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Abstract
Two classes of recursive algorithms for computing the extreme solu-

tions of the matrix equations X+AT X−1A = Q and X−AT X−1A = Q
are presented. The Per Step Algorithms are based on the fixed point
iteration method and its variations; the proposed Per Step Algorithm
is an inversion free variant of the fixed point iteration method. The
Doubling Algorithms are based on the cyclic reduction method and the
Riccati equation solution method; the proposed Doubling Algorithm
uses recursive solutions of the corresponding Riccati equations to solve
any of the above matrix equations. Simulation results are given to il-
lustrate the efficiency of the proposed algorithms.
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1 Introduction

The central issue of this paper is to propose recursive solutions of the matrix
equations:

X + AT X−1A = Q (1)
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and

X − AT X−1A = Q (2)

where Q is a n× n Hermitian positive definite matrix, A is a n× n matrix
and AT denotes the transpose of A.

These equations arise in many applications in various research areas includ-
ing control theory, ladder networks, dynamic programming, stochastic filtering
and statistics: see [2], [11] for references concerning equation (1) and [6] for ref-
erences concerning equation (2). These equations have been studied recently
by many authors [2]-[8], [10]-[12]: the theoretical properties such as necessary
and sufficient conditions for the existence of a positive definite solution have
been investigated and numerical methods for solving these equations have been
proposed; the available methods are recursive algorithms based mainly on the
fixed point iteration and on applications of the cyclic reduction method.

Concerning equation (1), a solution X of (1) is a n×n Hermitian positive
definite matrix, as stated in [11]. It is well known [5], [10] that if (1) has a
positive definite solution X, then there exist minimal and maximal solutions
X+ and X−, respectively, such that 0 < X− ≤ X ≤ X+ for any positive
definite solution X. Here, if X and Y are Hermitian matrices, then X ≤ Y
(X < Y ) means that Y − X is a nonnegative definite (positive definite)
matrix.

Concerning equation (2), it is well known [6], [10] that there always exists
a unique positive definite solution, which is the maximal solution X+ of (2),
and if A is nonsingular, then there exists a unique negative definite solution,
which is the minimal solution X− of (2).

The minimal and maximal solutions X+ and X− are referred as the ex-
treme solutions of (1) and (2).

Furthermore, it is well known [10] that the minimal solution of X +
AT X−1A = Q and the maximal solution of the following equation

Y + AY −1AT = Q (3)

satisfy the relation:

X− = Q − Y+ (4)

Thus, it becomes obvious that the minimal solution of (1) can be derived
through the maximal solution of (1): the minimal solution of (1) can be com-
puted using (4) via the maximal solution of the equation (3), which is of type
(1).

It is also well known [10] that if A is nonsingular, then the minimal solution
of X − AT X−1A = Q and the maximal solution of the following equation,

Y − AY −1AT = Q (5)
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satisfy the relation:

X− = Q − Y+ (6)

Thus, it becomes obvious that the minimal solution of (2) can be derived
through the maximal solution of (2): the minimal solution of (2) can be com-
puted using (6) via the maximal solution of the equation (5), which is of type
(2).

Moreover, the relation between the solutions of (1) and (2) is described in
[3]: The solution X of X − AT X−1A = Q can be computed as:

X = Y − AQ−1AT (7)

where Y is the solution of the following equation, which is of type (1):

Y + BT Y −1B = R (8)

with

B = AQ−1A (9)

R = Q + AT Q−1A + AQ−1AT (10)

Thus, it becomes obvious that the solution of (2) can be derived through the
solution of (1): the extreme solutions of (2) can be computed using (7) via the
extreme solutions of (8), which is of type (1).

Hence, it becomes clear that the extreme solutions of (1) and (2) can be
derived through the maximal solution of (1).

In this paper, recursive algorithms for computing the extreme solutions of
the matrix equations (1) and (2) are proposed. The efficiency of the proposed
algorithms is verified trough simulation experiments.

2 Recursive algorithms

2.1 Per Step Algorithms

2.1.1 Recursive algorithms for X + AT X−1A = Q

Algorithm 2.1 Fixed Point Iteration Method
The basic fixed point iteration is described in the following (algorithm 3.2 in
[10]):

Xn+1 = Q − AT X−1
n A

X0 = Q

Xn → X+
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Note that all per step algorithms are applicable for n = 0, 1, . . . and that the
convergence is achieved, when ‖Xn+1 − Xn‖ < ε, where ε is a small positive
number and ‖M‖ denotes the norm of the matrix M (the largest singular value
of M).

