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Faculté des Sciences et Techniques

BP E 3206 Bamako, Mali

Abstract

In this paper we study the well-known SIR model of epidemic dy-
namics with an almost periodic incidence rate. We make use of similar
techniques utilized in a recent work to establish the existence of chaotic
motions. To illustrate those chaotic motions, some numerical simula-
tions are made.
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1 Introduction

In recent years, some simple mathematical models of epidemics have been used
to gain some insight into the mechanisms, which are responsible of epidemic
growths. At their most basic [1], these models assume a constant population,
which is divided into three classes: S denote the susceptible people, I is the
number of people infected , and R, the number of people who have recovered
or who have the disease but are no longer infective. Such a model is known as
the SIR model. Since the population is constant one can write:

S(t) + I(t) + R(t) = 1.

Now, under the assumption that those individuals who have had the disease
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are immune we obtain the well-known SIR model⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dS

dt
= −B(I, t)S + μ − μS,

dI

dt
= B(I, t)S − (γ + μ)I,

dR

dt
= γI − μR,

(1)

where the constants γ and μ are positive,while the incidence function B(I, t)
is usually taken as a periodic function in time, see e.g., [5] and [6]. More
precisely, it is usual to take B(I, t) = β(t)I, where β(t) (called the transmission
rate) is either constant, or a periodic modulation about a constant value, for
instance β(t) = β0(1 + β1sin(ωt)). It is in particular well-known that when
β1 is sufficiently large, it is possible to obtain strong numerical evidence of a
chaotic motion, see, e.g., [2], [9], and [12] and the references therein. Note also
that some complicated versions of the incidence function had been studied in
[8], [10], and [11]; there, the transmission rate is taken independent of time and
B(I, t) is proportional to a power of I. Chaotic behavior has been observed
numerically in many numerical simulations of forced SIR models. Glendinning
and Perry [6] have utilized a periodically forced nonlinear incidence rate to
prove that there are SIR models with chaotic trajectories. In this paper we
will consider an incidence function, which is (possibly not periodic) almost
periodic in time, that is,

B(I, t) = β(t)Ip, p > 1, (2)

whose transmission rate is

β(t) =
p2p

(p − 1)2p−1
μ(1 + ε2b1 + ε4b2 + ε5b3Γ(μεΩt)), (3)

with Γ : R �→ R, a (possibly not periodic) almost periodic function, and b1, b2,
b3, Ω and p are constants such that

2pb2 − (p − 1)b2
1 > 0. (4)

For the sake of simplicity, throughout the rest of the paper we suppose that
Γ(t) = sin t+sin

√
2t. Note that Γ is an example of an almost periodic function,

which is not periodic. Moreover, we set

γ =
μ(1 + ε2b1)

p − 1
. (5)
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Definition 1.1. A continuous function f : R �→ R is called (Bohr) almost
periodic if for each ε > 0 there exists l(ε) > 0 such that every interval of length
l(ε) contains a number τ with the property that

|f(t + τ) − f(t)| < ε for each t ∈ R.

The number τ above is called an ε-translation number of f , and the collec-
tion of all such functions will be denoted AP (R). Among other things, every
periodic function is almost periodic; the converse being false. If f, g ∈ AP (R)
and λ ∈ R, then f.g and f + g belong to AP (R). Furthermore, the func-
tions defined by t �→ f(λt), t �→ f(t + λ), and t �→ λf(t) are almost periodic.
In addition to the above, each almost periodic function is (i) bounded, (ii)
uniformly continuous, and (iii) its range is precompact in R. For additional
details on almost periodic functions we refer the reader to the landmark book
by Corduneanu [4].

This paper is organized as follows: Section 2 describes the scaling of the
SIR variables that will enable us to use the Melnikov’s analysis [5, 6, 7, 13].
In Section 3 we prove that (1) has chaotic solutions for sufficiently large (but
still order one compared to ε) values of b3. To achieve this goal we apply
Melnikov’s method to the defining equations. In section 4 we give the numerical
simulations of the chaotic conclusion.

2 Scaling the Equations

From the equation S = 1 − I − R and since μ > 0, defining a new timescale
t′ = μt, we have shown in [5] that the basic SIR model (1) can be written as
follows: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

dI

dt′
= β ′(t′)Ip(1 − I − R) − (γ′ + 1)I,

dR

dt′
= γ′I − R,

(6)

where β = μβ ′ and γ = μγ′. Like in [5], our first aim is to make some changes
of coordinates in order to adapt the system (6) to the Melnikov Analysis.
In the following we drop the primes in (6). So, defining a new variable y =
γI − R, (6) becomes⎧⎨

⎩
Ṙ = y
ẏ = −(1 + γ)R − (2 + γ)y

+ β(t)γ−p+1(R + y)p(1 − γ−1(R + y) − R).
(7)
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Stationary points of (7) have y = 0, R = 0 which corresponds to the
disease-free equilibrium; or y = 0 and R satisfies

−(1 + γ)R + βγ−p+1Rp(1 − γ−1R − R) = 0. (8)

Let σ =
1 + γ

βγ−p+1
, H =

1

1 + γ−1
, so (8) becomes

Rp−1

(
1 − 1

H
R

)
= σ, (9)

where 0 < R < H . Let

f(R) = Rp−1

(
1 − 1

H
R

)
, R ∈ [0, H ].

