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Abstract

We wish to find the potential function whose gradient best approx-
imates an observed square integrable function. With an appropriate
choice of topology we show that the gradient operator is a bounded lin-
ear operator and that the best approximation is obtained by solving a
self-adjoint partial differential equation.
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1 Introduction

Write r to denote the general position vector in R
3. Let U = [0, 1]3 denote the

unit cube in R
3 with boundary ∂U . Suppose an observed square integrable

function g : U �→ R
3 is given. We wish to find the potential function u : U �→ R

with u(r) = 0 when r ∈ ∂U , which minimises the total residual error∫∫∫
U
‖∇u(r) − g(r)‖2 dV.

2 Preliminary Notes

We need to establish some basic facts about the gradient operator. There are
no specific references but a general background can be found in the books by
Aubin [1], Treves [2] and Yosida [3]. Define the Hilbert space H of functions
u : U �→ R such that∫∫∫

U

[
|u(r)|2 + ‖∇u(r)‖2

]
dV < ∞
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with u(r) = 0 when r ∈ ∂U and inner product

〈u, v〉H =

∫∫∫
U

[
u(r)v(r) + 〈∇u(r), ∇v(r)〉

]
dV

for each u, v ∈ H and the Hilbert space K of functions g : U �→ R
3 such that

∫∫∫
U
‖g(r)‖2 dV < ∞

with inner product

〈g,h〉K =

∫∫∫
U
〈g(r),h(r)〉 dV

for each g,h ∈ K. The mapping ∇ : H �→ K defined by

∇u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂u

∂x

∂u

∂y

∂u

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

is a bounded linear map. We call ∇ the gradient operator. Let D denote the
set of all infinitely differentiable functions ϕ : U �→ R with compact support
spt(ϕ) ⊂ int(U) and for each m = 2, 3, . . . let Dm be the set of infinitely
differentiable functions ψ : U �→ R

m with compact support spt(ψ) ⊂ int(U).
The adjoint map ∇∗ : K �→ H is given by ∇∗k = w where w ∈ H is the
uniquely defined function with

〈w,ϕ〉H = 〈k, ∇ϕ〉K (1)

for all ϕ ∈ D. To find a suitable formula for the adjoint operator we digress
for a moment to consider the divergence operator. We have the following
elementary result.

Lemma 1 Let ψ ∈ D3. For all ϕ ∈ D we have

∫∫∫
U
〈∇,ψ(r)〉 ϕ(r) dV = (−1)

∫∫∫
U
〈ψ(r), ∇ϕ(r)〉 dV.
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Proof of Lemma 1 It can be seen that

〈∇,ψϕ〉 = 〈∇,ψ〉 ϕ + 〈ψ, ∇ϕ〉
and so∫∫∫

U
〈∇,ψ(r)ϕ(r)〉dV =

∫∫∫
U

[
〈∇,ψ(r)〉 ϕ(r) + 〈ψ(r), ∇ϕ(r)〉

]
dV.

If n(r) denotes the unit outward normal to the surface ∂U at the point r then
by Gauss’s theorem

∫∫∫
U
〈∇,ψ(r)ϕ(r)〉 dV =

∫∫
∂U
〈ψ(r)ϕ(r),n〉 dS = 0

since ϕ(r) = 0 for r ∈ ∂U . This establishes the desired result. �

This basic result is used to define the generalised divergence.

Definition 1 For each k ∈ K the generalised divergence operator 〈∇,k〉 :
D �→ R is defined by the formula

〈∇,k〉(ϕ) = (−1)

∫∫∫
U
〈k(r), ∇ϕ(r)〉 dV.

Remark 1 For ψ ∈ D3 Lemma 1 shows that

〈∇,ψ〉(ϕ) =

∫∫∫
U
〈∇,ψ(r)〉 ϕ(r) dV

for all ϕ ∈ D. Note also that if k ∈ K and {ψn}n∈�⊂ D3 with ‖ψn−k‖K → 0
as n → ∞ then

〈∇,ψn〉(ϕ) → 〈∇,k〉(ϕ)

for all ϕ ∈ D as n → ∞.

Rewrite equation (1) as
∫∫∫

U

[
w(r)ϕ(r) + 〈∇w(r), ∇ϕ(r)〉

]
dV =

∫∫∫
U
〈k(r), ∇ϕ(r)〉 dV

from which it follows that∫∫∫
U

[
〈k(r) − ∇w(r), ∇ϕ(r)〉 − w(r)ϕ(r)

]
dV = 0. (2)

If w ∈ H then it is well known that Poisson’s equation

∇2ζ = w ⇔ 〈∇, ∇ζ〉 = w
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with ζ(r) = 0 for r ∈ ∂U has a unique classical solution

ζ(r) = − 1

4π

∫∫∫
U

w(s)

‖s− r‖dV.