Algorithm 2.2 Inversion Free Fixed Point Iteration Method
In order to avoid possible numerical instability problems due to matrix inver-
sions, the inversion free variant has been proposed (algorithm 3.1 in [8]):

Xn+1 = Q − AT YnA

Yn+1 = Yn [2I − XnYn]

X0 = Q

Y0 =
1

‖Q‖∞ I

Xn → X+

where ‖M‖∞ denotes the maximum row sum for the matrix M.
Note that this algorithm may have convergence problems; for example, in the
case Q = I, the algorithm computes X1 = X2 = I − AT A.

Algorithm 2.3 Modified Inversion Free Fixed Point Iteration Method
In order to improve the convergence properties, the modified inversion free
variant has been proposed (algorithm 3.4 in [8] and algorithm 3.3 in [2]):

Yn+1 = Yn [2I − XnYn]

Xn+1 = Q − AT Yn+1A

X0 = Q

Y0 =
1

‖Q‖∞ I

Xn → X+

Algorithm 2.4 Proposed Inversion Free Fixed Point Iteration Method
The proposed Per Step Algorithm is an inversion free variant of the fixed
point iteration method; the basic idea is to replace the computation of Yn+1

in Algorithm 2.2 by the Schulz iteration for X−1
n as described in [11]:

Xn+1 = Q − AT YnA

Zi+1 = Zi [2I − XnZi]

Z0 =
1

‖Xn‖∞ I

Zi → Yn

X0 = Q

Xn → X+
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2.1.2 Recursive algorithms for X − AT X−1A = Q

Algorithm 2.5 Fixed Point Iteration Method
The basic fixed point iteration is described in the following (algorithm 4.2 in
[10]):

Xn+1 = Q + AT X−1
n A

X0 = Q

Xn → X+

Algorithm 2.6 Inversion Free Fixed Point Iteration Method
The idea to replace the computation of Xn+1 = Q−AT YnA in Algorithm 2.2
by Xn+1 = Q + AT YnA does not work, because the quantity Xn may tend to
infinite. So, another approach is proposed in the following.
The relation between the solutions of X+AT X−1A = Q and X−AT X−1A = Q
is described in [3] and presented in (7)-(10). Then it becomes clear that we
are able to compute the extreme solutions of (2) via the extreme solutions of
(8), which is of type (1). Thus, in order to avoid possible numerical instabil-
ity problems due to matrix inversions, the following inversion free variant is
proposed:

B = AQ−1A

R = Q + AT Q−1A + AQ−1AT

solve Y + BT Y −1B = R via Inversion Free Fixed Point Iteration Method
(Algorithm 2.2)

X+ = Y+ − AQ−1AT

Algorithm 2.7 Modified Inversion Free Fixed Point Iteration Method
Using the ideas of Algorithms 2.3 and 2.6, the modified inversion free variant
is proposed:

B = AQ−1A

R = Q + AT Q−1A + AQ−1AT

solve Y + BT Y −1B = R via Modified Inversion Free Fixed Point Iteration
Method (Algorithm 2.3)

X+ = Y+ − AQ−1AT
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Algorithm 2.8 Proposed Inversion Free Fixed Point Iteration Method
Using the idea of Algorithm 2.4, the proposed Per Step Algorithm is proposed
as an inversion free variant of the fixed point iteration method:

Xn+1 = Q + AT YnA

Zi+1 = Zi [2I − XnZi]

Z0 =
1

‖Xn‖∞ I

Zi → Yn

X0 = Q

Xn → X+

All Per Step Algorithms presented in this section are summarized in Table 1.

