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Abstract

This paper presents a new algorithm for minimizing a product of
two positive convex functions. The given problem is firstly converted to
an equivalent quasi-concave minimization problem in the outcome space
R2. This quasi-concave minimization problem is then solved by a new
branch and bound method. The convergence property is proved. Also
tested by the numerical results, the new algorithm is very effective.
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1 Introduction

This article studies minimization problem of a product of two positive convex

functions

(SPD)

{
global min φ(x) = f1(x)f2(x)

s.t. gj(x) ≤ 0, j = 1, . . . , m
1The work is supported by Natural Science Foundation of Ningxia in China(No. NZ0676).
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where f1(x), f2(x) and gj(x), j = 1, . . . , m, are all finite convex functions in Rn.

Let D denote the feasible region of problem (SPD), obviously D is a convex set.

Moreover, suppose D is bounded, and for all x ∈ D, f1(x) > 0 and f2(x) > 0.

This problem (SPD) is a special case of convex multiplicative programming

problem where the objective function is a product of p (p ≥ 2) convex func-

tions. Compared with convex multiplicative programming problem, problem

(SPD) often costs less computation. But it is still a global optimization prob-

lem known to be NP-hard.

There have been quite a few algorithms for solving problem (SPD) when

f1(x), f2(x) and gj(x), j = 1, . . . , m, are all linear functions. Some are para-

metric simplex-based methods of Konno and Kuno [8], Konno et al. [11],

Schaible and Sodini [15]. Others are branch and bound methods of Parda-

los [14], Konno and Kuno [7], Aneja et al. [3] and Tuy and Tam [17] which

combine enumeration, discrete approximation, outer approximation, and poly-

hedral annexation with branch and bound respectively. For the case where

f1(x) and f2(x) are both finite convex functions in Rn and D is compact and

convex, at least three exact global solution algorithms are available for solving

problem (SPD). One of these, an outer approximation method due to Konno

et al. [9], applies to the problem of minimizing the sum of k products of two

convex functions each, which includes problem (SPD) as a special case. The

other two of these algorithms, by Kuno and Konno [12] and Thoai [16] use

underestimation and outer approximation, respectively.

In this article the algorithm proposed for solving problem (SPD) works in

the outcome space R2 in order to achieve computational efficiency, since n is

generally much greater than 2. It combines simplicial reduce with branch and

bound in a way of a new flexible branch process. Numerical results show that

the new optimization algorithm performs pretty well.

Section 2 converts (SPD) to a equivalent quasi-concave problem in the out-

come space R2. Section 3 describes a new branch and bound method based on

the simplicial reduce. Section 4 constructs a new branch and bound algorithm

and proves its convergent property. Section 5 lists the numerical results. In

the last section, some concluding remarks are given.
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2 Equivalent quasi-concave minimization prob-

lem

In this section, we show how to convert problem (SPD) to a quasi-concave

minimization problem (SPY ) in the outcome space suitable for the new algo-

rithm.

For i = 1 and 2, consider the following two convex programming problems

{
min fi(x)

s.t. gj(x) ≤ 0, j = 1, . . . , m

whose optimal values are noted as a0
1 and a0

2 respectively. Solve the following

convex programming problem

⎧⎨
⎩

min f1(x)

s.t. f2(x) ≤ a0
2

gj(x) ≤ 0, j = 1, . . . , m

to get the optional value b0
1. Then solve

⎧⎨
⎩

min f2(x)

s.t. f1(x) ≤ a0
1

gj(x) ≤ 0, j = 1, . . . , m

to get the optimal value b0
2.

Let b0 = (b0
1, b

0
2)

T , f(x) = (f1(x), f2(x))T , thus we get the following opti-

mization problem in the outcome space

(SPY )

{
global min z(y) = y1y2

s.t. y ∈ Y,

where

Y = {y ∈ R2 | f(x) ≤ y ≤ b0, x ∈ D}.
The following three theorems are similar to those in the related literature

[4], so we don’t prove them.