If ξ = ∇ζ then w = 〈∇, ξ〉 and equation (2) becomes

∫∫∫
U

[
〈k(r) − ∇〈∇, ξ(r)〉,∇ϕ(r)〉 − 〈∇, ξ(r)〉 ϕ(r)

]
dV = 0.

Now use the standard identity

〈∇, ξ ϕ〉 = 〈∇, ξ〉ϕ + 〈ξ, ∇ϕ〉

to deduce that∫∫∫
U

[ 〈 [k(r) + ξ(r) − ∇〈∇, ξ(r)〉] , ∇ϕ(r)〉 − 〈∇, ξ(r)ϕ(r)〉 ]
dV = 0.

By Gauss’s theorem

∫∫∫
U
〈∇, ξ(r)ϕ(r)〉dV =

∫∫
∂U
〈ξ(r)ϕ(r),n(r)〉 dS = 0

since ϕ(r) = 0 when r ∈ ∂U . Thus the above equation can be rewritten as

∫∫∫
U
〈 [k(r) + ξ(r) −∇〈∇, ξ(r)〉] , ∇ϕ(r)〉 dV = 0 (3)

for all ϕ ∈ D. From Definition 1 of the generalised divergence it follows that

〈∇, [k + ξ − ∇〈∇, ξ〉] 〉 = 0

and since w = 〈∇, ξ〉 ∈ H we deduce that

w + 〈∇,k − ∇w〉 = 0 ⇔ w = (−1)(I −∇2)−1〈∇,k〉.

Remark 2 If k ∈ K then w = ∇∗k ∈ H is defined in terms of the generalised
divergence by the formula

∇∗k = (−1)(I −∇2)−1〈∇,k〉. (4)

3 The main result

We state the main result as a formal theorem. Detailed arguments are pre-
sented in subsequent sections.
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Theorem 1 Let g ∈ K be an observed function and let g0 ∈ K be the modified
observed function defined by

g0 = g −

⎡
⎢⎢⎢⎢⎢⎣

∫ 1

0
g1(x, y, z)dx

∫ 1

0
g2(x, y, z)dy

∫ 1

0
g3(x, y, z)dz

⎤
⎥⎥⎥⎥⎥⎦

.

The problem

min
u∈H

‖∇u − g‖K

is solved by the function u0 ∈ H defined as the unique solution to the equation

∇∗∇u0 = ∇∗g ⇔ (−1)(I −∇2)−1∇2u0 = (−1)(I −∇2)−1〈∇, g〉.

If the observed function is written in the form

g =

⎡
⎢⎢⎢⎢⎣

∑∞
m=1

∑∞
n=1 [ δ0,m,n +

∑∞
�=1 δ�,m,n cos �πx ] sinmπy · sinnπz

∑∞
�=1

∑∞
n=1 [ ε�,0,n +

∑∞
m=1 ε�,m,n cos mπy ] sin �πx · sinnπz

∑∞
�=1

∑∞
m=1 [ θ�,m,0 +

∑∞
n=1 θ�,m,n cos nπz ] sin �πx · sinmπy

⎤
⎥⎥⎥⎥⎦ .

then the solution is given by

u0 =

∞∑
�=1

∞∑
m=1

∞∑
n=1

γ�,m,n sin �πx · sinmπy · sinnπz

where

γ�,m,n =
�δ�,m,n + mε�,m,n + nθ�,m,n

π(�2 + m2 + n2)

for all �,m, n ∈ N. The function u0 also solves the modified problem

min
u∈H

‖∇u − g0‖K

and if the coefficients in the series expansions for g and g0 satisfy the condi-
tions

nε�,m,n = mθ�,m,n, nδ�,m,n = �θ�,m,n and mδ�,m,n = �ε�,m,n

for all �,m, n ∈ N then the best approximate gradient u0 becomes an exact
gradient for the modified observed function. That is ∇u0 = g0.



1370 Phil Howlett

4 The best approximate gradient

Suppose an observed function g ∈ K is given and we wish to find u ∈ H such
that

‖∇u − g‖K

is minimised. Since ∇ ∈ L(H,K) is a bounded linear operator it follows that
the best approximation u0 ∈ H is given by

∇∗(∇u0 − g) = 0 ⇔ (−1)(I −∇2)−1〈∇, ∇u0 − g〉 = 0.