Table 1. Per Step Algorithms

X + AT X−1A = Q X − AT X−1A = Q

Fixed Point
Iteration
Method

Xn+1 = Q − AT X−1
n A

X0 = Q
Xn → X+

Xn+1 = Q + AT X−1
n A

X0 = Q
Xn → X+

Inversion Free
Fixed Point

Iteration
Method

Xn+1 = Q − AT YnA
Yn+1 = Yn [2I − Xn Yn]
X0 = Q
Y0 = 1

‖Q‖∞ I

Xn → X+

B = AQ−1A
R = Q + AT Q−1A + AQ−1AT

solve
Y + BT Y −1B = R
via Inversion Free

Fixed Point Iteration Method
X+ = Y+ − AQ−1AT

Modified
Inversion Free
Fixed Point

Iteration
Method

Yn+1 = Yn [2I − Xn Yn]
Xn+1 = Q − AT Yn+1A
X0 = Q
Y0 = 1

‖Q‖∞ I

Xn → X+

B = AQ−1A
R = Q + AT Q−1A + AQ−1AT

solve
Y + BT Y −1B = R

via Modified Inversion Free
Fixed Point Iteration Method

X+ = Y+ − AQ−1AT

Proposed
Inversion Free
Fixed Point

Iteration
Method

Xn+1 = Q − AT YnA
Zi+1 = Zi [2I − Xn Zi]
Z0 = 1

‖Xn‖∞ I

Zi → Yn

X0 = Q
Xn → X+

Xn+1 = Q + AT YnA
Zi+1 = Zi [2I − Xn Zi]
Z0 = 1

‖Xn‖∞ I

Zi → Yn

X0 = Q
Xn → X+
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2.2 Doubling Algorithms

2.2.1 Recursive algorithms for X + AT X−1A = Q

Algorithm 2.9 Cyclic Reduction Method
The cyclic reduction method is presented in the following (algorithm 3.1 in
[10]):

An+1 = AnQ−1
n An

Qn+1 = Qn − AnQ−1
n AT

n − AT
nQ−1

n An

Xn+1 = Xn − AT
nQ−1

n An

Yn+1 = Yn − AnQ−1
n AT

n

A1 = AQ−1A

Q1 = Q − AQ−1AT − AT Q−1A

X1 = Q − AT Q−1A

Y1 = Q − AQ−1AT

Xn → X+

Note that all doubling algorithms are applicable for n = 1, 2, . . . and that the
convergence is achieved, when ‖Xn+1 − Xn‖ < ε, where ε is a small positive
number and ‖M‖ denotes the norm of the matrix M (the largest singular value
of M).

At this point we remark that we are able to use the initial condition
A1 = −AQ−1A instead of the initial condition A1 = AQ−1A. In fact, it can be
trivially verified that the use of both these initial conditions leads to the calcu-
lation of the same quantities involved in the algorithm for n = 2, (A2, Q2, X2

and Y2) and hence to the same sequences for n = 2, 3, . . . of all the quantities
involved in the algorithm (An, Qn, Xn and Yn). In the following, we use this
algorithm with the initial condition A1 = −AQ−1A.

In addition, note that Algorithm 2.9 provides the minimal solution of (1)
due to limn→∞ Yn = Q − X− as stated in [10].

Algorithm 2.10 Riccati Equation Solution Method
Working as in [5] and [6] we are able to derive a Riccati equation, which is
equivalent to the matrix equation (1). The proposed method takes advantage
of this relation and provides a recursive solution of (1) via the solution of the
related Riccati equation. In fact, the matrix equation (1) can be written as

X = Q − AT X−1A,

then, we have:

X = Q − AT
[
Q − AT X−1A

]−1
A = Q − AT A−1

[
A−T QA−1 − X−1

]−1
A−T A
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= Q + AT A−1
[−A−T QA−1 + X−1

]−1
A−T A

= Q +
(
AT A−1

) [
X−1 +

(−A−T QA−1
)]−1 (

AT A−1
)T

(11)

The equivalent related Riccati equation is:

P = q + fPfT − fPhT (hPhT + r)−1hPfT

= q + f(P−1 + hT r−1h)−1fT (12)

with

f = AT A−1 (13)

q = Q (14)

b = hT r−1h = −A−T QA−1 (15)

It becomes obvious that the matrix equation (1) is equivalent to the related
Riccati equation (12) and that the two equations have equivalent solutions.
Thus, the unique maximal solution of (1) coincides with the unique positive
definite solution of the related Riccati equation:

X+ = P (16)

Thus, it is clear that we will be able to solve (1), if we know the solution of the
related Riccati equation. The solution of the related Riccati equation can be
derived using various available recursive solutions in [1] and [9]. The proposed
method uses the efficient and fast Doubling Algorithm DAKF3 in [9], which is
summarized as follows:

αn+1 = αn (βn + πn)−1 αn

βn+1 = βn − αT
n (βn + πn)−1 αn

πn+1 = πn − αn (βn + πn)−1 αT
n

α1 = q−1f

β1 = fT q−1f + hT r−1h

π1 = q−1

πn → Π

P = Π−1

Substituting (13)-(15) in the initial conditions of this algorithm, the following
initial conditions are derived:

α1 = Q−1AT A−1 (17)

β1 = A−T AQ−1AT A−1 − A−T QA−1 (18)

π1 = Q−1 (19)
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provided that A is nonsingular. Finally, using the above initial conditions and
using (16), the proposed Riccati Equation Solution Method is derived:

αn+1 = αn(βn + πn)−1αn

βn+1 = βn − αT
n (βn + πn)−1αn

πn+1 = πn − αn(βn + πn)−1αT
n

α1 = Q−1AT A−1

β1 = A−T AQ−1AT A−1 − A−T QA−1

π1 = Q−1

πn → Π

P = Π−1

X+ = P

The Cyclic Reduction Method (Algorithm 2.9) and the Riccati Equation
Solution Method (Algorithm 2.10) are equivalent to each other. The proof is
given in the Appendix.

In addition, note that Algorithm 2.10 provides the minimal solution X−
of (1) due to limn→∞ βn = B, since X− = Q + AT BA, as it is shown in the
Appendix.

Finally, note that the Riccati Equation Solution Method (Algorithm 2.10) is
slightly faster (by one matrix addition per iteration) than the Cyclic Reduction
Method (Algorithm 2.9).

2.2.2 Recursive algorithms for X − AT X−1A = Q

Algorithm 2.11 Cyclic Reduction Method
The cyclic reduction method is presented in the following (algorithm 4.1 in
[10]):

An+1 = AnQ−1
n An

Qn+1 = Qn − AnQ−1
n AT

n − AT
nQ−1

n An

Xn+1 = Xn − AT
nQ−1

n An

Yn+1 = Yn − AnQ−1
n AT

n

A1 = AQ−1A

Q1 = Q + AQ−1AT + AT Q−1A

X1 = Q + AT Q−1A

Y1 = Q + AQ−1AT

Xn → X+

In addition, note that Algorithm 2.9 provides the minimal solution X− of
(1) due to limn→∞ Yn = Q − X− as stated in [10].
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Algorithm 2.12 Riccati Equation Solution Method
Working as in [6] we are able to derive a Riccati equation, which is equivalent
to the matrix equation (2). The proposed method takes advantage of this
relation and provides a recursive solution of (2) via the solution of the related
Riccati equation. In fact, the matrix equation (2) can be written as

X = Q + AT X−1A,

then, we have:

X = Q + AT
[
Q + AT X−1A

]−1
A

= Q + AT A−1
[
A−T QA−1 + X−1

]−1
A−T A

= Q +
(
AT A−1

) [
X−1 + A−T QA−1

]−1 (
AT A−1

)T
(20)

The equivalent related Riccati equation is:

P = q + fPfT − fPhT (hPhT + r)−1hPfT

= q + f(P−1 + hT r−1h)−1fT (21)

with

f = AT A−1 (22)

q = Q (23)

b = hT r−1h = A−T QA−1 (24)

It becomes obvious that the matrix equation (2) is equivalent to the related
Riccati equation (21) and that the two equations have equivalent solutions.
Thus, the unique maximal solution of (2) coincides with the unique positive
definite solution of the related Riccati equation:

X+ = P (25)

The solution of the related Riccati equation can be derived using various avail-
able recursive solutions [1], [9]. The proposed method uses the efficient and
fast Doubling Algorithm DAKF3 in [9], as presented before.

Substituting (22)-(24) in the initial conditions of this algorithm, the fol-
lowing initial conditions are derived:

α1 = Q−1AT A−1 (26)

β1 = A−T AQ−1AT A−1 + A−T QA−1 (27)

π1 = Q−1 (28)
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provided that A is nonsingular. Finally, using the above initial conditions and
using (25), the proposed Riccati Equation Solution Method is derived:

αn+1 = αn(βn + πn)−1αn

βn+1 = βn − αT
n (βn + πn)−1αn

πn+1 = πn − αn(βn + πn)−1αT
n

α1 = Q−1AT A−1

β1 = A−T AQ−1AT A−1 + A−T QA−1

π1 = Q−1

πn → Π

P = Π−1

X+ = P

The Cyclic Reduction Method (Algorithm 2.11) and the Riccati Equation
Solution Method (Algorithm 2.12) are equivalent to each other. The proof is
in the Appendix.

