
Applied Mathematical Sciences, Vol. 2, 2008, no. 28, 1393 - 1400

A Convergence Theorem via a New Fixed

Point Theorem for Generalized Contractions

Wei-Shih Du 1,2

1 Department of Mathematics
National Changhua University of Education

Changhua, 50058, Taiwan

2 The Affiliated Senior High School of National Taiwan Normal University
143, Hsin-Yi Road, Sec 3, Taipei 10658, Taiwan

fixdws@yahoo.com.tw

Abstract
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1. Introduction and preliminaries

Throughout this paper we denote by R and N the set of real numbers
and the set of positive integers, respectively. Let (X, d) be a metric space.
We denote by CB(X) the class of all nonempty closed bounded subsets of X
and P(X) the family of all nonempty subsets of X. For each x ∈ X and
A ⊆ X, let d(x, A) = infy∈A d(x, y), the distance between x and A. For any
A, B ∈ CB(X), define a function H : CB(X) × CB(X) → [0,∞) by

H(A, B) = max

{
sup
x∈B

d(x, A), sup
x∈A

d(x, B)

}
,

then H is said to be the Hausdorff metric on CB(X) induced by the metric
d on X. Let T : X → P(X) be a multivalued map. A point p in X is a
fixed point of T if p ∈ Tp. The set of fixed points of T is denoted by F(T ).
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A multivalued map T from X into CB(X) is said to be k-contractive if there
exists a nonnegative real number k with k < 1 such that H(Tx, Ty) ≤ kd(x, y)
for all x, y ∈ X. A function p : X × X → [0,∞) is said to be a τ -function
[4,5] if the following conditions hold:

(τ1) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X;

(τ2) If x ∈ X and {yn} in X with limn→∞ yn = y such that p(x, yn) ≤ M for
some M = M(x) > 0, then p(x, y) ≤ M ;

(τ3) For any sequence {xn} in X with limn→∞ sup{p(xn, xm) : m > n} = 0, if
there exists a sequence {yn} in X such that limn→∞ p(xn, yn) = 0, then
limn→∞ d(xn, yn) = 0;

(τ4) For x, y, z ∈ X, p(x, y) = 0 and p(x, z) = 0 imply y = z.

It is known that any w-distance [2] is a τ -function; see [4, Remark 2.1].

Let p : X × X → [0,∞) be a τ -function. For each x ∈ X and A ⊆ X, let
p(x,A) = infy∈A p(x, y). If A ∈ CB(X), then the (p, δ)-neighborhood A(p,δ) of
A is defined by A(p,δ) = {x ∈ X : p(x,A) < δ} and the δ-neighborhood Aδ of
A is defined by Aδ = {x ∈ X : d(x, A) < δ} for each δ > 0, respectively.

2. Generalized Hausdorff metrics

Very recently, Du [1] first introduce the concepts of τ 0-functions and τ 0-
metrics as follows.

Definition 2.1. [1] Let (X, d) be a metric space. A function p : X × X →
[0,∞) is called a τ 0-function (resp. w0-distance) if it is a τ -function (resp.
w-distance) on X with p(x, x) = 0 for all x ∈ X.

Example. Let X = R with the metric d(x, y) = |x − y| and 0 < a < b.
Define the function p : X × X → [0,∞) by

p(x, y) = max{a(y − x), b(x − y)}.

Then p is nonsymmetric and hence p is not a metric. It is easy to see that p
is a τ 0-function.

The following two Lemmas are needed.

Lemma 2.1. [1,4,5] Let (X, d) be a metric space and p : X × X → [0,∞)
be any function. If p satisfies (τ3) and there exists a sequence {xn} in X with
limn→∞ sup{p(xn, xm) : m > n} = 0, then {xn} is a Cauchy sequence in X.
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Lemma 2.2. [1] Let A be a closed subset of a metric space (X, d) and
p : X × X → [0,∞) be any function. Suppose that p satisfies (τ3) and there
exists u ∈ X such that p(u, u) = 0. Then p(u, A) = 0 if and only if u ∈ A.

From Lemma 2.2 and the definition of τ 0-function, we obtain the following
property.