Theorem 1 Problem (SPY ) consists of the minimization of a function z

that is continuous on R2 and quasi-concave on the nonempty compact convex

set Y .

Theorem 2 Problem (SPY ) has a global optimal solution, and any global

optimal solution is in ∂Y (∂Y denotes the boundary of the set Y ).
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Theorem 3 Problem (SPD) and (SPY ) are equivalent in the follow-

ing sense: if y∗ is a global optimal solution for problem (SPY ), then any

x∗ ∈ D such that f(x∗) = y∗ is a global optimal solution for problem (SPD),

and φ(x∗) = z(y∗) = f1(x
∗)f2(x

∗). Conversely, if x∗ is a global optimal solution

for problem (SPD), then y∗ = f(x∗) is a global optimal solution for problem

(SPY ), and φ(x∗) = z(y∗) = f1(x
∗)f2(x

∗).
Define the following set

C0 = {(y1, y2) | (y1, y2) ∈ Y, y2 = min{f2(x) | f1(x) = y1, x ∈ D}}. (1)

As can be seen from (1) that C0 is a curve if not in the special case where C0

is a simple point. From Theorem 2, we get the following deduction.

Deduction 1 All the global optimal solutions for problem (SPY ) lie in

C0.

3 Branch and bound method

3.1 Partition of a simplex

The previous section shows that problem (SPD) can be converted to problem

(SPY ), so one can solve the former by solving the latter. Moreover, since all the

global optimal solutions of problem (SPY ) are in C0 according to Deduction 1,

one may select a certain set which contains C0 and thus can serve as an initial

outer approximation to C0. Let a0 = (a0
1, a

0
2)

T , c0 = (c0
1, c

0
2)

T = (a0
1, b

0
2)

T , d0 =

(d0
1, d

0
2)

T = (b0
1, a

0
2)

T , and S0 = co {a0, c0, d0} represent the convex hull

of a0, c0 and d0. Generally S0 is a 2-dimensional simplex with vertex set

{a0, c0, d0}. Then C0 ⊂ S0, and S0 is such an initial outer approximation to

C0.

In iteration k(k ≥ 0), let the current simplex Sk = co {ak, ck, dk} where

ck = (ck
1, c

k
2)

T ∈ C0, dk = (dk
1, d

k
2)

T ∈ C0, and ak = (ck
1, d

k
2)

T . For Sk, the next

section will show how to get a new feasible point ȳk = (ȳk
1 , ȳ

k
2)

T in C0 such

that ȳk ∈ Ck where Ck is the portion of C0 between the two points ck and dk.

We partition Sk along ȳk into one rectangle and three simplexes below:

Rk = [ak, ȳk],

Sk1 = co { ck, (ck
1, ȳ

k
2)

T , ȳk},
Sk2 = co {ȳk, (ȳk

1 , d
k
2)

T , dk},
Sk3 = co {ck, ȳk, dk}.
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Later we will also see, based on the above branching process, in each it-

eration division sets can be effectively deleted or reduced. Furthermore, a

tighter bounding technique is conveniently available which doesn’t solve linear

programming.

3.2 Finding a feasible point and a corresponding tan-

gent

In iteration k(k ≥ 0), consider the following optimization problem

(SCP )

{
min (ck

2 − dk
2)f1(x) + (dk

1 − ck
1)f2(x)

s.t. gi(x) ≤ 0, j = 1, . . . , m.

Theorem 4 Problem (SCP) is a convex programming problem.

Proof Since both the objective function and the constraints of problem

(SCP) are convex, the statement is true. �

Theorem 5 Let x̄k be an optimal solution for problem (SCP), then ȳk =

(f1(x̄
k), f2(x̄

k))T ∈ C0.