In addition, note that Algorithm 2.12 provides the minimal solution X−
of (2) due to limn→∞ βn = B, since X− = Q − AT BA, as it is shown in the
Appendix.

Finally, note that the Riccati Equation Solution Method (Algorithm 2.12) is
slightly faster (by one matrix addition per iteration) than the Cyclic Reduction
Method (Algorithm 2.11).

All Doubling Algorithms presented in this section are summarized in Table
2 (Cyclic Reduction Method) and Table 3 (Riccati Equation Solution Method).

Table 2. Cyclic Reduction Method

X + AT X−1A = Q X − AT X−1A = Q

An+1 = AnQ−1
n An

Qn+1 = Qn − AnQ−1
n AT

n − AT
nQ−1

n An

Xn+1 = Xn − AT
nQ−1

n An

Yn+1 = Yn − AnQ−1
n AT

n

A1 = −AQ−1A
Q1 = Q − AQ−1AT − AT Q−1A
X1 = Q − AT Q−1A
Y1 = Q − AQ−1AT

Xn → X+

An+1 = AnQ−1
n An

Qn+1 = Qn − AnQ−1
n AT

n − AT
nQ−1

n An

Xn+1 = Xn − AT
nQ−1

n An

Yn+1 = Yn − AnQ−1
n AT

n

A1 = AQ−1A
Q1 = Q + AQ−1AT + AT Q−1A
X1 = Q + AT Q−1A
Y1 = Q + AQ−1AT

Xn → X+
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Table 3. Riccati Equation Solution Method

X + AT X−1A = Q X − AT X−1A = Q

αn+1 = αn(βn + πn)−1αn

βn+1 = βn − αT
n (βn + πn)−1αn

πn+1 = πn − αn(βn + πn)−1αT
n

α1 = Q−1AT A−1

β1 = A−T AQ−1AT A−1 − A−T QA−1

π1 = Q−1

πn → Π
P = Π−1

X+ = P

αn+1 = αn(βn + πn)−1αn

βn+1 = βn − αT
n (βn + πn)−1αn

πn+1 = πn − αn(βn + πn)−1αT
n

α1 = Q−1AT A−1

β1 = A−T AQ−1AT A−1 + A−T QA−1

π1 = Q−1

πn → Π
P = Π−1

X+ = P

3 Simulation results

Simulation results are given to illustrate the efficiency of the proposed
methods. The proposed methods compute accurate solutions as verified trough
the following simulation examples.

Example 3.1 This example concerns the equation X +ATX−1A = Q and
is taken from [8] (example 7.1). Consider the equation (1) with

A =

[
2 1
3 4

]
, Q =

[
6.0 5.0
5.0 8.6

]
.

Algorithms 2.1, 2.2, 2.3, 2.4, 2.9, 2.10 have been applied. All algorithms
compute the same maximal solution of (1):

X+ =

[
3.8832 2.4009
2.4009 4.3460

]
.

Example 3.2 This example concerns the equation X +ATX−1A = Q and
is taken from [8] (example 7.2). Consider the equation (1) with

A =

⎡
⎣ 0.20 0.20 0.10

0.20 0.15 0.15
0.10 0.15 0.25

⎤
⎦ , Q = I.

Algorithms 2.1, 2.2, 2.3, 2.4, 2.9, 2.10 have been applied. All algorithms
compute the same maximal solution of (1):

X+ =

⎡
⎣ 0.8266 −0.1684 −0.1581

−0.1684 0.8317 −0.1632
−0.1581 −0.1632 0.8215

⎤
⎦
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Example 3.3 This example concerns the equation X +ATX−1A = Q and
is taken from [8] (example 7.3) and from [10] (example 5.1). Consider the
equation (1) with

A =

⎡
⎣ 0.37 0.13 0.12

−0.30 0.34 0.12
0.11 −0.17 0.29

⎤
⎦ , Q =

⎡
⎣ 1.20 −0.30 0.10

−0.30 2.10 0.20
0.10 0.20 0.65

⎤
⎦

Algorithms 2.1, 2.2, 2.3, 2.4, 2.9, 2.10 have been applied. All algorithms
compute the same maximal solution of (1):

X+ =

⎡
⎣ 0.9463 −0.1987 −0.0596

−0.1987 1.8674 0.3252
−0.0596 0.3252 0.4158

⎤
⎦

Example 3.4 This example concerns the equation X−AT X−1A = Q and
is taken from [8] (example 7.4) and from [10] (example 5.3). Consider the
equation (2) with

A =

[
50 20
10 60

]
, Q =

[
3 2
2 4

]
.

