
Applied Mathematical Sciences, Vol. 2, 2008, no. 26, 1291 - 1297

Three Positive Solutions for One-Dimensional

p-Laplacian Boundary Value Problem

with a Derivative Argument1

Bo Suna,2, Weigao Gea, Ying Qub and Liping Duc

a Department of Mathematics

Beijing Institute of Technology

Beijing 100081, P. R. China

b College of Applied Mathematics

Central University of Finance and Economics

Beijing 100081, P. R. China

c Department of Mathematics and Statistics

Hebei Polytechnic University

Hebei 063009, P. R. China

Abstract
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1. Introduction

In this paper, we will consider the positive solutions for the one-dimensional

p-Laplacian differential equation,

(φp(u
′(t)))′ + q(t)f(t, u(t), u′(t))) = 0, t ∈ (0, 1), (1.1)

subject to the following boundary condition,

u(0) = 0, u(1) = u(η), (1.2)

where φp(s) = |s|p−2s with p > 1, is called a p-Laplacian operator. η ∈ (0, 1)

is a constant.

For (1.1), when the nonlinear term f does not depend on the first-order

derivative, many authors study the equation,

(φp(u
′(t)))′ + a(t)f (u) = 0, t ∈ (0, 1). (1.3)

One may see [1-6] and references therein. However, their works were done

under the assumption that f is allowed to depend just on u, the first order

derivative u′ is not involved explicitly in the nonlinear term. More recently,

Guo and Ge in [6] consider the existence of positive solutions for the following

boundary value problem,{
x′′ + f(t, x, x′) = 0, 0 < t < 1,

x(0) = 0, u(1) = αu(η).
(1.4)

They obtain the existence of at least one positive solution for (1.4).

So, motivated by all the works above, we are concerned with the existence

of positive solutions for the problem (1.1), (1.2).

Throughout, it is assumed that:

(H1) : f ∈ C([0, 1]× [0,∞) ×R, [0,∞))

(H2) : q(t) is a nonnegative continuous function defined on (0, 1), and q(t) �≡ 0

on any

subinterval of (0, 1). In addition,
∫ 1

0
q(t)dt < +∞.

2. Preliminary

In this section, we give some preliminaries and definitions.
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Definition 2.1. Let E be a real Banach space over R. A nonempty closed set

P ⊂ E is said to be a cone provided that,

� au + bv ∈ P for all u, v ∈ P and all a ≥ 0, b ≥ 0, and

� u,−u ∈ P implies u = 0. �

Definition 2.2. The map α is said to be a nonnegative, continuous, con-

cave functional on a cone P of a real Banach space E, if α : P → [0,∞) is

continuous, and

α(tu + (1 − t)v) ≥ tα(u) + (1 − t)α(v),

for all u, v ∈ P and t ∈ [0, 1]. Similarly, we say the map β is a nonnegative,

continuous, convex functional on a cone P of a real Banach space E, if β :

P → [0,∞) is continuous, and

β(tu+ (1 − t)v) ≤ t β(u) + (1 − t) β(v),

for all u, v ∈ P and t ∈ [0, 1]. �

Let γ and θ be nonnegative continuous convex functionals on P , α be

a nonnegative continuous concave functional on P , and ψ be a nonnegative

continuous functional on P . Then for positive real numbers a, b, c and d, we

define the following convex sets,

P (γ, d) = {u ∈ P | γ(u) < d},
P (γ, α, b, d) = {u ∈ P | b ≤ α(u), γ(u) ≤ d},
P (γ, θ, α, b, c, d) = {u ∈ P | b ≤ α(u), θ(u) ≤ c, γ(u) ≤ d},

and a closed set

R(γ, ψ, a, d) = {u ∈ P | a ≤ ψ(u), γ(u) ≤ d}.
To prove our main results, we need the following fixed point theorem due to

Avery and Peterson in [7].

Theorem 2.1. Let P be a cone in a real Banach space E. Let γ and θ be

nonnegative continuous convex functionals on P , α be a nonnegative contin-

uous concave functional on P , and ψ be a nonnegative continuous functional

on P satisfying ψ(λu) ≤ λψ(u) for 0 ≤ λ ≤ 1, such that for some positive

numbers M and d, α(u) ≤ ψ(u) and ‖u‖ ≤ Mγ(u), for all u ∈ P (γ, d). Sup-

pose T : P (γ, d) → P (γ, d) is completely continuous and there exist positive

numbers a, b, and c with a < b such that,

(S1) : {u ∈ P (γ, θ, α, b, c, d)| α(u) > b} �= Ø and α(Tu) > b for u ∈
P (γ, θ, α, b, c, d);

(S2) : α(Tu) > b, for u ∈ P (γ, α, b, d) with θ(Tu) > c;