Proof Suppose ȳk is not in C0. We define the close line segment as L(O, ȳk)

whose terminals are the origin O and ȳk. Let ¯̄yk = L(O, ȳk)
⋂

∂Y , then ¯̄yk ∈ Y ,
¯̄yk ≤ ȳk, and there exists a point ¯̄xk ∈ D such that f(¯̄xk) < ¯̄yk ≤ b0. Because

(ck
2 − dk

2)f1(x̄
k) + (dk

1 − ck
1)f2(x̄

k) = (ck
2 − dk

2)ȳ
k
1 + (dk

1 − ck
1)ȳ

k
2

≥ (ck
2 − dk

2)¯̄y
k
1 + (dk

1 − ck
1)¯̄y

k
2

> (ck
2 − dk

2)f1(¯̄x
k) + (dk

1 − ck
1)f2(¯̄x

k),

x̄k is impossible to be an optimal solution for problem (SCP) and the previous

supposition is impossible. Thus ȳk ∈ C0. �

Theorem 6 Let x̄k is an optimal solution for problem (SCP), correspond-

ingly ȳk = (ȳk
1 , ȳ

k
2)

T = (f1(x̄
k), f2(x̄

k))T , then

(ck
2 − dk

2)(ȳ
k
1 − y1) + (dk

1 − ck
1)(ȳ

k
2 − y2) ≤ 0, ∀y = (y1, y2)

T ∈ Y. (2)

Proof Let

(ck
2 − dk

2)f1(x̄
k) + (dk

1 − ck
1)f2(x̄

k) = t,

i.e.,

(ck
2 − dk

2)ȳ
k
1 + (dk

1 − ck
1)ȳ

k
2 = t. (3)

Consider the following optimization problem

{
min (ck

2 − dk
2)y1 + (dk

1 − ck
1)y2

s.t. y = (y1, y2)
T ∈ Y.

(4)
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It holds that t is also the global optimal value of problem (4), so

(ck
2 − dk

2)y1 + (dk
1 − ck

1)y2 ≥ t. (5)

From (3) and (5), we know that (2) is true. �

From Theorem 6 we can define a tangent passing ȳk and sustaining Y .

The slope of the tangent Kk = (dk
2 − ck

2)/(dk
1 − ck

1), then

Hk = {y ∈ Rp | (Kk,−1)(y − ȳ) = 0} (6)

is right the tangent. And the corresponding semi-plane

H−
k = {y ∈ Rp | (Kk,−1)(y − ȳ) ≤ 0} (7)

contains the feasible region Y of (SPY ) according to Theorem 6.

3.3 Lower bounds over Sk1 and Sk2

Let in iteration k (k ≥ 0), ck = (ck
1, c

k
2)

T , dk = (dk
1, d

k
2)

T and ȳk = (ȳk
1 , ȳ

k
2)

T . To

define lower bounds over the simplexes Sk1 and Sk2 (denoted by μ(Sk1) and

μ(Sk2) respectively), generally one may consider the following convex envelopes

of z(y) in Sk1 and Sk2:

ωk1(y) = ȳk
2y1 + ck

1y2 − ck
1 ȳ

k
2 , y = (y1, y2)

T ∈ Sk1, (8)

ωk2(y) = dk
2y1 + ȳk

1y2 − ȳk
1d

k
2, y = (y1, y2)

T ∈ Sk2. (9)

But the following two aspects make us abandon this idea of the convex envelope

method. Firstly, duo to (6) there exist three tangents which pass ck, ȳk,

and dk respectively, and serve as secants to reduce Sk1 and Sk2 further. Let yk1

is the crossing point of the two tangents passing ck and ȳk respectively, while

yk2, the crossing point of the two tangents passing ȳk and dk respectively.

Then Sk1 and Sk2 are respectively reduced to S ′
k1 and S ′

k2:

S ′
k1 = co { ck, yk1, ȳk},

S ′
k2 = co {ȳk, yk2, dk}.