Algorithms 2.5, 2.6, 2.7, 2.8, 2.11, 2.12 have been applied. All algorithms
compute the same maximal solution of (2):

X+ =

[
51.7994 16.0999
16.0999 62.2516

]

4 Conclusions

Recursive algorithms for computing the extreme solutions of the matrix
equations X + AT X−1A = Q and X − AT X−1A = Q are presented. The
Per Step Algorithms are based on the fixed point iteration method and its
variations. The Doubling Algorithms are based on the cyclic reduction method
and the Riccati equation solution method, which uses the recursive solutions
of the corresponding discrete time Riccati equations. Simulation results are
given to illustrate the efficiency of the proposed algorithms.

It is clear [3]-[6] that all available recursive algorithms for solving the ma-
trix equations X + AT X−1A = Q and X − AT X−1A = Q can be used to
solve special cases of corresponding Riccati equations. In this paper recursive
solutions of the corresponding Riccati equations are used to solve any of the
above matrix equations.
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5 Appendix

5.1 Equivalence of the Cyclic Reduction Method and
the Riccati Equation Solution Method

5.1.1 Equivalence of Algorithms 2.9 and 2.10 for X + AT X−1A = Q

In order to prove the equivalence of the Cyclic Reduction Method (Algo-
rithm 2.9) and the Riccati Equation Solution Method (Algorithm 2.10), it is
essential to express the relations between the quantities involved in the two
algorithms. The recursive part of Algorithm 2.9 is:

An+1 = AnQ−1
n An (A.1)

Qn+1 = Qn − AnQ−1
n AT

n − AT
nQ−1

n An (A.2)

Xn+1 = Xn − AT
nQ−1

n An (A.3)

Yn+1 = Yn − AnQ−1
n AT

n (A.4)

for n = 1, 2, . . . , with initial conditions

A1 = −AQ−1A (A.5)

Q1 = Q − AQ−1AT − AT Q−1A (A.6)

X1 = Q − AT Q−1A (A.7)

Y1 = Q − AQ−1AT (A.8)

and Xn → X+ (A.9)

It is clear that the matrices Qn, Xn and Yn are symmetric due to the fact
that Q is a symmetric matrix.

The recursive part of Algorithm 2.10 is:

αn+1 = αn(βn + πn)−1αn (A.10)

βn+1 = βn − αT
n (βn + πn)−1αn (A.11)

πn+1 = πn − αn(βn + πn)−1αT
n (A.12)

for n = 1, 2, . . . , with initial conditions

α1 = Q−1AT A−1 (A.13)

β1 = A−T AQ−1AT A−1 − A−T QA−1 (A.14)

π1 = Q−1 (A.15)
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and

πn → Π (A.16)

where P = Π−1 (A.17)

X+ = P (A.18)

It is clear that the matrices βn and πn are symmetric due to the fact that Q
is a symmetric matrix.

We are going to prove have by induction that the following relations be-
tween the quantities involved in the two algorithms hold:

Qn = −AT (βn + πn)A (A.19)

An = −AT αT
nA (A.20)

Xn = Q − AT πnA (A.21)

Yn = −AT βnA (A.22)

for n = 1, 2, . . . .
Concerning the initial conditions of the two algorithms, it can be trivially

verified that:

Q1 = −AT (β1 + π1)A, from (A.6), (A.14), (A15)

A1 = −AT αT
1 A, from (A.5), (A.13)

X1 = Q − AT π1A, from (A.7), (A.15)

Y1 = −AT β1A, from (A.8), (A.14)

Concerning the recursive parts of the two algorithms, after some algebra we
have:

Qn+1 = −AT (βn+1 + πn+1)A, from (A.2), (A.11), (A.12), (A.19), (A.20)

An+1 = −AT αT
n+1A, from (A.1), (A.10), (A.19), (A.20)

Xn+1 = Q − AT πn+1A, from (A.3), (A.12), (A.19), (A.20), (A.21)

Yn+1 = −AT βn+1A, from (A.4), (A.11), (A.19), (A.20), (A.22)

Finally, from (A.9), (A.16), (A.17), (A.18) and (A.21), we conclude that
the limiting solutions X+ of the two algorithms satisfy X+ + AT X−1

+ A = Q.
It is obvious that both algorithms compute the maximal solution X+ of (1).
This completes the proof that the Cyclic Reduction Method (Algorithm 2.9)
and the Riccati Equation Solution Method (Algorithm 2.10) are equivalent to
each other.