Lemma 2.3. Let (X, d) be a metric space and p be a τ 0-function. For any
A, B ∈ CB(X), define δp(A, B) = supx∈A p(x,B). Then for A, B, C ∈ CB(X),
the following hold:

(i) δp(A, B) = 0 ⇐⇒ A ⊆ B;

(ii) δp(A, B) ≤ δp(A, C) + δp(C, B);

(iii) if A ⊆ B, then δp(A, C) ≤ δp(B, C);

(iv) if B ⊆ C, then δp(A, C) ≤ δp(A, B);

(v) δp(A, B ∩ C) ≥ max{δp(A, B), δp(A, C)};
(vi) δp(A, B ∪ C) ≤ min{δp(A, B), δp(A, C)};
(vii) δp(A ∩ B, C) ≤ min{δp(A, C), δp(B, C)};
(viii) δp(A ∪ B, C) = max{δp(A, C), δp(B, C)}.

Proof. We first prove (i). If δp(A, B) = 0 then p(a, B) = 0 for all a ∈ A.
By Lemma 2.2, we have A ⊆ B. Conversely, if A ⊆ B, then δp(A, B) = 0 by
Lemma 2.2 again. Therefore δp(A, B) = 0 ⇐⇒ A ⊆ B. The proofs of (ii),
(iii) and (iv) are straightfoward. Using (iii) and (iv), it is easy to verify that
the conclusions of (v), (vi) and (vii) hold. To show (viii), since A ⊆ A ∪ B
and B ⊆ A ∪ B, using (iii), we have max{δp(A, C), δp(B, C)} ≤ δp(A ∪ B, C).
Conversely, given ε > 0, there exists u ∈ A ∪ B such that δp(A ∪ B, C) <
p(u, C) + ε. Then δp(A ∪ B, C) < max{δp(A, C), δp(B, C)} + ε. Since ε is
arbitrary, we obtain δp(A ∪ B, C) ≤ max{δp(A, C), δp(B, C)} and hence (viii)
holds. �

Definition 2.2. [1] Let (X, d) be a metric space and p be a τ 0-function.
For any A, B ∈ CB(X), define a function Dp : CB(X) × CB(X) → [0,∞) by

Dp(A, B) = max{δp(A, B), δp(B, A)},
where δp(A, B) = supx∈A p(x,B), then Dp is said to be the τ 0-metric on CB(X)
induced by p.

Clearly, any Hausdorff metric is a τ 0-metric, but the reverse is not true.
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The following theorem is one of the main results in [1].

Theorem 2.1. [1] Every τ 0-metric Dp defined as in Def. 2.2 is a metric on
CB(X).

Theorem 2.2. Let (X, d) be a metric space and Dp be a τ 0-metric on CB(X)
induced by a τ 0-function p. Then for any A, B ∈ CB(X),

Dp(A, B) = sup
x∈X

|p(x, A) − p(x,B)|
= inf{δ > 0 : A ⊆ B(p,δ), B ⊆ A(p,δ)}.

Proof. It is easy to verify that the conclusion follows from Lemma 2.2 and
Lemma 2.3, so we omit the proof. �

Applying Lemma 2.3, we can easy prove the following theorem.

Theorem 2.3. Let (X, d) be a metric space and Dp be a τ 0-metric on CB(X)
induced by a τ 0-function p. Then for any A, B, C, D ∈ CB(X), Dp(A∪B, C∪
D) ≤ max{Dp(A, C), Dp(B, D)}.

3. A new fixed point theorem and convergence theorem

Definition 3.1. A multivalued map T : X → CB(X) is said to be (τ 0, k)-
contractive or a (τ 0, k)-contraction if there exists a constant 0 ≤ k < 1 such
that Dp(Tx, Ty) ≤ kp(x, y) for all x, y ∈ X.

The following result is a new fixed point theorem and inequality in complete
metric spaces.

