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Abstract 
 

      Blocking is a useful technique to control systematic variation in 
experiments. Robust parameter design is widely used as an effective tool 
to reduce process variability by appropriate selection of control factors to 
make the process insensitive to noise. In this paper, we propose and study 
a method for selecting the optimal blocked robust parameter designs when 
some of the control-by-noise interactions are included in the model. We 
then discuss how to search for the best designs according to this method 
and present some results for designs of 8 and 16 runs. 
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1. Introduction 
 
      Robust parameter design, originally proposed by Taguchi [15], is an important 
method for variation reduction in industry processes and products. It has been widely 
used as an effective tool to reduce process variability by appropriate selection of control  
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factors to make the process insensitive to noise. The practical and theoretical importance 
of this design has been discussed by Phadke [11] and Nair [10]. An outstanding issue in 
robust parameter design is the choice of experimental plan. Most robust design 
experiments have used product arrays for joint study of control and noise factors. In these 
designs, separate arrays are chosen for the control and the noise factors and then each 
combination in the control factor array is paired with each combination in the noise factor 
array, producing a matrix of data. When the number of factors is large, a large 
experimental run size is needed for product arrays, making experiments costly and 
impractical. Recent statistical research on robust design experiments has favored single 
arrays which include effects for both control factors and noise factors. This idea has been 
discussed by many authors including Lorenzen and Villalobos [9], Vining and Myers 
[18], Welch, Yu, Kang and Sacks [19], Shoemaker, Tsui and Wu [12], Freeny and Nair 
[5], Steinberg and Bursztyn [13, 14], Tsui [17], and Berube and Nair [1]. Recently the 
problem of selecting optimal single arrays for robust parameter design has been 
addressed in the literature. Frey, Engelhardt, and Greitzer [6] proposed an adaptive one-
factor-at-a-time technique that provides large improvements with an economy of run size 
under some conditions. Bingham and Sitter [2] proposed a criterion and constructed the 
tables of small arrays applicable in split-plot parameter design experiments. Wu and Zhu 
[21] developed a general framework for selecting optimal single arrays based on their 
effect ordering principle which includes main effects and all the interactive effects in 
their model. In practical applications of robust parameter designs it is often the case that 
only some of the control-by-noise interactions are important and need to be estimated in 
addition to the control and noise effects.  
      In some experiments, in order to reduce extraneous error and increase the precision of 
inferences, it is often desirable to group the experimental units into blocks such as 
different fields in a plant study. Hence blocked designs are often used in order to make 
data collection more efficient.  
      In this paper we propose and study a method to select optimal blocked robust 
parameter designs for the models containing some of the control-by-noise interactions. 
Section 2 of the paper introduces robust parameter design, two-level fractional factorial 
design, and blocking. Section 3 describes the proposed method for selecting optimal 
blocked robust parameter designs. Section 4 examines how to search for best designs 
based on this method and presents some results for designs of 8 and 16 runs. Section 5 
concludes the paper with an illustrative example.  
 
 
2. Robust parameter design and fraction factorial design  
 
2.1 Robust parameter design 
 
      Taguchi [15] postulated that there are two types of factor which operate on a process: 
control factors and noise factors. Control factors are variables whose levels remain 
unchanged in the process once they are set, whereas the levels of the noise factors are 
hard or impossible to control within the process and cause unwanted variation in the 
response. The goal of robust parameter design is to determine levels of the control factors  
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which cause the response to be robust to changes in the levels of the noise variables, 
thereby to find settings of the control factors that will minimize variability. When a 
robust parameter design experiment is conducted, both the control factors and noise 
factors are varied systematically. The basic idea is to choose the control factors such that 
they are insensitive to the noise factors. This will reduce the effect of uncontrollable 
variations on the response. To achieve this goal, information on two-factor interactions 
between control and noise factors is particularly useful. The blocked robust parameter 
designs selected from two-level fractional factorial designs would enjoy the nice 
properties of this class of designs such as balance, orthogonality, and reduced run size of 
the experiment.  To help understanding our method, a brief review of two-level fractional 
factorial design and blocking are given in Section 2.2 and Section 2.3 respectively. 
 
