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Abstract

Let {W1(t) : t ≥ 0} and {W2(t) : t ≥ 0} be two independent Brow-
nian motions with W1(0) = W2(0) = 0. H = {W1(|W2(t)|), t ≥ 0}
is called a generalized iterated Brownian motion. In this paper, the
Hausdorff dimension and packing dimension of the level sets

{t ∈ [0, 1],H(t) = x}

are established.
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1. Introduction and results

Let {W1(t), 0 ≤ t < ∞} and {W2(t), t ≥ 0} be two independent Wiener
processes. Define the iterated Brownian motion

Y
Δ
= {W1(W2(t)), t ≥ 0}

and a modification of the iterated Brownian motion

H
Δ
= {W1(|W2(t)|), t ≥ 0}.

The latter was used by Funaki (1979) to give a probabilistic solution to the
partial differential equation

∂4u

∂x4
=

1

8
· ∂u

∂t
with u(0, x) = u0(x).
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{H(t), 0 ≤ t < ∞} is called a generalized iterated Brownian motiom (GIBM).
Csáki et al (1996) gave a detailed study of the local time process {L∗(x, t); x ∈
R1, t ≥ 0} of H(t) and established a result on continuity modulus in t.

lim sup
h→0

sup
0≤t≤1

sup
x∈R

|L∗(x, t + h) − L∗(x, t)|
27/4h3/4(log h−1)5/4

= 1 a.s.

Eisenbaum and Földes (2001) have given strong approximations of continuous
additive functional of a Brownian motion by a GIBM.

Recently, there has been a lot of investigations on sample path proper-
ties of an iterated Brownian motion. But for a GIBM, we don’t find more
investigations.

In this paper, we use arguments based on local time to obtain the Haus-
dorff dimension and the packing dimension of the level set E(x, T ) = {t ∈
[0, T ], H(t) = x}. Our main results are as follows.

Theorem 1.1 With probability one,

dimH E(x, T ) =
3

4
(1.1)

for all 0 < T ≤ 1 and every x in the interior of the range of {H(t), t ∈ [0, T ]}.
Theorem 1.2 With probability one,

dimP E(x, T ) =
3

4
(1.2)

for all 0 < T ≤ 1 and every x in the interior of the range of {H(t), t ∈ [0, T ]}.
Throughout this paper, the Hausdorff dimension and the packing dimension

of A are denoted by dimH A and dimp A, respectively.

2. The Hausdorff dimension of the level set

The following lemmas are the key tools to prove our theorems.
Lemma 2.1 (Csáki et al (1996)) Let {L∗(x, t); x ∈ R, t ≥ 0} be the

local time of H(t), then it is jointly continuous in x and t a.s. And

lim sup
h→0

sup
0≤t≤1

sup
x∈R

|L∗(x, t + h) − L∗(x, t)|
27/4h3/4(log h−1)5/4

≤ 1 a.s. (2.1)

The following is the lower bound of the Hausdorff dimension of the level
set.

Theorem 2.1 With probability one,

dimH E(x, T ) ≥ 3

4
a.s. (2.2)
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Proof Let Fx be the measure on [0, T ] induced by the local time L∗(x, ·),
i.e., define Fx on [0, T ] by setting

Fx(t, t + h) = L∗(x, t + h) − L∗(x, t).

It is easy to see that Fx is completely additive measure defined on real Borel
sets. By (2.1)

Fx(t, t + h)

h3/4−ε
≤ K < ∞, (2.3)

for any ε > 0. Applying the principle of the mass distribution, we have

φ1 − m(E) ≥ K−1Fx(E) ≥ 0 (2.4)

where
φ1(h) = h3/4−ε.

Hence we have

dimH E(x, T ) ≥ 3

4
− ε a.s.

By arbitrariness of ε, we obtain (2.2).
In order to prove the upper bound we will need two lemmas.

Lemma 2.4

lim sup
h→0

H(t + h) − H(t)

h1/4(log log 1
h
)3/4

=
25/4

33/4
a.s. (2.5)

Proof Csáki et al (1989) proved the following result: If L2(0, t) is the

local time at zero of W2(t), and U(t)
Δ
= W1(L2(0, t)), then

lim sup
t→∞

U(t)

t1/4(log log t)3/4
=

25/4

33/4
a.s. (2.6)

Moreover we have

{L2(0, t); t ≥ 0} d
= {sup

s≤t
W2(s); t ≥ 0} d

= {|W2(t)|; t ≥ 0}, (2.7)

which is the well-known Lévy’s theorem, and can be find in Kallenberg (2001).
By ( 2.7) and scaling property of the Brownian motion,

U(t)
d
= W1(|W2(t)|) d

= W1(|tW2(t
−1)|) d

= t1/2W1(|W2(t
−1)|),

which, by letting h = 1/t, implies U(h) = h−1/2U(t) and hence

lim sup
h→0

U(h)

h1/4(log log h−1)3/4
=

25/4

33/4
a.s. (2.8)
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from (2.6). By (2.7) again,

H(t + h) − H(t) = W1(|W2(t + h)|) − W1(|W2(t)|)
d
= W1(|W2(t + h)| − |W2(t)|)
d
= W1(L2(0, t + h) − L2(0, t))
d
= W1(L2(0, h))
= U(h).