(S3) : 0 �∈ R(γ, ψ, a, d), and ψ(Tu) < a for u ∈ R(γ, ψ, a, d) with ψ(u) = a.
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Then T has at least three fixed points, u1, u2, and u3 ∈ P (γ, d), such that,

γ(ui) ≤ d, for i = 1, 2, 3, b < α(u1),

a <ψ(u2), with α(u2) < b and ψ(u3) < a. �

3. Existence of three positive solutions to (1.1),
(1.2)

Let the Banach space E = C1[0, 1] be endowed with the norm, ‖u‖ :=

max
0≤t≤1

[u2(t) + (u′(t))2]
1
2 , and define the cone P ⊂ E by P = {u ∈ E| u(t) ≥

0, u(0) = 0, u is concave on [0, 1]}. It follows from (H2) that there exists a

natural number k ≥ max{ 1
η
, 2

1−η
} such that 0 <

∫ 1− 1
k

1
k

q(t)dt < +∞. For

notational convenience, we denote,

λ = φ−1
p (

∫ 1

0

q(r)dr),

L = min{
∫ 1+η

2

1
k

φ−1
p (

∫ 1+η
2

s

q(r)dr)ds,
∫ η

1
k

φ−1
p (

∫ η

s

q(r)dr)ds +
∫ 1− 1

k

1+η
2

φ−1
p (

∫ s

1+η
2

q(r)dr)ds},

Q = max{
∫ 1+η

2

0

φ−1
p (

∫ 1+η
2

s

q(r)dr)ds,
∫ η

0

φ−1
p (

∫ 1

s

q(r)dr)ds+
∫ 1

1+η
2

φ−1
p (

∫ s

1+η
2

q(r)dr)ds}.

Define the nonnegative, continuous, concave functional α, the nonnegative

continuous convex functional θ, γ, and the nonnegative, continuous functional

ψ on the cone P by

γ(u) = max
0≤t≤1

|u′(t)|, ψ(u) = θ(u) = max
0≤t≤1

|u(t)|, α(u) = min
1
k
≤t≤1− 1

k

|u(t)|.

Then from the definition of ‖u‖, we have ‖u‖ ≤ √
2 max

0≤t≤1
{θ(u), γ(u)}. And

with the concavity of u, for all u ∈ P , we have 1
k
θ(u) ≤ α(u) ≤ θ(u) = ψ(u).

The following lemma follows easily.

Lemma 3.1. For u ∈ P , ‖u‖ ≤ √
2γ(u). �

Our main result is as follows.

Theorem 3.1. Let 0 < a < b ≤ d
2k

be given, and suppose that f satisfies the

following conditions,

(
1): f(t, ω, v) ≤ φp(
d
λ
) for (t, ω, v) ∈ [0, 1]× [0,

√
2d] × [−d, d];

(
2): f(t, ω, v) > φp(
kb
L

) for (t, ω, v) ∈ [ 1
k
, 1 − 1

k
] × [b, kb] × [−d, d];

(
3): f(t, ω, v) < φp(
a
Q

) for (t, ω, v) ∈ [0, 1] × [0, a] × [−d, d];
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Then the boundary value problem (1.1), (1.2) has at least three positive solu-

tions u1, u2, u3 such that,

max
0≤t≤1

|u′i(t)| ≤ d, for i = 1, 2, 3, b < min
1
k
≤t≤1− 1

k

|u1(t)|,

a < max
0≤t≤1

|u2(t)|, with min
1
k
≤t≤1− 1

k

|u2(t)| < b, and max
0≤t≤1

|u3(t)| < a.

Proof: We define an operator T : P → E by

(Tu)(t) =

{ ∫ t

0
φ−1

p (
∫ σ

s
q(r)f(r, u(r), u′(r))dr)ds, 0 ≤ t ≤ σ,∫ η

0
φ−1

p (
∫ σ

s
q(r)f(r, u(r), u′(r))dr)ds+

∫ 1

t
φ−1

p (
∫ s

σ
q(r)f(r, u(r), u′(r))dr)ds, σ ≤ t ≤ 1,

(3.1)

where σu ∈ [η, 1] is the solution of the equation,

∫ x

η

φ−1
p (

∫ x

s

q(r)f(r, u(r), u′(r))dr)ds =

∫ 1

x

φ−1
p (

∫ s

x

q(r)f(r, u(r), u′(r))dr)ds.

From the definition of T , we deduce that for each u ∈ P , there is Tu ∈
C1[0, 1] is nonnegative and satisfies (1.2). Moreover, (Tu)(σ) is the maximum

value of Tu on [0, 1]. It is easy to obtain that (Tu)′ is continuous and non-

increasing in [0, 1], then we have Tu ∈ P . Then, a standard argument shows

that T : P → P is completely continuous, and each fixed point of T in P is a

solution of (1.1), (1.2).