 
2.2 Two-level fractional factorial design  
 
     Two-level fractional factorial designs have been proven useful for efficient data 
collection and are widely used in many areas of scientific investigation.  They allow us to 
study many factors with relatively small run size. The importance of this class of designs 
has long been established by Box, Hunter and Hunter [4]. A regular two-level fractional 
factorial design is commonly referred to as a 2m-p design. It has m two-level factors with 
2m-p runs, and is completely determined by p independent defining relations, also called 
defining words. When p = 0, it is reduced to a full factorial 2m design. A defining word is 
given by a word of letters which are labels of factors denoted by 1, 2, …, m. The number 
of letters in a word is called its word-length. The group of defining words generated by 
the p independent defining words is called the defining contrast subgroup and the length 
of the shortest is called the resolution of the design. The vector W(d) = (A1(d), A2(d), …, 
Am(d)) is called the word-length pattern of the design d, where Ai(d) is the number of 
words of length i in the defining contrast subgroup. A key concern in fractional factorial 
design is how to choose a fraction of the full factorial design for a given run size and 
number of factors. The resolution criterion proposed by Box and Hunter [3] selects 2m-p 
design that has higher resolution. Since two designs having the same resolution may have 
a different word-length pattern and may not be equally good, Fries and Hunter [7] 
proposed the minimum aberration criterion to further discriminate 2m-p designs. For two 
designs d1 and d2, suppose r is the smallest value such that Ar(d1) ≠ Ar(d2). We say that d1 
has less aberration than d2 if Ar(d1) < Ar(d2). If no design has less aberration than d1, then 
d1 is said to have minimum aberration. The minimum aberration criterion is the most 
commonly used criterion for 2m-p design selection.  
      In what follows, an example is used to introduce 2m-p design. Suppose we wish to 
perform an experiment with eight runs and several factors at two levels, labeled +1 and 
−1. Table 1 gives an 8-run saturated design with its columns arranged in Yates’s order. 
The Yates’s order of the columns of an 8-run saturated design can be written as (a1, a2, 
a1a2, a4, a1a4, a2a4, a1a2a4) where other columns can be generated from the three 
independent columns a1, a2, and a4. 
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Table 1. Columns of the 8-run saturated design in Yates’s order 
 

Run 1 2 3 
(3=12)

4 5 
(5=14)

6 
(6=24)

7 
(7=124)

Response 

1 −1 −1 +1 −1 +1 +1 −1 y1 

2 −1 −1 +1 +1 −1 −1 +1 y2 
3 −1 +1 −1 −1 +1 −1 +1 y3 
4 −1 +1 −1 +1 −1 +1 −1 y4 
5 +1 −1 −1 −1 −1 +1 +1 y5 
6 +1 −1 −1 +1 +1 −1 −1 y6 
7 +1 +1 +1 −1 −1 −1 −1 y7 
8 +1 +1 +1 +1 +1 +1 +1 y8 

 
      If we use columns 1, 2, and 4 of Table 1 to set the levels of three factors A, B, and C, 
respectively, then y1 through y8 in Table 1 represent the responses at 23 possible 
combinations of factor settings. This gives a 23 = 8 run, two-level, three-factor, full 
factorial design. By using this design, the main effects of A, B, and C, as well as their 
interactions AB, AC, BC, and ABC can be estimated. A significant disadvantage of the 
full factorial design is that the run size of the design rises geometrically with the number 
of factors. In order to conduct experiments more efficiently, fractional factorial designs 
may be employed to reduce the size of the experiment. For example, for estimating the 
effects of seven factors each having two levels, a full factorial design will need 27=128 
runs, a fractional factorial design may need only 27-4 =8 runs. The economy of run size 
afforded by the fractional factorial design comes at a cost. In a fractional factorial design, 
each main effect is clear of other main effects, but may be confounded with two-factor 
interactions or higher order interactions. For example, if we want to study one more 
factor D in addition to A, B, and C using the 8-run design, we have different choices. For 
design d1, we assign the levels of factor D to the column 7. This gives a 24-1 fraction 
factorial design. Since 7=124, the estimate for the main effect D could not be separated 
from the effect of the interaction between A, B, and C. That is D=ABC. The resolution of 
the design is 4 and the word-length pattern W(d1) = (0, 0, 0, 1). For another design d2, we 
assign factor D to column 6=24. The resolution is 3 and W(d2) = (0, 0, 1, 0). Obviously, d1 
is better than d2 because it has higher resolution and minimum aberration. Both definition 
of resolution and minimum aberration are based on the hierarchical principle: (i) lower 
order interactions are more important than higher order interactions, (ii) effects of the 
same order are equally important. The advantage of d1 is obvious based on the principle 
because the main effects in d1 are confounded with three-factor interactions and the main 
effects in d2 are confounded with two-factor interactions.  
2.3 Blocking and its applications 
 