Of course it is often convenient to think of this equation in the form

∇∗∇u0 = ∇∗g ⇔ (−1)(I −∇2)−1∇2u0 = (−1)(I −∇2)−1〈∇, g〉. (5)

This equation is a standard self-adjoint differential equation1. The orthonor-
mal eigenfunctions in H for the self-adjoint operator ∇∗∇ : H �→ H are given
by

p�,m,n =
2
√

2√
1 + π2(�2 + m2 + n2)

sin �πx · sinmπy · sinnπz

and hence

∇∗∇p�,m,n =
π2(�2 + m2 + n2)

1 + π2(�2 + m2 + n2)
p�,m,n

for each �,m, n ∈ N. The standard mathematical procedure for solution of
equation (5) uses eigenfunction expansions in both H and K but we reject it
for the moment to pursue a more intuitive approach.

4.1 An intuitive solution procedure

It is easy to see that

∇p�,m,n =
2
√

2π√
1 + π2(�2 + m2 + n2)

⎡
⎣ � cos �πx · sinmπy · sinnπz

m sin �πx · cosmπy · sinnπz
n sin �πx · sinmπy · cosnπz

⎤
⎦

and by looking at the individual components of these vectors it seems reason-
able to use them as a basis for our representation of the function g ∈ K. Thus
we write

g =

⎡
⎢⎢⎢⎢⎣

∑∞
m=1

∑∞
n=1 [ δ0,m,n +

∑∞
�=1 δ�,m,n cos �πx ] sinmπy · sinnπz

∑∞
�=1

∑∞
n=1 [ ε�,0,n +

∑∞
m=1 ε�,m,n cos mπy ] sin �πx · sin nπz

∑∞
�=1

∑∞
m=1 [ θ�,m,0 +

∑∞
n=1 θ�,m,n cos nπz ] sin �πx · sinmπy

⎤
⎥⎥⎥⎥⎦ .

1One may be tempted to rewrite equation (5) in the intuitively simpler form ∇2u0 =
〈∇, g〉 but in doing so one should realise that the simplified equation is an operator equation
and is not an equation between functions. This is most easily seen by considering the possibly
divergent eigenfunction expansions.
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A little thought should convince us that this representation is complete in K.
The coefficients of the series can be calculated using the usual Fourier integral
formulae. Some elementary algebra now gives

∇∗g =
∞∑

�=1

∞∑
m=1

∞∑
n=1

π(�δ�,m,n + mε�,m,n + nθ�,m,n)

1 + π2(�2 + m2 + n2)
sin �πx · sinmπy · sinnπz.

(6)
We seek a solution to equation (5) in the form

u0 =
∞∑

�=1

∞∑
m=1

∞∑
n=1

γ�,m,n sin �πx · sin mπy · sinnπz

from which we calculate

∇u0 =
∞∑

�=1

∞∑
m=1

∞∑
n=1

πγ�,m,n

⎡
⎢⎢⎢⎢⎣

� sin �πx · sinmπy · sinnπz

m sin �πx · cosmπy · sinnπz

n sin �πx · sinmπy · cosnπz

⎤
⎥⎥⎥⎥⎦

and

∇∗∇u0 =
∞∑

�=1

∞∑
m=1

∞∑
n=1

π2(�2 + m2 + n2)γ�,m,n

1 + π2(�2 + m2 + n2)
sin �πx · sin mπy · sinnπz. (7)

By equating coefficients in expressions (6) and (7) we obtain the solution

γ�,m,n =
�δ�,m,n + mε�,m,n + nθ�,m,n

π(�2 + m2 + n2)
(8)

for all �,m, n ∈ N.