Then

f ′(R) = Rp−2

(
p − 1 − P

H
R

)
. (10)

If R ∈
(

0,
p − 1

P
H

)
then f ′(R) > 0; and if R ∈

(
p − 1

P
H, H

)
then

f ′(R) < 0.

Let

σ∗ = f

(
p − 1

P
H

)
=

(p − 1)p−1

P p
Hp−1.

Then σ∗ is the maximum of f(R) on (0, H).

If σ < σ∗ then the system (7) has two positive equilibria R1 and R2; if
σ > σ∗ then the positive equilibrium does not exist; if σ = σ∗ then there is
one positive equilibrium.

Theorem 2.1. If β >
pp(1 + γ)p

(p − 1)p−1
, then the system (7) have two positive

equilibria (R1, 0) and (R2, 0), which correspond to the infective equilibria; if

β <
pp(1 + γ)p

(p − 1)p−1
, then the positive equilibrium does not exist; if β =

pp(1 + γ)p

(p − 1)p−1
,

then there is one positive, which correspond to the infective equilibrium.

So, the system (7) has a saddlenode bifurcation if

β = βsn =
pp(1 + γ)p

(p − 1)p−1
. (11)
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At this value, the equilibrium is

Ssn =
1

p
, Isn =

p − 1

p(1 + γ)
, Rsn =

(p − 1)γ

p(1 + γ)
. (12)

The Jacobian matrix of the system (7) at point (R, 0) is

A =

(
0 1

J21 J22

)
,

where

J21 = (p − 1)(1 + γ) − βγ−p+1(1 + γ−1)Rp,

J22 = p(1 + γ) − (2 + γ) − βγ−pRp.

The determinant of this matrix (−J21) vanishes identically at the saddlen-
ode bifurcation, but if, in addition, the trace J22 also vanishes, then we have
a more degenerate situation, known as Takens-Bogdanov point, and near this
point it should be possible to write the equations in nearly Hamiltonian form
[7]. The trace of the Jacobian matrix vanishes at the saddlenode if

γ =
1

p − 1
; β =

p2p

(p − 1)2p−1
. (13)

For these values of the parameters, the degenerate equilibrium is

Stb =
1

p
, Itb =

(
p − 1

p

)2

, Rtb =
p − 1

p2
.

Note that a curve of Hopf bifurcations also terminates at this point. This
curve is given by J22 = 0; J21 < 0. To perturb about this degenerate point, we
define new variables and parameters by

R =
p − 1

p2
+ x; γ =

1

p − 1
+ g; β =

p2p

(p − 1)2p−1
(1 + b),

where x, g and b are to be thought of as small. Substituting into (7) and
ignoring cubic orders and higher we find⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ẋ = y

ẏ = a0 + a1x + a2y − 1

2
(p − 1)−1p4x2 − p3xy

− p − 2

2(p − 1)
p3y2 + O((|x| + |y| + |g| + |b|)3),

(14)
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where

a0 = −g2

2p
(p − 2)(p − 1)3 − p − 1

p
g +

b

p
− (p − 1)2

p2
bg,

a1 =
p

p − 1
(b + 2gp − 3gp2 + gp3),

a2 =
1

p − 1
[b(2p − 1) + g(p4 − 4p3 + 5p2 − 3p + 1)].

We introduce a small parameter ε by setting

b = b1ε
2 + b2ε

4 + b3ε
5sin(εΩt); g =

b1ε
2

p − 1
. (15)

In accordance with (3), so

a0 =
2b2p − b2

1(p
3 − 3p2 + 4p − 2)

2p2
ε4 +

b3

p
sin(εΩt)ε5 + O(ε6),

a1 = b1(p − 1)pε2 + O(ε4),

a2 = b1(p
2 − 2p + 2)ε2 + O(ε4).

Defining new coordinates and time by x = ε2u, y = ε3v, τ = εt, we get⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

du

dτ
= v

dv

dτ
=

(
1

p
b2 − p − 1

2p2
b2
1

)
+

p4

2(1 − p)

(
u − (p − 1)2

p3
b1

)2

+

[
b1(p

2 − 2p + 2)v − p3uv +
1

p
b3Γ(Ωτ)

]
ε + O(ε2),

(16)

where ε is a small parameter, and so, setting z = u − (p − 1)2

p3
b1, we obtain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dz

dτ
= v

dv

dτ
= (

1

p
b2 − p − 1

2p2
b2
1) +

p4

2(1 − p)
z2+

ε[b1v − p3zv + 1
p
b3Γ(Ωτ)] + O(ε2).

