A Remark on Total Domination Critical Graphs

N. Jafari Rad and S. Rahimi Sharebaf

Department of Mathematics Shahrood University of Technology, Shahrood, Iran n.jafarirad@shahroodut.ac.ir

Abstract

A graph G with no isolated vertex is total domination vertex critical if for any vertex v of G that is not adjacent to a vertex of degree one, the total domination number of G - v is less than the total domination number of G. We call these graphs γ_t -critical. In this paper, we disprove a conjecture posed in a recent paper (On an open problem concerning total domination critical graphs, Expo. Math. 25 (2007), 175-179).

Mathematics Subject Classification: 05C69.

Keywords: Total domination; total domination critical graph.

1 Introduction

A vertex in a graph G dominates itself and its neighbors. A set of vertices S in a graph G is a dominating set, if each vertex of G is dominated by some vertices of S. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. A dominating set S is called a total dominating set if each vertex of G is dominated by some vertices of S. The total domination number of G, denoted by $\gamma_t(G)$, is the minimum cardinality of a total dominating set of G. An efficient total dominating set for a graph G is a set $S \subseteq V(G)$ for which the open neighborhoods $N(v), v \in S$, form a partition of V(G). An end-vertex in a graph G is a vertex of degree one and a support vertex is one that is adjacent to an end-vertex. We call a total dominating set of cardinality $\gamma_t(G)$ a $\gamma_t(G)$ -set. We also let S(G) be the set of support vertices of G.

A vertex v in a graph G is a domination critical vertex, or just a critical vertex, if removing v decreases the domination number. A graph G is said to be domination vertex critical if any vertex of G is a critical vertex. There are many papers on this topic, and we refer the reader to [2].

Goddard, et. al. in [1] began the study of those graphs, which we call γ_t -critical, where the total domination number decreases on the removal of any

vertex which is not a support vertex. A vertex v in a graph G is $\gamma_t-critical$ if $\gamma_t(G-v)<\gamma_t(G)$. Since total domination is undefined for a graph with isolated vertices, a graph G is total domination vertex critical, or just γ_t -critical, if every vertex of G that is not adjacent to a vertex of degree one is γ_t -critical. In particular, if $\delta(G) \geq 2$, then G is γ_t -critical if every vertex of G is γ_t -critical. If G is γ_t -critical, and $\gamma_t(G) = k$, then G is called k- γ_t -critical. They posed the following open question:

Question 1: Characterize all γ_t -critical graphs of order $(\gamma_t(G)-1)\triangle(G)+1$.

The authors in [3] studied this question and proved some results on characterization of γ_t -critical graphs of order $(\gamma_t(G) - 1) \triangle (G) + 1$. There is the following result in [3].

Proposition 2: There is no $3 - \gamma_t$ -critical graph of order 9.

They posed the following conjecture:

Conjecture 3: For $r \geq 6$, there is no $3 - \gamma_t$ -critical graph of order 2r + 1.

In this paper, we first correct Proposition 2, and characterize all $3 - \gamma_t$ -critical graphs of order 9. We then disprove Conjecture 3, by introducing a $3 - \gamma_t$ -critical graph of order 2r + 1 for each $r \ge 6$. We use the following results:

Theorem 1.1, [3]: Any γ_t -critical graph G of order $n = \Delta(G)(\gamma_t(G)-1)+1$ is regular.

Theorem 1.2, [3]: The diameter of a 3- γ_t -critical r-regular graph of order n = 2r + 1 is 2.

Theorem 1.3, [3]: Let G be a k- γ_t -critical r-regular graph of order r(k-1)+1, then k is odd, and r is even.

Theorem 1.4, [3]: Let G be a k- γ_t -critical r-regular graph of order r(k-1)+1 with k odd. Let $v \in V(G)$ and S be a $\gamma_t(G-v)$ -set, then S is an efficient total dominating set for G-v.

Throughout this paper for a subset $S \subseteq V(G)$ we denote the subgraph of G induced by S, by G[S]. For a vertex v in a graph G we also use S_v for a $\gamma_t(G-v)$ -set.

2 Main Results

In this section, we give the main results of the paper. We first correct Proposition 2, and then disprove Conjecture 3. Let F be the graph with vertex set $\{x, y, z, v_1, v_2, v_3, v_4, v_5, v_6\}$ and edge set $\{xv_i : i = 1, 2, 3, 4\} \cup \{v_2v_3, v_1v_5, v_1y, v_1v_6, v_2y, v_2v_6, v_3v_5, v_3z, v_4v_5, v_4z, v_4v_6, v_5y, y_2, zv_6\}$.

It is easy to check that F is a $3 - \gamma_t$ -critical of order 9. We correct the content of Proposition 2, and characterize all $3 - \gamma_t$ -critical graphs of order 9.

Theorem 2.1 A graph G of order 9 is $3 - \gamma_t$ -critical if and only if G = F.