We now show that the conditions of Theorem 2.1 are satisfied. The proof

is divided into the following four steps.

(1) : We will show that condition (
1) implies that, T : P (γ, d) →
P (γ, d). (3.2)

In fact, for u ∈ P (γ, d), there is γ(u) = max
0≤t≤1

|u′(t)| ≤ d, we have,

γ(Tu) = max
0≤t≤1

|(Tu)′(t)| = max{(Tu)′(0),−(Tu)′(1)}

= max{φ−1
p (

∫ σ

0

q(r)f(r, u(r), u′(r))dr), φ−1
p (

∫ 1

σ

q(r)f(r, u(r), u′(r))dr)} ≤ d

λ
λ = d.

Thus, we have, γ(Tu) ≤ d. Then, (3.2) holds.

(2) : We show that the condition (S1) in Theorem 2.1 holds.
Take u(t) = −2kb(t2 − t), for t ∈ [0, 1]. It is easy to see that u(t) ∈

P (γ, θ, α, b, kb, d) and α(u) > b. Hence, {u ∈ P (γ, θ, α, b, kb, d) | α(u) > b} �=
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Ø. Thus, we have,

α(T u) = min
1
k
≤t≤1− 1

k

|(T u)(t)| ≥ 1

k
max

0≤t≤1
|(T u)(t)| = 1

k
Tu(σ)

≥ 1

k
min{

� 1+η
2

1
k

φ−1
p (

� 1+η
2

s
q(r)f (r, u(r), u′(r))dr)ds,

� η

1
k

φ−1
p (

� η

s
q(r)f (r, u(r), u′(r))dr)ds +

� 1− 1
k

1+η
2

φ−1
p (

� s

1+η
2

q(r)f (r,u(r), u′(r))dr)ds} >
1

k

kb

L
L = b.

Hence, we obtain that, α(Tu) > b, for all u ∈ P (γ, θ, α, b, kb, d). Consequently,

condition (S1) in Theorem 2.1 holds.

(3) : We prove (S2) of Theorem 2.1 is satisfied.

With θ(Tu) > kb, for all u ∈ P (γ, α, b, d), we have, α(Tu) ≥ 1
k
θ(Tu) >

1
k
kb = b. Thus, condition (S2) in Theorem 2.1 satisfied.

(4) : Finally, we prove (S3) of Theorem 2.1 is also satisfied. Obviously, as
ψ(0) = 0 < a, so 0 �∈ R(γ, ψ, a, d). With ψ(u) = a, for u ∈ R(γ, ψ, a, d), we
have,

ψ(Tu) = max
0≤t≤1

|(Tu)(t)| = Tu(σ)

≤max{
∫ 1+η

2

0

φ−1
p (

∫ 1+η
2

s

q(r)f(r, u(r), u′(r))dr)ds,
∫ η

0

φ−1
p (

∫ 1

s

q(r)f(r, u(r), u′(r))dr)ds +
∫ 1

1+η
2

φ−1
p (

∫ s

1+η
2

q(r)f(r, u(r), u′(r))dr)ds}

≤ a

Q
max{

∫ 1+η
2

0

φ−1
p (

∫ 1+η
2

s

q(r)dr)ds,
∫ η

0

φ−1
p (

∫ 1

s

q(r)dr)ds+
∫ 1

1+η
2

φ−1
p (

∫ s

1+η
2

q(r)dr)ds} = a.

Thus, condition (S3) in Theorem 2.1 holds.

Then, Theorem 3.1 is proved by Theorem 2.1. �

4. Example

Example 4.1. Let p = 3 and q(t) = 1 in (1.1) and η = 1
8

in (1.2), we consider

the following boundary value problem,

(|u′(t)|u′(t))′ + f(t, u(t), u′(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) = u(
1

8
),

(4.1)

where

f(t, ω, v) =

{
t+ 9600 ω10 + 1

20
( v

5×1010)
3, ω ≤ 16,

t+ 9600 · 1610 + 1
20

( v
5×1010 )

3, ω ≥ 16.
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Choose a = 2
3
, b = 1, k = 16, d = 5 × 1010, then it is easy to verify that the

conditions of Theorem 3.1 hold. So, we have that boundary value problem

(4.1) has at least three positive solutions u1, u2, u3 such that,

max
0≤t≤1

|u′i(t)| ≤ 5 × 1010, for i = 1, 2, 3, 1 < min
1
16

≤t≤15
16

|u1(t)|,
2

3
< max

0≤t≤1
|u2(t)|, with min

1
16

≤t≤15
16

|u2(t)| < 1, and max
0≤t≤1

|u3(t)| < 2

3
. �
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