      Blocking is a commonly used technique to control systematic variation in 
experiments. Such variation might occur from field-to-field, day-to-day, or batch-to 
batch.   Without  blocking,  the  systematic  variation  can  influence  the  accuracy  and  
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efficiency of effect estimation. Blocking can effectively eliminate the systematic variance 
by grouping the runs of an experiment into blocks. In a blocked design, the variance due 
to blocks is modeled. Hence it is removed from the residual variance; thereby effectively 
reducing the magnitude of the estimated experimental error. Criteria for the choice of 
blocks are most frequently different settings or environments for the conduct of the 
experiment. In any case, blocks should be chosen so that the units within blocks are as 
homogeneous as possible. Blocking can be accomplished through the use of blocking 
factors in a design. For 2m-p designs, since there are many choices to assign blocking 
factors to the unused columns of a saturated design, blocking schemes and methods are 
needed to select columns that reduce the bias (as one did in the selection of unblocked 
designs). In blocked 2m-p designs, interactions between treatment and blocking factors are 
assumed to be non-existent, a necessary condition for the effectiveness of blocking. See 
Box, Hunter, & Hunter [4] for the principles and assumptions in the construction of block 
designs. For the models containing main effects and blocking effects, many blocking 
schemes for 2m-p designs have been discussed in the literature. In this article, we discuss 
the blocking schemes for robust parameter designs for the models containing some 
control-by-noise interactions in addition to main effects and blocking effects.  
 
 
3. A method for selecting optimal blocked robust parameter design 
 

3.1 The optimal design selection criterion 
 
      Suppose that we wish to estimate the control effects, noise effects, and some control-
by-noise interactions using a blocked robust parameter design designs. Then the fitted 
model should include all the control factors, noise factors, blocking factors, and the 
important control-by-noise interactions.  
If the effects not in the postulated model cannot be completely ignored, they will bias the 
estimates of the effects in the model. To solve this problem, the key issues are to permit 
estimation of the control effects, noise effects, blocking effects, and the important 
control-by-noise interactions in the postulated model and to minimize the bias caused by 
the effects not in the model. The optimal design should be selected to minimize the 
contamination of these non-negligible effects on the model. The proposed design 
selection criterion is given below: 
Optimal design selection criterion: Let Nj, j = 2, 3, …, m be the number of j-factor 
interactions not in the model that are confounded with the effects in the postulated model 
including control effects, noise effects, blocking effects, and the important control-by-
noise interactions. The optimal blocked robust parameter design is selected by 
sequentially minimizing N2,…, Nm.   
      To gain further insight, we now examine the criterion in detail. The postulated model 
consists of all the control factors, noise factors, blocking effects, and control-by-noise 
interactions. Those 2-factor interactions not in the model and higher-order interactions 
generally cause a bias on the estimation of the effects in the model. The measure of this 
bias, as given by Nj, is the number of the j-factor interactions outside the model that are 
confounded with the effects in the model. Under the hierarchical principle that lower- 
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order effects are more important than higher-order effects (Wu and Hamada [20]), to 
minimize the bias, we should sequentially be minimizing N2, N3, …, Nm. The vector (N2, 
N3, …, Nm) is called the confounding pattern of a design. Therefore this criterion selects 
the design that minimizes N2. If several designs have the same number of N2, it selects the 
design that minimizes N3 among the designs that have minimum N2, and so on.  
      We now look at an example. Suppose that we want to study one noise factor A, three 
control factors B, C, and D, and two control-by-noise interactions AB and AC by using a 
blocked design of 8 runs. We consider two designs d1 and d2. Based on Table 1, for d1, 
we assign factors A, B, C, and D to columns 1, 4, 7, and 2 and the blocking factor to 
column 3b (We use ‘b’ to indicate blocking factor). The interactions to be estimated 
should be 14 and 17. Since 7 = 124 and 3b =12, the defining contrast subgroup of the 
design is given by I=1247=123b=3b47. Hence we have 14=27, 17=24, 3b=12, 3b=47, 
1=247, 2=147, 4=127, and 7=124. Therefore N2 = 4 and N3 = 4. Note that the interactions 
between blocking factors and treatment factors are assumed not existent and are not 
counted here. The confounding pattern of d1 is (4, 4, 0) meaning that four 2-factor 
interactions and four 3-factor interactions not in the model are confounded with the 
effects in the model. For design d2, we assign factors A, B, C, and D to columns 4, 2, 3, 
and 1 and the blocking factor to column 5b. The interactions to be estimated should be 42 
and 43. Since 3=12 and 5b=47, the defining contrast subgroup of design d2 is given by 
I=123=145b=2345b. Hence we have 1=23, 2=13, 3=12, 5b=14, 5b=234, 24=134, 34=124 
and 4=1234. Hence the confounding pattern of d2 is (4, 3, 1) meaning that four 2-factor 
interactions, three 3-factor interactions, and one 4-factor interaction not in the model are 
confounded with the effects in the model. Based on our design selection criterion, design 
d2 is better than d1 because N2(d1) = N2(d2) and N3(d1) > N3(d2) where N2(d1), N2(d2) 
N3(d1), and N3(d2) denote N2 and N3 for d1 and d2 respectively.  
 