The convex envelopes (8) and (9) don’t generate tighter lower bounds over the

reduced simplexes S ′
k1 and S ′

k2. On the other hand, the objective function z

of (SPY ) in Sk is quasi-concave, so enumeration which only compares function

values of vertexes of S ′
k1 or S ′

k2 is conveniently available for the definition of

lower bound over S ′
k1 or S ′

k2.
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Let Kk1 and Kk2 denote the slope of the two tangents passing ck and dk

respectively, and in the initial iteration K01 = −∞, and K02 = 0. Then we

need only to renew Kk1 and Kk2 when renewing ck and dk at the beginning of

iteration k. As is known the slope of the tangent passing ȳk generated by (6) is

Kk = (dk
2 − ck

2)/(dk
1 − ck

1). Compute yk1 and yk2 to get

yk1 = (t1, Kk1t1 −Kk1c
k
1 + ck

2)
T ,

where

t1 = (Kk1c
k
1 −Kkȳ

k
1 + ȳk

2 − ck
2)/(Kk1 −Kk)

and

yk2 = (t2, Kkt2 −Kkȳ
k
1 + ȳk

2)
T ,

where

t2 = (Kkȳ
k
1 −Kk2d

k
1 + dk

2 − ȳk
2)/(Kk −Kk2).

Thus the lower bounds over Sk1 and Sk2 (or over S ′
k1 and S ′

k2) are given as

follows:

μ(Sk1) = μ(S ′
k1) = min{z(ck), z(yk1), z(ȳk)}, (10)

μ(Sk2) = μ(S ′
k2) = min{z(ȳk), z(yk2), z(dk)}. (11)

3.4 Deleting rule

As can be known from the branching process that in iteration k only one

feasible point ȳk = (ȳk
1 , ȳ

k
2)

T is in the rectangle Rk = [ak, ȳk], and only ȳk, ck =

(ck
1, c

k
2)

T and dk = (dk
1, d

k
2)

T are in both C0 and Sk3 = co{ck, ȳk, dk}. As each

of these three points is either in Sk1 = co {ck, (ck
1, ȳ

k
2)

T , ȳk} or in Sk2 =

co {ȳk, (ȳk
1 , d

k
2)

T , dk}, we have a first deleting rule.

(D1): delete Rk and Sk3 directly.

In iteration k, for each simplex Sk1, Sk2 or any one of the remainder, we

give another deleting rule.

(D2): delete any simplex S which satisfies

1− μ(S)

γk

< ε,

where γk denotes the current upper bound.

Thus when the relative precision ε is achieved, the algorithm terminates.

Moreover, Rule (D2) signifies if

μ(Sk1) = min{z(ck), z(yk1), z(ȳk)} = min{z(ck), z(ȳk)}, (12)
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Sk1 will be deleted, and so will Sk2 if

μ(Sk2) = min{z(ȳk), z(yk1), z(dk)} = min{z(ȳk), z(dk)}. (13)

In fact, suppose without loss of generality (12) is satisfied, then

μ(Sk1) = min{z(ck), z(ȳk)} = γ(Sk1) ≥ γk,

where γ(Sk1) denotes upper bound over Sk1. According to Rule (D2), Sk1 is

deleted.

In section 5, numerical results will show that for all 20 typical random

problems, the algorithm needs to save only one subproblem during the iterative

process. This shows Rule (D1) and (D2) both work in each iteration, and the

deleting techniques based on the branching process are very effective.

4 Algorithm and its convergence

4.1 The outcome space algorithm

Based on the previous discussion, we construct an outcome space algorithm

for solving problem (SPD).

Algorithm 1

step 1 Compute a0 = (a0
1, a

0
2)

T and b0 = (b0
1, b

0
2)

T . If a0 = b0, stop (arg z(a0)

which denotes some x ∈ D such that φ(x) = z(a0) is an optimal solution, and

z(a0) is the optimal value). Otherwise, c0 ← (a0
1, b

0
2)

T , d0 ← (b0
1, a

0
2)

T , K01 ←
−∞, K02 ← 0, υ ← b0, and k ← 0.

step 2

Sk ← co {ck, ak, dk},
Hk1 ← {y ∈ Rp | (Kk1,−1)(y − ck) = 0},
Hk2 ← {y ∈ Rp | (Kk2,−1)(y − dk) = 0}.

Solve convex problem (SCP), from the optimal solution x̄k compute ȳk ∈ Rp

and Kk, and carry out (D1).