4.2 A modified problem with reduced error

The error ε = ∇u0 − g in the solution is given by

ε =

⎡
⎢⎢⎢⎣

−∑∞
m=1

∑∞
n=1 [δ0,m,n +

∑∞
�=1(δ�,m,n − π�γ�,m,n) cos �πx] sin mπy · sinnπz

−∑∞
�=1

∑∞
n=1 [ε�,0,n +

∑∞
m=1(ε�,m,n − πmγ�,m,n) cosmπy] sin �πx · sin nπz

−∑∞
�=1

∑∞
m=1 [θ�,m,0 +

∑∞
n=1(θ�,m,n − πnγ�,m,n) cosnπz] sin �πx · sin mπy

⎤
⎥⎥⎥⎦

but this is not as bad as it might seem. On the one hand

∫ 1

0

∂u0

∂x
(x, y, z)dx = [u0(1, y, z)− u0(0, y, z) = 0
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∫ 1

0

∂u0

∂y
(x, y, z)dy = [u0(x, 1, z)− u0(x, 0, z)] = 0

∫ 1

0

∂u0

∂z
(x, y, z)dz = [u0(x, y, 1)− u0(x, y, 0)] = 0

since u0(r) = 0 when r ∈ ∂U and on the other hand

∫ 1

0

g1(x, y, z)dx =
∞∑

m=1

∞∑
n=1

δ0,m,n sinmπy · sinnπz

∫ 1

0

g2(x, y, z)dy =
∞∑

�=1

∞∑
n=1

ε�,0,n sin �πx · sinnπz

∫ 1

0

g3(x, y, z)dz =

∞∑
�=1

∞∑
m=1

θ�,m,0 sin �πx · sinmπy

for all (y, z), (x, z), (x, y) ∈ [0, 1]2. If the observed function g ∈ K is replaced
by a modified observed function

g0 = g −

⎡
⎢⎢⎢⎢⎢⎣

∫ 1

0
g1(x, y, z)dx

∫ 1

0
g2(x, y, z)dy

∫ 1

0
g3(x, y, z)dz

⎤
⎥⎥⎥⎥⎥⎦

then g0 ∈ K and

g0 =

⎡
⎢⎢⎢⎢⎣

∑∞
�=1

∑∞
m=1

∑∞
n=1 δ�,m,n cos �πx · sinmπy · sinnπz

∑∞
�=1

∑∞
m=1

∑∞
n=1 ε�,m,n sin �πx · cosmπy · sinnπz

∑∞
�=1

∑∞
m=1

∑∞
n=1 θ�,m,n sin �πx · sinmπy · cosnπz

⎤
⎥⎥⎥⎥⎦ .

The modified problem
min
u∈H

‖∇u − g0‖K

has the same solution u0 ∈ H but the error ε0 = ∇u0 − g0 is reduced to

ε0 =

⎡
⎢⎢⎢⎢⎣

−∑∞
�=1

∑∞
m=1

∑∞
n=1(δ�,m,n − π�γ�,m,n) cos �πx · sinmπy · sinnπz

−∑∞
�=1

∑∞
m=1

∑∞
n=1(ε�,m,n − πmγ�,m,n) sin �πx · cos mπy · sinnπz

−∑∞
�=1

∑∞
m=1

∑∞
n=1(θ�,m,n − πnγ�,m,n) sin �πx · sinmπy · cosnπz

⎤
⎥⎥⎥⎥⎦ .
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4.3 Conditions for an exact gradient

Remark 3 It is well known that for ψ ∈ D3 the condition ∇ × ψ = 0 is
sufficient for the existence of a function ϕ ∈ D with ∇ϕ = ψ.

In terms of the series expansion the corresponding condition on g0 is given
by

nε�,m,n = mθ�,m,n, nδ�,m,n = �θ�,m,n and mδ�,m,n = �ε�,m,n

for all �,m, n ∈ N. In this case it follows that

δ�,m,n − π�γ�,m,n = δ�,m,n − �2δ�,m,n + m�ε�,m,n + n�θ�,m,n

(�2 + m2 + n2)

=
(m2 + n2)δ�,m,n − m�ε�,m,n − n�θ�,m,n)

(�2 + m2 + n2)
= 0

since nδ�,m,n = �θ�,m,n and mδ�,m,n = �ε�,m,n. Similar arguments show that

ε�,m,n − πmγ�,m,n = 0 and θ�,m,n − πnγ�,m,n = 0

for all �,m, n ∈ N. Hence

ε0 = 0 ⇔ ∇u0 = g0

and the best approximate gradient becomes an exact gradient.