3.2 Theoretical justification of the criterion 
 
      Tang and Deng [16] showed that the minimum aberration criterion is equivalent to a 
criterion that sequentially minimizes the number of j-factor interactions aliased with the 
main effects. Their result was extended by Ke and Tang [8] to the cases that include some 
important two-factor interactions. Here we extend their results to the blocked robust 
parameter design cases. Suppose that we are interested in estimating all the block factors, 
control factors, noise factors, and some of the control-by-noise interactions by using a 2m-

p design. Then the fitted model is given by 
Y = 0α I + W1γ1 + ε                                                    (1) 

where Y denotes the vector of n observations, 0α  is the grand mean, I denotes the vector 
of n ones, γ1 is the vector of parameters containing all the control factors, noise factors, 
and important control-by-noise interactions, W1 is the corresponding design matrix, and ε 
is the vector of uncorrelated random errors, assumed to have mean 0 and a constant 
variance. Since other interactions may not be negligible, the true model can be written as 

 Y = 0α I + W1γ1 + X2 2α  + X3 3α + · · · + Xm mα + ε,                            (2) 
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where 2α  is the vector of remaining two-factor interactions and X2 is the corresponding 
design  matrix, jα is the vector of j factors interactions and Xj is the corresponding 

matrix. The least square estimator 1γ̂  = YWWW TT
1

1
11 )( − = YWn T

1
1− from the fitted model 

in (1) has expectation, taken under the true model in (2), of E( 1γ̂ ) = γ1 + P 2α  + P3 3α  + · · 
· + Pm mα , where P2 = 21

1 XWn T− and Pj = j
T XWn 1

1− . So the bias of 1γ̂  for estimating γ1 is 
given by  

    Bias ),ˆ( 11 γγ  = P2 2α  + P3 3α  + · · · + Pm mα .                                   (3) 
Note P2 2α  is the contribution of 2α  to the bias, and Pj jα  is the contribution of jα  to 
the bias. Because jα  is unknown, we have to work with Pj. One size measure for a 

matrix P = (pij) is given by ||P||2
def

= trace(PTP) =∑ ji ijp
,

2 . Under the hierarchical 

assumption that lower order effects are more important than higher order effects, to 
minimize the bias of 1γ̂  we should sequentially minimize ||P2||2,…, ||Pm||2. For regular   
2m-p designs, the entries of Pj are 0 or 1, and thus ||Pj||2 is simply the number of j-factor 
interactions aliased with the effects in the postulated model in (1). Now let Nj = ||Pj||2. 
Based on the above results, we can select optimal robust parameter designs by 
sequentially minimizing N2,…, Nm where Nj is the number of j-factor interactions not in 
the model confounded with the effects in the postulated model. 
 