Theorem 3.1. Let (X, d) be a complete metric space and Dp be a τ 0-metric
on CB(X) induced by a τ 0-function p. For each i ∈ {1, 2}, let Ti : X → CB(X)
be a (τ 0, k)-contractive multivalued map. Then the following hold:

(i) F(Ti) �= ∅ for each i ∈ {1, 2};

(ii) If p(x, ·) is l.s.c. for all x ∈ F(Ti), i ∈ {1, 2}, then

Dp(F(T1), F(T2)) ≤ 1

1 − k
sup
x∈X

Dp(T1(x), T2(x)).
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Proof. Without loss of generality, we only prove F(T1) �= ∅. Let λ ∈ (k, 1).
Take x0 ∈ X and x1 ∈ T1x0. If p(x0, x1) = 0, since p(x0, x0) = 0, by (τ4), we
have x0 = x1 ∈ T1x0. So x0 ∈ F(T1). If p(x0, x1) > 0, since

p(x1, T1x1) ≤ Dp(T1x0, T1x1) < λp(x0, x1)

there exists x2 ∈ T1x1 such that p(x1, x2) < λp(x0, x1). If p(x1, x2) = 0, then
x1 ∈ F(T1). Otherwise, there exists x3 ∈ T1x2 such that p(x2, x3) < λp(x1, x2).
Continuing this process, we can obtain a sequence {xn}∞n=0 in X satisfying
xn ∈ T1(xn−1), p(xn−1, xn) > 0 and p(xn, xn+1) < λp(xn−1, xn) for each n ∈ N.
Hence

p(xn, xn+1) < λp(xn−1, xn) < · · · < λnp(x0, x1)

for each n ∈ N. We claim that limn→∞ sup{p(xn, xm) : m > n} = 0. Let
αn = λn

1−λ
p(x0, x1), n ∈ N. For any m,n ∈ N with m > n, we have

p(xn, xm) ≤
m−1∑
j=n

p(xj , xj+1) < αn. (3.1)

Since 0 < λ < 1, limn→∞ αn = 0 and hence limn→∞ sup{p(xn, xm) : m > n} =
0. By Lemma 2.1, {xn} is a Cauchy sequence. By the completeness of X,
there exists ξ ∈ X such that xn → ξ as n → ∞. From (τ2) and (3.1), we have

p(xn, ξ) ≤ αn for all n ∈ N.

Since xn+1 ∈ T1(xn), p(xn+1, T1ξ) < λp(xn, ξ) for each n ∈ N. So there exists
{an} ⊂ T1ξ such that p(xn+1, an+1) < λp(xn, ξ) ≤ αn for each n ∈ N. It
follows that limn→∞ p(xn, an) = 0. By (τ3), limn→∞ d(xn, an) = 0. Since
d(an, ξ) ≤ d(an, xn) + d(xn, ξ), we obtain an → ξ as n → ∞. Since T1ξ is
closed and {an} ⊂ T1ξ, we have ξ ∈ T1ξ or ξ ∈ F(T1). Hence the conclusion
(i) holds.

Next we verify (ii). Clearly, if T1 = T2, then we are done. So we assume
that T1 �= T2. Let γ = supx∈X Dp(T1(x), T2(x)). Without loss of generality,
we may assume that γ < ∞. Let ε > 0 be arbitrary. Since

∑∞
n=1 nkn < ∞,

we can choose c > 0 such that c
∑∞

n=1 nkn < 1 and take ε0 = c
1−k

ε. Let
u0 ∈ F(T1). Then u0 ∈ T1u0. Since

p(u0, T2u0) ≤ Dp(T1u0, T2u0) ≤ γ < γ + ε

there exists u1 ∈ T2u0 such that p(u0, u1) < γ + ε. By our assumption,
Dp(T2u0, T2u1) ≤ kp(u0, u1). Since

p(u1, T2u1) ≤ Dp(T2u0, T2u1) < kp(u0, u1) + kε0
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there exists u2 ∈ T2u1 such that p(u1, u2) < kp(u0, u1) + kε0. Continuing in
this way, we can construct a sequence {un} in X such that un+1 ∈ T2(un) and
p(un, un+1) < kp(un−1, un) +knε0 for each n ∈ N . It follows that

p(un, un+1) < kp(un−1, un) + knε0 < · · · < knp(u0, u1) + nknε0

for each n ∈ N . Let βn = kn

1−k
p(u0, u1), n ∈ N. For any m, n ∈ N with m > n,

we have

p(un, um) ≤
m−1∑
j=n

p(uj, uj+1)

< p(u0, u1)

∞∑
j=n

kj + ε0

∞∑
j=n

jkj

< βn +
ε

1 − k

Since ε is arbitrary, we have

sup{p(un, um) : m > n} ≤ βn for each n ∈ N. (3.2)