Hk ← {y ∈ Rp | (Kk,−1)(y − ȳk) = 0},

yk1← Hk1 ∩Hk,

yk2← Hk2 ∩Hk,

μ(Sk1)← min{z(ck), z(yk1), z(ȳk)},
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μ(Sk2)← min{z(ȳk), z(yk2), z(dk)},
μk ← min{μk, μ(Sk1), μ(Sk2)},

Q← {υ, ck, ȳk, dk},
γk ← min{z(y) | y ∈ Q},

υ ← arg γk.

Carry out (D2), and if S = ∅, μk ← γk; otherwise, select a simplex S from the

remainder such that μ(S) = μk.

step 3 If μk = γk, stop (υ is an optimal solution, and γk is the optimal

value).

step 4 k ← k + 1, renew ck, dk, Kk1, Kk2 according to S, and go to step 2.

4.2 Convergent proof

Based on Algorithm 1, we give the following convergent theorem.

Theorem 7 Algorithm 1 either generates a global solution for (SPD) in

finite times of iteration, or generates a infinite sequence {ȳk}, such that any

cluster point y∗ of {ȳk} is a global optimal solution for (SPY ) and any x∗ ∈ D

such that f(x∗) = y∗ is a global optimal solution for (SPD).

Proof According to Algorithm 1, μk ≤ z(ȳk) ≤ γk, k = 0, 1, . . . . If in

iteration k the algorithm terminates, then μk = z(ȳk) = γk, i.e., ȳk is a global

optimal solution for problem (SPY ). According to Theorem 3, x̄k is a global

optimal solution for (SPD).

Otherwise, if the algorithm doesn’t terminate in finite times of iteration,

let {Skq} be any successively decreasing infinite subsequence of {Sk}. If {Kkq}
is unbounded, then {dkq} must be sufficiently close to c0 = (a0

1, b
0
2)

T , i.e.,

lim
q→∞

ckq = lim
q→∞

dkq = c0.

the previous expression signifies that Skq is sufficiently small, then

lim
q→∞

μkq = lim
q→∞

z(ȳkq) = z(c0) = lim
q→∞

φ(x̄kq) = φ(arg z(c0)) = lim
q→∞

γkq ,

According to the fundamental convergent theory of branch and bound method,

c0 is a global solution of (SPY ), arg z(c0) is a global solution of (SPD).

If {Kkq} is bounded, there exists a positive real number M such that −M ≤
Kkq ≤ M(q = 1, 2, . . . ). Then in the iteration process of Algorithm 1, Kkq1 ≤
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Kkq ≤ M . Since {Kkq1} is monotonously increasing, there must exist a real

number α such that

lim
q→∞

Kkq1 = α.

On the other hand, let Kkq ≥ −M , then Kkq2 ≥ Kkq ≥ −M . Since {Kkq2} is

monotonously decreasing, there must exist a real number β such that

lim
q→∞

Kkq2 = β.

Since either Kkq−1 = Kkq1 or Kkq−1 = Kkq2 due to definitions of {Kkq}, {Kkq1}
and {Kkq2}, when q is sufficiently great, Kkq is sufficiently close to either α

or β. That is to say, the area of Skq is sufficiently close to zero. Then {Skq}
contracts either to a point, or to a segment. The later is impossible, because

if so,

μ(Skq1) = min{z(ckq), z(ykq1), z(ȳkq)} = min{z(ckq), z(ȳkq)}, q −→∞

and

μ(Skq2) = min{z(ȳkq), z(ykq1), z(dkq)} = min{z(ȳkq), z(dkq)}, q −→∞

are both true, i.e., (12) and (13) both hold. From the deleting rule (D2) of Al-

gorithm 1, Skq1 and Skq2 are both deleted, i.e., Skq is deleted. This contradicts

to the premise that {Skq} is a successively decreasing infinite sequence. Then

the sequence {Skq} must contract to a point ȳ∗ such that lim
q→∞

ȳkq = ȳ∗ since

ȳkq ∈ Skq . Thus

lim
q→∞

μkq = lim
q→∞

z(ȳkq) = z(ȳ∗) = lim
q→∞

φ(x̄kq) = φ(arg ȳ∗) = lim
q→∞

γkq .