 
4. Searching for best designs  
 
4.1 Searching method 
 
      In this paper, we consider 2m-p designs of 8 runs and 16 runs. For designs of 8 runs 
there are only 7 columns in a saturated design. The choice of the blocked robust 
parameter design is limited and the optimal design is not hard to select according to our 
criterion. For designs of 16 runs, there are 15 columns in a saturated design. There are a 
lot of choices for a robust parameter design. The optimal blocked robust parameter design 
of 16 runs is not easy to select according to this criterion. We use a computer program to 
calculate the confounding pattern for each choice of the designs for the given number of 
blocking factors, control factors, noise factors, and important control-by-noise 
interactions. Then select the best one that has minimum N2. If several designs have the 
same N2, we select the one that minimizes N3, and so on. Because noise factors are hard 
to control, the number of noise factors included in robust parameter design experiments is 
often small. In this paper, we only consider up to 2 noise factors. Through our search 
effort we have found optimal robust parameter designs of 8 and 16 runs for up to 2 noise 
factors and 2 control-by-noise interactions. In our search effort we have used (N2, N3, N4) 
instead of the entire vector (N2, …, Nm) to reduce the computing burden. Actually five-
factor and higher order interactions are very small and usually negligible in practice. 
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4.2 Optimal blocked robust parameter designs of 8 and 16 runs 
 
      Table 2 and 3 present the optimal robust parameter designs of 8 runs for the models 
containing up to 2 noise factors and 2 control-by-noise interactions, Tables 4−6 present 
the optimal designs of 16 runs for the models containing up to 2 noise factors and 2 
control-by-noise interactions. In these tables, the entries under “kc + kn” give the number 
of control factors plus the number of noise factors. The entries under “model” indicate 
which model is under consideration for the models containing two control-by-noise 
interactions. Let C1 and C2 be control factors and N1 and N2 noise factors. An entry of 
2(a) denotes the model with two control-by-noise interactions of C1–N1 and C2–N2, 2(b) 
denotes the model of C1–N1 and C2–N1, and 2(c) denotes the model of C1–N1 and C1–N2. 
The entries under “block factor” give the design columns for the block factors in the 
fitted model. The entries under “control factor” give the design columns for the control 
factors. The entries under “noise factor” give the design columns for the noise factors. 
Column j in these tables denotes the j-th column in the saturated design with its columns 
arranged in Yates’s order. The Yates’s order of the columns of an 8-run saturated design 
was given in Section 2.2.The Yates’s order of the columns of a 16-run saturated design 
can be written as (a1, a2, a1a2, a4, a1a 4, a2a 4, a1a2a4, a8, a1a 8, a2a8, a1a2a8, a4a8, a1a4a8, 
a2a4a8, a1a2a4a8) where other columns can be generated from the four independent 
columns a1, a2, a4, and a8. The entries under “c-n interaction” show how to assign the 
factors involved in the control-by-noise interactions. The last column in these tables gives 
(N2, N3, N4).  
      For unblocked robust parameter designs, Wu and Zhu [21] provided the optimal 
design tables based on their effect ordering principle which treated all the control-by-
noise interactions and the main effects as equally important. Their tables provided 
generally good designs for estimating main effects and all the control-by-noise 
interactions. For blocked robust parameter designs, if only some of the control-by-noise 
interactions are important and need to be estimated, which is the case in many practical 
applications, our blocked optimal design tables can be directly applied.  
 
 

Table 2. Optimal blocked robust parameter designs of 8 runs 
for the models containing one c-n interaction 

________________________________________________________________________________________________________     
kc + kn    block factor     control factor     noise factor     c-n interaction      (N2, N3,  N4) 

________________________________________________________________________________________________________ 
     3 + 1                3                 1 2 7                       4                           (1, 4)                  (3, 4, 0) 
     2 + 2                3                 1 2                          4 7                        (1, 4)                  (3, 4, 0) 

     4 + 1                6                 1 2 3 4                    5                           (2, 5)                  (9, 8, 4) 
     3 + 2                6                 1 2 3                       4 5                        (2, 5)                  (9, 8, 4) 