Since 0 ≤ k < 1, limn→∞ sup{p(un, um) : m > n} = 0. Applying Lemma 2.1
again, {un} is a Cauchy sequence in X. By the completeness of X, there exists
v̂ ∈ X such that un → v̂ as n → ∞. From (τ2) and (3.2), we have

p(un, v̂) ≤ βn for all n ∈ N. (3.3)

Since un+1 ∈ T2(un), by (3.3), we have p(un+1, T2v̂) ≤ kp(un, v̂) < βn for each
n ∈ N. So there exists {wn} ⊂ T2v̂ such that p(un+1, wn+1) < βn for each
n ∈ N. It follows that limn→∞ p(un, wn) = 0. By (τ3), limn→∞ d(un, wn) = 0.
Since d(wn, v̂) ≤ d(wn, un) + d(un, v̂), it follows wn → v̂ as n → ∞. By the
closedness of T2v̂ and {wn} ⊂ T2v̂, we obtain v̂ ∈ F(T2). Furthermore, if p(x, ·)
is l.s.c. for all x ∈ F(Ti), i ∈ {1, 2}, then

p(u0, v̂) ≤ lim inf
n→∞

p(u0, un)

≤ lim inf
n→∞

n−1∑
j=0

p(uj, uj+1)

≤ p(u0, u1)
∞∑

j=0

kj + ε0

∞∑
j=1

jkj

<
1

1 − k
[p(u0, u1) + ε]

<
1

1 − k
(γ + 2ε).
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Since ε is arbitrary, we have p(u0, v̂) ≤ γ
1−k

. Note that u0 ∈ F(T1) is arbitrary,
it follows that supx∈F(T1) p(x,F(T2)) ≤ γ

1−k
. Similarly, for any ζ0 ∈ F(T2),

following the same argument, there exists ẑ ∈ F(T1) such that p(ζ0, ẑ) ≤ γ
1−k

.
Also it implies that supx∈F(T2) p(x,F(T1)) ≤ γ

1−k
. Therefore we obtain that

D(F(T1), F(T2)) = max{ sup
x∈F(T1)

p(x,F(T2)), sup
x∈F(T2)

p(x,F(T1))}

≤ 1

1 − k
sup
x∈X

Dp(T1(x), T2(x)).

This completes the proof. �

Corollary 3.1. (Nadler [6]) Let (X, d) be a complete metric space and
T : X → CB(X) be a k-contraction. Then T has a fixed point in X.

The following conclusion is the well-known Banach contraction principle.

Corollary 3.2. [6] Let (X, d) be a complete metric space and T : X → X
be a k-contraction. Then T has a unique fixed point in X.

Corollary 3.3. [3] Let (X, d) be a complete metric space. If T1 and T2 are
k-contractive multivalued maps from X into CB(X), then

H(F(T1), F(T2)) ≤ 1

1 − k
sup
x∈X

H(T1(x), T2(x)).

Applying Theorem 3.1, we obtain the following convergence theorem.

Theorem 3.2. Let (X, d) be a complete metric space and Dp be a τ 0-metric
on CB(X) induced by a τ 0-function p. For each i ∈ N ∪ {0}, suppose that Ti

is a (τ 0, k)-contractive multivalued map from X into CB(X) such that p(x, ·)
is l.s.c. for all x ∈ F(Ti) and limn→∞ Dp(Tn(x), T0(x)) = 0 uniformly for all
x ∈ X. Then limn→∞ Dp(F(Tn), F(T0)) = 0.

Proof. Given ε > 0. Since limn→∞ Dp(Tn(x), T0(x)) = 0 uniformly for all
x ∈ X, there exists n0 ∈ N such that supx∈X Dp(Tn(x), T0(x)) < (1 − k)ε for
all n ≥ n0. By Theorem 3.1,

Dp(F(Tn), F(T0)) ≤ 1

1 − k
sup
x∈X

Dp(Tn(x), T0(x)) < ε

for all n ≥ n0. Hence limn→∞ Dp(F(Tn), F(T0)) = 0. �

Corollary 3.4. [3] Let (X, d) be a complete metric space and Ti be a k-
contractive multivalued mappings from X into CB(X) for i =0, 1, 2, · · · such
that limn→∞ H(Tn(x), T0(x)) = 0 uniformly for all x ∈ X. Then limn→∞ H(F (Tn),
F (T0)) = 0.
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