Concerning the minimal solution X− of (1), it is known [10] that Algorithm
2.9 provides the minimal solution X− of (1) due to limn→∞ Yn = Q − X−
and hence Algorithm 2.10 provides the minimal solution X− of (1) due to
limn→∞ βn = B, since it is easy to derive X− = Q + AT BA using (A.22).
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5.1.2 Equivalence of Algorithms 2.11 and 2.12 for X−AT X−1A = Q

In order to prove the equivalence of the Cyclic Reduction Method (Algo-
rithm 2.11) and the Riccati Equation Solution Method (Algorithm 2.12), it is
essential to express the relations between the quantities involved in the two
algorithms. The recursive part of Algorithm 2.11 is :

An+1 = AnQ−1
n An (B.1)

Qn+1 = Qn − AnQ−1
n AT

n − AT
nQ−1

n An (B.2)

Xn+1 = Xn − AT
nQ−1

n An (B.3)

Yn+1 = Yn − AnQ−1
n AT

n (B.4)

for n = 1, 2, . . . , with initial conditions

A1 = AQ−1A (B.5)

Q1 = Q + AQ−1AT + AT Q−1A (B.6)

X1 = Q + AT Q−1A (B.7)

Y1 = Q + AQ−1AT (B.8)

and Xn → X+ (B.9)

It is clear that the matrices Qn, Xn and Yn are symmetric due to the fact
that Q is a symmetric matrix.

The recursive part of Algorithm 2.12 is:

αn+1 = αn(βn + πn)−1αn (B.10)

βn+1 = βn − αT
n (βn + πn)−1αn (B.11)

πn+1 = πn − αn(βn + πn)−1αT
n (B.12)

for n = 1, 2, . . . , with initial conditions

α1 = Q−1AT A−1 (B.13)

β1 = A−T AQ−1AT A−1 + A−T QA−1 (B.14)

π1 = Q−1 (B.15)

and

πn → Π (B.16)

where P = Π−1 (B.17)

X+ = P (B.18)

It is clear that the matrices βn and πn are symmetric due to the fact that Q
is a symmetric matrix.
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We are going to prove have by induction that the following relations be-
tween the quantities involved in the two algorithms hold:

Qn = AT (βn + πn)A (B.19)

An = AT αT
nA (B.20)

Xn = Q + AT πnA (B.21)

Yn = AT βnA (B.22)

for n = 1, 2, . . . .
Concerning the initial conditions of the two algorithms, it can be trivially

verified that:

Q1 = AT (β1 + π1)A, from (B.6), (B.14), (B.15)

A1 = AT αT
1 A, from (B.5), (B.13)

X1 = Q + AT π1A, from (B.7), (B.15)

Y1 = AT β1A, from (B.8), (B.14)

Concerning the recursive parts of the two algorithms, after some algebra we
have:

Qn+1 = AT (βn+1 + πn+1)A, from (B.2), (B.11), (B.12), (B.19), (B.20)

An+1 = AT αT
n+1A, from (B.1), (B.10), (B.19), (B.20)

Xn+1 = Q + AT πn+1A, from (B.3), (B.12), (B.19), (B.20), (B.21)

Yn+1 = AT βn+1A, from (B.4), (B.11), (B.19), (B.20), (B.22)

Finally, from (B.9), (B.16), (B.17), (B.18) and (B.21), we conclude that
the limiting solutions X+ of the two algorithms satisfy X+ − AT X−1

+ A = Q.
It is obvious that both algorithms compute the maximal solution X+ of (2).
This completes the proof that the Cyclic Reduction Method (Algorithm 2.11)
and the Riccati Equation Solution Method (Algorithm 2.12) are equivalent to
each other.

Concerning the minimal solution X− of (2), it is known [10] that Algorithm
2.11 provides the minimal solution X− of (2) due to limn→∞ Yn = Q − X−
and hence Algorithm 2.12 provides the minimal solution X− of (2) due to
limn→∞ βn = B, since it is easy to derive X− = Q − AT BA using (B.22).
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