________________________________________________________________________________________________________ 
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Table 3. Optimal blocked robust parameter designs of 8 runs 
for the models containing two c-n interactions 

____________________________________________________________________________________________________________     
kc + kn    model    block factor   control factor    noise factor    c-n interaction   (N2, N3,  N4) 
____________________________________________________________________________________________________________  
 3 + 1        2(b)              5                    1 2 3                   4                      (2, 4)(3, 4)             (4, 3, 1) 
 2 + 2        2(b)              5                    2 3                      1 4                   (2, 4)(3, 4)             (4, 3, 1) 
 2 + 2        2(c)              5                    1 4                      2 3                   (4, 2)(4, 3)             (4, 3, 1) 
____________________________________________________________________________________________________________ 

 
 
 

 
Table 4. Optimal blocked robust parameter designs of 16 runs for the models 

containing one noise factor and one c-n interaction 
____________________________________________________________________________________________________________     
 kc + kn    block factor        control factor        noise factor      c-n interaction     (N2, N3,  N4) 
____________________________________________________________________________________________________________  
   4 + 1             11             1 2 4 7                                      8                     (1, 8)                   (0, 6, 1) 
   5 + 1             13             1 2 7 8 11                                 4                     (1, 4)                  (1, 16, 2) 
   6 + 1             14             1 4 7 8 11 13                            2                     (1, 2)                 (2, 37, 4) 
   7 + 1              5              1 4 7 8 11 13 14                       2                     (1, 2)                (7, 56, 16) 
   8 + 1              7              1 2 3 5 8 9 14 15                      4                     (2, 4)               (19, 64, 80) 
   9 + 1             11             1 2 3 4 5 6 9 14 15                   8                     (2, 8)             (31, 88, 160) 
 10 + 1             15             1 2 3 4 5 8 9 10 13 14              6                    (1, 14)           (44, 129, 272) 
 11 + 1             11             1 2 3 4 5 8 9 10 13 14 15         6                     (1, 6)            (59, 188, 432) 
 12 + 1             12             1 2 3 4 5 8 9 10 11 13 14 15    6                    (2, 12)           (77, 264, 660) 
____________________________________________________________________________________________________________ 
 

Table 5. Optimal blocked robust parameter designs of 16 runs for the models 
containing one noise factor and two c-n interactions 

____________________________________________________________________________________________________________     
kc + kn    model    block factor     control factor      noise factor     c-n interaction       (N2, N3,  N4) 
____________________________________________________________________________________________________________  
 4 + 1       2(b)             11           1 2 4 7                            8                  (1, 8)(2, 8)                (0, 6, 2) 
 5 + 1       2(b)             13           1 2 7 8 11                       4                  (1, 4)(2, 4)               (2, 16, 4) 
 6 + 1       2(b)             14           2 4 7 8 11 13                  1                  (2, 1)(4, 1)               (4, 35, 8) 
 7 + 1       2(b)             6             2 4 7 8 11 13 14             1                  (2, 1)(4, 1)           (10, 56, 24) 
 8 + 1       2(b)             10           1 2 3 5 8 9 14 15            4                  (2, 4)(3, 4)           (22, 68, 88) 
 9 + 1       2(b)             12           1 2 3 4 5 6 9 14 15         8                  (2, 8)(3, 8)         (34, 96, 172) 
10 + 1      2(b)             7             1 2 3 4 5 6 8 9 10 14      13            (1, 13)(2, 13)       (48, 141, 288) 
___________________________________________________________________________________________________________ 
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Table 6. Optimal blocked robust parameter designs of 16 runs for the models 
containing two noise factors and two c-n interactions 

____________________________________________________________________________________________________________     
kc + kn    model   block factor    control factor         noise factor      c-n interaction      (N2, N3,  N4) 
____________________________________________________________________________________________________________  
 3 + 2       2(a)            5              1 4 15                             2 8               (1, 2)(4, 8)                (1, 3, 5) 
 3 + 2       2(b)          11              1 2 15                             4 8               (1, 8)(2, 8)                (0, 6, 2) 
 3 + 2       2(c)          11              4 8 15                             1 2               (8, 1)(8, 2)                (0, 6, 2) 