Then (2.5) follows from (2.8).

Lemma 2.5 Let F : [0, 1] → R satisfy the uniform Hölder condition of
order γ, 0 < γ < 1, and possess a jointly continuous local time L, then for
every real x

dimH [t ∈ [0, 1]; F (t) = x] ≤ 1 − γ.

Proof This is an analog to Lemma 7 of Adler (1978).

Theorm 2.2 With probability one,

dimH E(x, T ) ≤ 3

4
a.s.

Proof By Lemma 2.4, for any ε > 0, 0 < ε < 1
4
, and h small enough,

we have
H(t + h) − H(t) ≤ ch

1
4
−ε a.s.

which, in combination with Lemma 2.5 and arbitrariness of ε, implies the
conclusion of the theorem.

Now, putting together Theorem 2.1 and Theorem 2.2, we conclude Theorem
1.1.

3. The packing dimension of the level set

In this section, we will prove Theorem 1.2. The packing dimension of any
set always does not smaller than its Hausdorff dimension, so we just prove the
upper bound of the packing dimension of the level set is 3

4
. Here we need some

lemmas.
The next result is the well-known Chung’s law of LIL for the Brownian

motion. An analogy for the local time of the Brownian motion is immediate.

Lemma 3.1 Let {W (t), 0 ≤ t ≤ 1} be a Brownian motion, and L(x, t)
be its local time, then

lim inf
t→0

sup
0≤r≤t

|W (r)|
(t/ log log t−1)1/2

=
π

2
√

2
a.s. (3.1)
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and

lim inf
t→0

sup
x∈R

L(x, t)

(t/ log log t−1)1/2
=

π

2
√

2
a.s. (3.2)

Lemma 3.2 Let L∗(x, t) be the local time of GIBM H(t), then we have

lim inf
h→0

sup
0≤t≤1

sup
x∈R

L∗(x, t + h) − L∗(x, t)

h3/4(log h−1)1/2
≥ C a.s.

for some C > 0.

Proof Let L′
2(x, t) be the local time of |W2(t)| and L1(x, t) be the local

time of W1(t). By Csáki et.al. (1996),

L∗(x, t) =

∫ ∞

0

L′
2(s, t)dsL1(x, s)

and by (3.2), for any ε > 0

sup
0≤t≤1−h

sup
x∈R

(L′
2(x, t + h) − L′

2(x, t)) ≥ 2(1 − ε)(2h log h−1)
1
2 a.s.

provided h is small enough for x ≥ 0. Where we used the fact that

L′
2(x, t) = L2(x, t) + L2(−x, t) = 2L2(x, t) a.s. (3.3)

So we have

sup
0≤t≤1−h

sup
x∈R

(L∗(x, t + h) − L∗(x, t))

= sup
0≤t≤1−h

sup
x∈R

∫ ∞

0

(L′
2(s, t + h) − L′

2(s, t))dsL1(x, s)

≥ sup
0≤t≤1−h

sup
x∈R

∫ A(h)

0

(L′
2(s, t + h) − L′

2(s, t))dsL1(x, s)

≥ 2(1 − ε)(2h log h−1)
1
2 sup

x∈R
(L1(x,A(h)) (3.4)

where A(h) = sup0≤r≤h |W2(r)|.
Applying (3.1), we have

lim inf
h→0

sup
0≤r≤h

A(h)

(h/ log log h−1)1/2
=

π

2
√

2
a.s. (3.5)

By limh→0 A(h) = 0 a.s. and (3.2)

lim inf
h→0

sup
x∈R

L1(x,A(h))

[A(h)/ log log A(h)−1)]1/2
=

π

2
√

2
a.s. (3.6)
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Combining (3.4)-(3.6), we conclude Lemma 3.2.

Now we prove Theorem 1.2.
Proof By Theorem 19.1 of Kallenberg (2001), for each x, L∗(x, ·) has

its support contained in {t ∈ [0, 1]; H(t) = x}, and L∗(x, ·) is Borel measurable.
By Lemma 3.2, for any ε, 0 < ε < 3

4
, we have

L∗(x, t + h) − L∗(x, t) ≥ Ch3/4−ε ,

Applying the Lemma of Frostman (1935) , the packing measure

0 < φ1 − p(E(x, T )) < +∞,

where φ1(h) = h3/4−ε, then we have

dimp E(x, T ) ≤ 3

4
− ε a.s.

By arbitrariness of ε and Theorem 1.1, we complete the proof of Theorem 1.2.
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