So ȳ∗ is a global solution of (SPY ), arg z(ȳ∗) is a global solution of (SPD).

Thus the statement is proved. �

5 Numerical results

Consider the two numerical examples in Brigitte et al. [5] to show the effec-

tiveness of Algorithm 1.

Example 1 First consider the randomly generated example

(LSPD)

⎧⎨
⎩

min αT
1 x αT

2 x

s.t. Ax ≤ b

x ≥ 0,
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where the parameters are defined as follows:

—— α1, α2 is n dimensional vector with each component in [0,1];

—— A = (aij) ∈ Rm ×Rn is a random matrix with each element in [-1,1];

—— b = (b1, . . . , bm)T is a random vector such that

bi =

n∑
i=1

aij + 2b0,

where i = 1, . . . , m, and b0 is a real number in [0,1].

Example 2 Then consider the randomly generated example

(QSPD)

⎧⎨
⎩

min αT
1 x (αT

2 x + xT Dx)

s.t. Ax ≤ b

x ≥ 0,

where the parameters α1, α2, A and b are defined as example 1, and D = (dij) ∈
Rn × Rn is a random diagonal matrix with each diagonal element in [0,1].

The procedure of the algorithm is entirely compiled with Matlab 7.01. And

we use standard algorithms in it to solve linear and quadratic programming

subproblems. All computations are carried out on personal computer with

CPU:c41.7G and RAM:256M. Like Brigitte et al. [5], for each example 1 and

example 2, we solve 10 problems and list mean values in the results. And we

use the following denotation:

ε: the computational precision,

E: Example 1 (E1) or Example 2 (E2),

n: dimensional of deterministic space,

m: number of constraints,

I: number of iterations,

N : number of nonlinear convex programming problems solved,

M : maximum number of subproblems stored in any iteration,

T : computational time(second).

Table 1 gives numerical results of the 20 examples.

Table 1 Numerical results of Algorithm 1

ε E n m I N M T

10−6 E1 100 100 8.9 0 1.0 4.84

10−6 E2 100 100 12.2 13.2 1.0 28.36

Brigitte et al. used two different methods (here denoted Method 1 and

Method 2 respectively) to define lower bound. Table 2 gives numerical results

of Method 1, and Table 3 gives numerical results of Method 2. The same

denotation is used in Table 2 and 3 as that in Table 1.
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Table 2 Numerical results of Method 1 in [5]

ε E n m I N M T

10−6 E1 100 100 22.6 74.8 3.4 34.72

10−6 E2 100 100 26.0 85.0 3.8 54.65

Table 3 Numerical results of Method 2 in [5]

ε E n m I N M T

10−6 E1 100 100 13.0 31.0 1.6 5.96

10−6 E2 100 100 15.2 35.4 2.0 32.28

As can be seen from the three tables Algorithm 1 solves only linear and

convex quadratic program for problem (LSPD) and (QSPD), avoiding solving

difficult nonlinear programming problems which were inevitable in [5]. Be-

sides, in Table 1 number of iterations, number of convex programming prob-

lems solved, maximum number of subproblems stored in any iteration and

computational time are all more satisfying than those in Table 2 and 3. It is

shown that Algorithm 1 is more effective.

6 Concluding remark

This article gives a global optimization algorithm for minimization of a product

of two positive convex functions. The algorithm has the following advantages.

(1) The algorithm economizes the computations required to solve problem

(SPD) by working in the outcome space R2 instead of the decision space Rn.

(2) Due to the simplicial partition, the algorithm fast reduces the feasible

region Y of problem (SPY ).

(3) In each iteration the algorithm uses 2-dimensional tighter simplexes to

approximate to the remanent portion of the feasible region, which at the same

time makes the bounding technique of enumeration both easily available and

comparatively tight.

The algorithm combines simplicial reduce with branch and bound, and

can solve higher dimensional problems with more constraints. Theoretical

and numerical results show that it is a global convergent and more effective

algorithm.
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