 4 + 2       2(a)          13              1 2 7 11                          4 8               (1, 4)(2, 8)               (2, 16, 4) 
 4 + 2       2(b)          13              1 2 8 11                          4 7               (1, 4)(2, 4)               (2, 16, 4) 
 4 + 2       2(c)          13              4 7 8 11                          1 2               (4, 1)(4, 2)               (2, 16, 4) 

 5 + 2       2(a)          14              1 4 7 11 13                     2 8               (1, 2)(4, 8)               (4, 35, 8) 
 5 + 2       2(b)          14              2 4 8 11 13                     1 7               (2, 1)(4, 1)              (4, 35, 8) 
 5 + 2       2(c)          14              1 7 8 11 13                     2 4               (1, 2)(1, 4)               (4, 35, 8) 

 6 + 2       2(a)            5              1 4 7 11 13 14                2 8               (1, 2)(4, 8)           (10, 56, 24) 
 6 + 2       2(b)            6              2 4 8 11 13 14                1 7               (2, 1)(4, 1)           (10, 56, 24) 
 6 + 2       2(c)            6              1 7 8 11 13 14                2 4               (1, 2)(1, 4)           (10, 56, 24) 

 7 + 2       2(a)            7              1 2 3 5 9 14 15                4 8              (2, 4)(3, 8)           (22, 68, 88) 
 7 + 2       2(b)          10              2 3 5 8 9 14 15               1 4               (2, 4)(3, 4)           (22, 68, 88) 
 7 + 2       2(c)          10              1 4 5 8 9 14 15                2 3              (4, 2)(4, 3)           (22, 68, 88) 

 8 + 2       2(a)          11              1 2 3 4 5 6 9 15              8 14           (2, 8)(3, 14)         (34, 96, 172) 
 8 + 2       2(b)          12              2 3 4 5 6 9 14 15            1 8              (2, 8)(3, 8)         (34, 96, 172) 
 8 + 2       2(c)          12              1 4 5 6 8 9 14 15             2 3             (8, 2)(8, 3)          (34, 96, 172) 

 9 + 2       2(a)          15              1 2 3 4 6 8 9 13 14          10 5          (1, 10)(2, 5)       (48, 141, 288) 
 9 + 2       2(b)           7               1 2 4 5 6 8 9 10 14          3 13         (1, 13)(2, 13)      (48, 141, 288) 
 9 + 2       2(c)           7               3 4 5 6 8 9 10 13 14        1 2           (13, 1)(13, 2)      (48, 141, 288) 
____________________________________________________________________________________________________________ 
 
 
 

5. An illustrative example 
 
      The optimal blocked robust parameter designs of 8 runs and 16 runs are listed in 
Tables 2−6. When we plan to study several control factors, noise factors, and some 
important control-by-noise interactions by using a blocked 2m-p design of 8 or 16 runs, we 
can choose an optimal design directly from these tables to satisfy our needs. Now an 
example is employed to illustrate how to use these optimal design tables. 
      Suppose that in an experiment, the experimenter want to study four control factors - 
Nitrogen, Phosphorus, Potassium, and moisture and two noise factors - temperature and 
light. She would like to use a blocked 2m-p design of 16 runs with one blocking factor that 
is the subdivision of the field. In addition to the block factor, control factors and noise 
factors, she also wants to estimate the control-by-noise interaction between Nitrogen and 
temperature and the control-by-noise interaction between Nitrogen and light. The model 
for this experiment is 2(c) with interaction pattern of C1–N1 and C1–N2. The optimal  
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design for this model can be found in Table 6. Now let us look at the row for kc + kn = 4 + 
2 and model 2(c) in Table 6. We see that the column for blocking factor is 13, the 
columns for control factors are 4, 7, 8 and 11, and the columns for noise factors are 1 and 
2. To complete the specification of the optimal design, we need to appropriately assign 
the control and noise factors to the 6 columns 1, 2, 4, 7, 8, and 11. The “c-n interaction” 
column in Table 6 says that we should assign Nitrogen to column 4, assign temperature 
and light to columns 1 and 2, and assign other control factors to columns 7, 8, and 11 
arbitrarily. This design has N2 = 2, meaning that only two 2-factor interactions not in the 
model are confounded with the effects in the model. This design is the best in the sense 
that no other design has smaller N2 than this one for the given model.  
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