4.4 The solution using eigenfunction expansions

It has already been noted that the orthonormal eigenfunctions in H for the
self-adjoint operator ∇∗∇ : H �→ H are given by

p�,m,n =
2
√

2√
1 + π2(�2 + m2 + n2)

sin �πx · sinmπy · sinnπz

and hence

∇∗∇p�,m,n =
π2(�2 + m2 + n2)

1 + π2(�2 + m2 + n2)
p�,m,n

for each �,m, n ∈ N. These vectors form a complete set in H. Thus our
solution u0 ∈ H can be written in the form

u0 =

∞∑
�=1

∞∑
m=1

∞∑
n=1

c�,m,np�,m,n (9)
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where the coefficients c�,m,n are to be determined. The corresponding orthonor-
mal eigenvectors in K for the self-adjoint operator ∇∇∗ : K �→ K are

q�,m,n =
2
√

2√
�2 + m2 + n2

⎡
⎣ � cos �πx · sin mπy · sinnπz

m sin �πx · cos mπy · sin nπz
n sin �πx · sinmπy · cos nπz

⎤
⎦

with

∇∇∗q�,m,n =
π2(�2 + m2 + n2)

1 + π2(�2 + m2 + n2)π2
q�,m,n

for each �,m, n ∈ N. Note that

∇p�,m,n =
π
√

�2 + m2 + n2√
1 + π2(�2 + m2 + n2)

q�,m,n

and

∇∗q�,m,n =
π
√

�2 + m2 + n2√
1 + π2(�2 + m2 + n2)

p�,m,n .

The vectors q�,m,n do not span K. The orthonormal set of eigenvectors in K
can be completed by adding the vectors

q0,m,n = 2

⎡
⎣ sinmπy · sinnπz

0
0

⎤
⎦ , q�,0,n = 2

⎡
⎣ 0

sin �πx · sinnπz
0

⎤
⎦

and q�,m,0 = 2

⎡
⎣ 0

0
sin �πx · sinmπy

⎤
⎦

for which we note that

∇∇∗q0,m,n = 0, ∇∇∗q�,0,n = 0 and ∇∇∗q�,m,0 = 0

for each �,m, n ∈ N and also the vectors

r�,m,n =
2
√

2√
m2 + n2

⎡
⎣ 0

−n sin �πx · cos mπy · sin nπz
m sin �πx · sin mπy · cos nπz

⎤
⎦

and

s�,m,n =
2
√

2√
m2 + n2

√
�2 + m2 + n2

⎡
⎣ (m2 + n2) cos �πx · sinmπy · sinnπz

−�m sin �πx · cosmπy · sinnπz
−�n sin �πx · sinmπy · cos nπz

⎤
⎦

for which
∇∇∗r�,m,n = 0 and ∇∇∗s�,m,n = 0
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for each �,m, n ∈ N. If we write

g =
∞∑

m=1

∞∑
n=1

d0,m,nq0,m,n +
∞∑

�=1

∞∑
n=1

d�,0,nq�,0,n +
∞∑

�=1

∞∑
m=1

d�,m,0q�,m,0

+
∞∑

�=1

∞∑
m=1

∞∑
n=1

[
d�,m,nq�,m,n + e�,m,nr�,m,n + f�,m,ns�,m,n

]

where the coefficients are calculated using the usual inner product formulae
then it follows that ∇∗g is represented by the series

∇∗g =
∞∑

�=1

∞∑
m=1

∞∑
n=1

π
√

�2 + m2 + n2√
1 + π2(�2 + m2 + n2)

d�,m,np�,m,n . (10)

Equating coefficients in the representations (9) and (10) gives

c�,m,n =

√
1 + π2(�2 + m2 + n2)

π
√

�2 + m2 + n2
d�,m,n

for all �,m, n ∈ N. Therefore the minimum mean square error for the observed
function is

‖ε‖2
K =

∞∑
m=1

∞∑
n=1

d2
0,m,n +

∞∑
�=1

∞∑
n=1

d2
�,0,n +

∞∑
�=1

∞∑
m=1

d2
�,m,0

+
∞∑

�=1

∞∑
m=1

∞∑
n=1

[
e2

�,m,n + f2
�,m,n

]

while for the modified observed function the minimum mean square error is

‖ε0‖2
K =

∞∑
�=1

∞∑
m=1

∞∑
n=1

[
e2

�,m,n + f2
�,m,n

]
.

5 Conclusions

We have shown that the best gradient approximation to an observed square
integrable function on the unit cube satisfies a standard self-adjoint differen-
tial equation. The method relies on formulation of the gradient operator as
a bounded linear operator on an appropriate Sobolev space. By using differ-
ent coordinate systems with a range of symmetry conditions and introducing
appropriate weight functions a similar analysis can be applied to a variety of
regions both bounded and unbounded. The corresponding eigenfunction basis
will normally involve the so-called special functions of mathematical physics.
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In practical applications this procedure could be used to eliminate measure-
ment errors when constructing a legitimate potential function to match an
observed gradient.
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