Proof. Let G be a $3 - \gamma_t$ -critical of order 9. It follows from Theorem 1.1, that G is 4-regular. Let $x \in V(G)$. We know by Theorem 1.2, that diam(G) = 2. Let V_i denote the set of all vertices of G at distance i from x, for i = 1, 2. So $|V_1| = |V_2| = 4$. It is obvious that $S_x \cap V_1 = \emptyset$, so $S_x \subseteq V_2$. Let $S_x = \{y, z\}$. Also let $V_1 = \{v_3, v_4, v_5, v_6\}$ and $V_2 = \{v_1, v_2, y, z\}$.

Claim 1. $|N(y) \cap V_1| = |N(z) \cap V_1| = 2$.

Proof. We prove that $|N(y) \cap V_1| = 2$. Assume to the contrary that $|N(y) \cap V_1| \neq 2$. Since G is 4-regular, we may assume that $\{v_1, v_2, v_3\} \subseteq N(y)$ and $\{v_4, v_5, v_6\} \subseteq N(z)$. For x to be totally dominated by S_z , it follows that $v_3 \in S_z$. There are the following possiblities.

- 1) If $x \in S_z$, then v_3 is adjacent to both v_1 and v_2 . Then $z \in S_{v_3}$. But G is 4-regular, so there is a vertex $u \in \{v_4, v_5, v_6\}$ such that u dominates both v_1 and v_2 . Now in order to S_u dominates G u it follows that y is adjacent to some vertices in $\{v_4, v_5, v_6\}$. This contradicts deg(y) = 4.
- 2) If $x \notin S_z$, we may assume that $v_1 \in S_z$. In order to S_z dominates the vertices in $\{v_2, v_4, v_5, v_6\}$, it is required that $\deg(v_3) + \deg(v_1) \geq 9$, contradicting that G is 4-regular. Similarly, $|N(z) \cap V_1| = 2$. \diamondsuit

So $|N(y) \cap V_1| = |N(z) \cap V_1| = 2$. Let $v_1 \in N(y) \cap (V_2 \setminus \{z\})$ and $v_2 \in N(z) \cap (V_2 \setminus \{y\})$. Let $\{v_3, v_4\} \subseteq N(y)$ and $\{v_5, v_6\} \subseteq N(z)$. Now $|S_{v_1}| = 2$ and it follows from Theorem 1.4, that $|S_{v_1} \cap V_1| = |S_{v_1} \cap V_2| = 1$ and we have the following cases:

- Case 1. If $v_2 \in S_{v_1}$, then we may assume that $v_3 \in S_{v_1}$. Now there is a vertex $w \in \{v_4, v_5, v_6\}$ such that v_3 is adjacent to w, and v_2 adjacent to both vertices of $\{v_4, v_5, v_6\} \setminus \{w\}$. In each case v_1 will be adjacent to all of the vertices of $\{v_4, v_5, v_6\}$. We examined all possible cases for w and noticed that if $w = v_4$ then G is not γ_t -critical, and if $w \in \{v_5, v_6\}$ then G is isomorphic to F.
- Case 2. If $z \in S_{v_1}$, then we may assume that $v_5 \in S_{v_1}$. Then $\{v_3, v_4\} \subseteq N(v_5)$. Now we consider S_{v_2} . By Case 1 we can assume that $y \in S_{v_2}$. It follows from Theorem 1.4, that $S_{v_2} \cap \{v_3, v_4\} \neq \emptyset$. Let $v_3 \in S_{v_2}$. Now v_3 is adjacent to v_6 , and v_1 is adjacent to all of the vertices in $\{v_4, v_6, v_2\}$. This is a contradiction, since $\deg(v_2) = 4.\diamondsuit$

Now, we disprove Conjecture 3. By Theorem 1.3, if there is a $3 - \gamma_t$ -critical graph of order 2r + 1, then r is even. In the following we show that for any even $r \geq 6$ there is a $3 - \gamma_t$ -critical graph of order 2r + 1.

Theorem 2.2 For any even $r \geq 6$ there is a $3 - \gamma_t$ -critical graph of order 2r + 1.

Proof. Let $r \ge 6$ be an even integer, and let n = 2r + 1. Let G be a graph with vertex set $V = \{v_1, v_2, ..., v_n\}$, and edge set $E = \{v_i v_{i+1}, v_i v_{i+3}, ..., v_i v_{i+r-1} : i = 1, 2, ..., n\}$, which the additions are calculated in modulo n.

Any two adjacent vertices of G dominate at most 2r vertices of G, so $\gamma_t(G) \geq 3$. On the other hand $\{v_1, v_2, v_3\}$ is a total dominating set for G. So, $\gamma_t(G) = 3$.

Now we prove that G is γ_t -critical. Let $x \in V$. Without loss of generality we suppose that $x = v_{r+2}$. Now, $\{v_1, v_2\}$ is a total dominating set for G - x. Hence, G is γ_t -critical. \diamondsuit

References

- [1] W. Goddard, T. W. Haynes, M. A. Henning, and L. C. van der Merwe, The diameter of total domination vertex critical graphs. Discrete Math. 286 (2004), 255–261.
- [2] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds), Fundamentals of Domination in Graphs, Marcel Dekker, Inc. New York, 1998.
- [3] D. A. Mojdeh and N. Jafari Rad, On an open problem concerning total domination critical graphs, Expo. Math. 25 (2007), 175-179.

Received: December 1, 2007