(17)

Let q =
p4

2(1 − p)
z, w =

p4

2(1 − p)
v, then the equations (17) become

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dq

dτ
= w

dw

dτ
= −c2 + q2 + ε

[
b1w +

(2(p − 1)

p
qw +

p3

2(1 − p)
b3Γ(Ωτ)

]
+O(ε2),

(18)
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where

c2 =

[
p

2(p − 1)
b2 − b2

1

4

]
p2 (19)

which is a strictly positive order one constant by assumption (4). In the
following we suppose that c > 0.

The equations (18), with b3 = 0, is a standard normal form for the Takens-
Bogdanov bifurcation. Assume that b1 > 0, b3 = 0 and ε is a sufficiently small
positive constant, then there are two stationary points, S± = (±c, 0), S+ is a
saddle (see [5]).

3 Chaos in the SIR model with periodic and

almost periodic transmission rates

We can apply Melnikov method to the SIR model in the form (18) for suffi-
ciently small ε. The unperturbed equation for ε = 0 is{

q̇ = w
ẇ = −c2 + q2,

(20)

where dots now denote differentiation with respect to the rescaled time τ and
c > O. By integration we obtain the associated Hamiltonian function for this
system:

H(q, w) =
1

2
w2 + c2q − 1

3
q3 (21)

and so solutions lie on curves of constant H . Equation (20) has two stationary
points (c, 0), which is a saddle point, and (−c, 0), which is a center. The
center is surrounded by a continuous family of periodic orbits (qh(τ), wh(τ)),
and these are bounded by a homoclinic orbit (qh(τ), wh(τ)) such that

lim
τ→±∞

(qh(τ), wh(τ)) = (c, 0).

The Melnikov function for this problem is

M(τ0) = (22)∫ +∞

−∞
wh(τ)

[
b1wh(τ) +

2(p − 1)

p
qh(τ)wh(τ) +

p3

2(1 − p)
b3Γ(Ω(τ + τ0))

]
dτ.

The explicit form of the homoclinic solution [3, 5, 7] is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qh(τ) = c − 3c sech2

(
τ

√
c

2

)

wh(τ) = 3c
√

2c sech2

(
τ

√
2

c

)
tan h

(
τ

√
c

2

)
.
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Substituting these expressions into the integral (22), we obtain

M(τ0) =
6

5
(2c)

5
2 b1 − 6(p − 1)

7p
(2c)

7
2 +

3πΩ2p3b3

(1 − p)sinh

(
Ωπ

(2c)
1
2

)cos(Ωτ0)

+
p3b3

2(1 − p)

∫ +∞

−∞
wh(τ)sin

√
2Ω(τ + τ0)dτ

which leads to

M(τ0) =
6

5
(2c)

5
2 b1 − 6(p − 1)

7p
(2c)

7
2 (23)

+
3πΩ2p3b3

(1 − p)

⎡
⎢⎢⎢⎢⎣

cos(Ωτ0)

sinh

(
Ωπ

(2c)
1
2

) + 2
cos(

√
2Ωτ0)

sinh

(√
2Ωπ

(2c)
1
2

)
⎤
⎥⎥⎥⎥⎦

The criterion for the existence of a zero of this Melnikov function is obtained
from |cos(Ωτ0)| < 1 and |cos(√2Ωτ0)| < 1. If b1 = 0 , it takes a particularly
simple form; |b3| > bc where

bc � 2(p − 1)2(2c)
7
2

7πΩ2p4
.

sinh

(
Ωπ

(2c)
1
2

)
sinh

(√
2Ωπ

(2c)
1
2

)

2sinh

(
Ωπ

(2c)
1
2

)
+ sinh

(√
2Ωπ

(2c)
1
2

) . (24)

Note that the expression

2sinh

(
Ωπ

(2c)
1
2

)
+ sinh

(√
2Ωπ

(2c)
1
2

)

is always different from zero since Ω �= 0. Thus if |b3| > bc the stable and

unstable manifolds of the fixed point in the Poincaré map of perturbed sys-
tems (18) intersect transversely for sufficiently small ε, and there is chaotic
phenomenon in the sense of Smale horseshoe for the perturbed systems (18);
while if |b3| < bc there is no intersection between the stable and unstable man-
ifolds; at b3 = bc there is a tangential intersection between the stable and
unstable manifolds.

4 The Numerical Simulations of Chaos

Like in [5] we have shown mathematically that general almost periodically
forced epidemiological models (1) can have chaotic motion by using Melnikov’s
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Figure 1.
The Poincaré map, in the almost periodic case, with b1 = 0:

a) b2 = 1, b3 = 5, p = 3, c = 2.5981, Ω = 2, ε = 0.00002, q(0) = −5.19, w(0) = 0.

b) b2 = 2, b3 = 10, p = 4, c = 10.5410, Ω = 2, ε = 0.00001, q(0) = −5.19, w(0) = 0.

method close to a degenerate (Takens-Bogdanov) bifurcation point. We give
now some numerical simulations for the model (1). The Poincaré maps of
perturbed systems (18) is in figure 1 when we consider an almost periodic
incidence rate. In this case the Poincaré maps of the perturbed systems (18)
is a piece of points, so that we can affirm that the motion of system (18) is
chaotic.
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