≤j≤n

{τij}.

Proof. From W is an M− matrix, we know that model (2) has one unique
equilibrium point. Since model (2) is a special case of model (1) with Ik(u) = 0,
we have pk(u) = u. So, (H1) hold, and (H4) with Pk = diag{1, 1, · · · , 1} hold.
From Corollary 1, we can get that the unique equilibrium point of model (2)
is globally exponentially stable. The proof is completed.

Corollary 3. Let assumption (H2) hold, if

W = C − (|A| + |α| + |β|)F
is an M−matrix, then model

dui(t)

dt
= −ciui(t) +

n∑
j=1

aijfj(uj(t)) +

n∑
j=1

bijvj + Ji

+
n∧

j=1

αijfj(uj(t− τij(t))) +
n∨

j=1

βijfj(uj(t− τij(t)))

+

n∧
j=1

Tijvj +

n∨
j=1

Hijvj , t ≥ 0, i = 1, 2, · · · , n(24)

has a unique equilibrium point, which is globally exponentially stable, and the
exponential convergence rate index ε > 0 is determined by the inequality

ξi(ε− ci) +

n∑
j=1

ξjFj

(
|aij| + eετ (|αij| + |βij |)

)
< 0

for i = 1, 2, · · · , n, and ξ = (ξ1, ξ2, · · · , ξn)T ∈ Ω(W ), τ = max
1≤i≤n,1≤j≤n

{τij}.

Remark 5. Corollary 3 extends and improves the corresponding results on
the stability of model (24) in [35]-[37]. In [35] and [36], the differentiability on
time-varying delays is required. In addition, the following two examples show
that the results obtained in this paper have a less restriction than those in [35]
and [37].
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4. Examples

Example 1. Consider the following model

dui(t)

dt
= −ciui(t) +

2∑
j=1

aijfj(uj(t)) +
2∑

j=1

bijvj + Ji

+

2∧
j=1

αijfj(uj(t− τij(t))) +

2∨
j=1

βijfj(uj(t− τij(t)))

+

2∧
j=1

Tijvj +

2∨
j=1

Hijvj , t ≥ 0, i = 1, 2,(25)

where

C =

(
2.2 0
0 9.6

)
, A =

(
1 −1.1

0.8 1

)
,

α =

(
0.3 0.9
0.7 0.2

)
, β =

(
0.2 0.5
0.6 0.4

)
,

f1(θ) = f2(θ) =
1

2
(|θ + 1| + |θ − 1|), τ1(t) = τ2(t) = 3 + 2| sin t|.

Obviously, assumption (H2) hold, and F =

(
1 0
0 1

)
, τ = 5. It is easy

computing that C−(|A|+|α|+|β|)F =

(
0.7 −2.5
−2.1 8

)
is an M-matrix. By

Corollary 3, we know that model (25) has a unique equilibrium point which is
globally exponentially stable, and the exponential converging index λ = 0.01326.

Since τ1(t) and τ2(t) are not differentiable, the conclusions in [35] and [36]
are not applicable to ascertain the stability of model (25).

Since

C − (|A| + diag
(

max
1≤j≤2

{|α1jFj|}, max
1≤j≤2

{|α2jFj|}
)

+diag
(

max
1≤j≤2

{|β1jFj |}, max
1≤j≤2

{|β2jFj |}
)
) =

( −0.2 −1.1
−0.8 7.3

)

is not an M-matrix, the conclusions in [37] are not applicable to ascertain the
stability of model (25).
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Example 2. Consider the following model⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dui(t)
dt

= −ciui(t) +
2∑

j=1

aijfj(uj(t)) +
2∑

j=1

bijvj + Ji

+
2∧

j=1

αijfj(uj(t− τij(t))) +
2∨

j=1

βijfj(uj(t− τij(t)))

+
2∧

j=1

δij
t∫

−∞
Kij(t− s)fj(uj(s))ds

+
2∨

j=1

ηij

t∫
−∞

Kij(t− s)fj(uj(s))ds

+
2∧

j=1

Tijvj +
2∨

j=1

Hijvj , t �= tk, t ≥ 0,

�ui(tk) = ui(t
+
k ) − ui(t

−
k ) = Iik(ui(tk)), i = 1, 2; k = 1, 2, · · · ,

(26)

where

C =

(
4.9 0
0 4.8

)
, A =

(
1 −1.2

0.3 2

)
, α =

(
0.3 0.4
0.1 0.5

)
,

β =

(
0.1 0.6
0.3 0.2

)
, δ =

(
0.1 0.2
0.4 0.5

)
, η =

(
0.1 0.6
0.3 0.2

)
,

B = T = H =

(
0.3 0.7
0.2 0.9

)
, V = (0.3, 0.7)T , J = (2.34, 2.02)T ,

f1(x) = f2(x) = x, Kij(t) = te−t, τij(t) = 0.01(| cos t| + 1), t0 = 0.5, tk =
tk−1 +0.5, I1k(u1(tk)) = 0.005(u1(tk)−1), I2k(u2(tk)) = −0.005(u2(tk)−1) for
k = 1, 2, 3, · · · .

One can verify that the point (1, 1)T is an equilibrium point of model (26),

and assumptions (H1)-(H4) hold, and τ = 0.02, F =

(
1 0
0 1

)
, Pk =(

1.005 0
0 1.005

)
for k = 1, 2, 3, · · · .

It is easily computing that

W = C − (|A| + |α| + |β| + |δ| + |η|)F =

(
3.3 −3
−1.4 1.4

)
is an M-matrix, and Γ(Pk) = R2, Ω(W ) = {(z1, z2)

T |z1 < z2 < 1.1z1, z1 >
0, z2 > 0}, so Δ = {(z1, z2)

T |z1 < z2 < 1.1z1, z1 > 0, z2 > 0} is nonempty. Let
ξ = (1, 1.05)T ∈ Δ and ε = 0.01753, which satisfy inequalities

ξi(ε−ci)+
n∑

j=1

ξjFj

(
|aij |+eετ(|αij|+|βij|)+rij(ε)(|δij|+|ηij|)

)
< 0, i, j = 1, 2.

Taking γk = 1.005, λ = 0.01, which satisfy inequalities

γk ≥ max{1, ρ(Pk)},
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and

ln γk

tk − tk−1

=
ln 1.005

0.5
≤ λ < ε, k = 1, 2, · · · .

Clearly, all conditions of Theorem 1 are satisfied. From Theorem 1, we know
that the unique equilibrium point (1, 1)T of model (26) is globally exponentially
stable, and the exponential convergence rate index equals 0.00753.

5. Conclusions

In this paper, the global exponential stability of the impulsive fuzzy recur-
rent neural network with both time-varying delays and distributed delays has
been studied. Several sufficient conditions have been obtained to ensure the
existence, uniqueness, and global exponential stability of equilibrium point
for impulsive fuzzy recurrent neural networks model with both time-varying
delays and distributed delays. The sufficient conditions obtained are delay-
independent, which implies that the strong self-regulation is dominant in the
networks. In particular, the estimate of the exponential converging index was
also provided, which depends on the system parameters. Compared with the
method of Lyapunov functional that is employed by previous publications, our
method is simpler and more effective for stability analysis of the fuzzy recur-
rent neural networks with both time-varying delays and distributed delays.
Two examples have shown that our results are less restrictive than previously
known criteria.
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