
Applied Mathematical Sciences, Vol. 2, 2008, no. 42, 2081 - 2094

A New Interior Point Method for Nonlinear

Complementarity Problem

Hassina Grar and A. Krim Keraghel

Department of Mathematics, Sétif University
19000 Sétif, Algeria
has grar@yahoo.fr

a keragheldz@yahoo.fr

Abstract. In this paper, we present a new method of interior point to
solve a class of the nonlinear problem of complementarity inspired from a
study introduced by Censor et al. This method is regarded as reduction from
the variational inequalities problem to a particular case. Under less restrictive
constraints, we are able to generate a sequence of nonnegative elements and we
establish the global convergence of the proposed algorithm. The introduction
of the functions of Bregman allows us to calculate at each iteration two scalars
by solving a suitable system and a nonlinear equation for only one variable.
Some preliminary numerical results indicate that this method is completely
promising.
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1. Introduction

Let us consider the following nonlinear complementarity problem noted
(NCP): Find x ∈ R

n such that

x ≥ 0, F (x) ≥ 0, xTF (x) = 0.(1)

where F is a nonlinear continuous operator from R
n into itself.

The complementarity problem (linear and nonlinear) arises in many cases, the
most obvious one is obtained by taking F (x) = ∇f (x) with f : R

n → R

differentiable function, in which case (1) is the first order Karush Kuhn Tuker

conditions associated to the following problem

{
min f (x)
x ≥ 0

.

In the other hand, (NCP) is considered as special case of variational inequalities
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problem (VIP). This last consists to find x ∈ C such that

〈F (x) , x− x〉 ≥ 0, for all x ∈ C.(2)

where C is a closed convex subset of R
n. It is not difficult to see that (VIP) is

reduced to (NCP) if we take C = R
n
+.

(NCP) has received lot of attention due to its various applications in opera-
tional research, the economic equilibrium models and the engineering design of
technology [ 10,13 ]. Several numerical methods to solve (NCP) are developed,
see [ 9, 11 ].
Among them, a class of the iterative methods based on the theory of maximum
monotone operators and variational inequalities problem.

In this paper, we carried out a detailed study of a new approach of interior
point to solve (NCP). This one is a reduction of a method suggested in [ 4 ]
for a class of (VIP) and it uses the Bregman functions to the particular case
(NCP). The objective of the authors in [ 4 ] is reducing the assumptions of
convergence as well as the calculation of projection used in the algorithm.

Throughout this paper, we assume that solutions sets of (NCP) and (VIP)
denoted by T1 , T2 respectively are nonempty.

We show that if F is continuous and paramonotone, the sequence generated
by the algorithm converges to a solution of (NCP) if T1 is nonempty.

The paper is structured as follows. Some preliminaries of projections mapping
and monotonicity definitions are provided in the first part of section 2. The
second part is devoted for the most significant projection methods and related
to our study that we present in the chronological order of the works. Section 3
treats primarily the new alternative. The key word in all that is the Bregman
functions and their associated distance, which allow us to compute the scalars
in question by more suitable procedure. In the next section, we establish the
convergence analysis of the algorithm. Thus, this approach presents certain
theoretical disadvantages for which we have brought some interesting contri-
butions. Finally, some computational reported in section 5 to demonstrate the
properties and the efficiency of the method.

2.1. Preliminaries

In this section, we summarize some basic properties and related definitions
which be used in the following discussion.
R

n denotes the space of real n-dimensional vectors, and ‖x‖ =
√
xTx the Eu-

clidian norm, where xTy = 〈x, y〉 is the inner product of x, y ∈ R
n.

R
n
+ = {x ∈ R

n : xi ≥ 0, i = 1...n} is the nonnegative orthant and its interior is
R

n
++ = {x ∈ R

n : xi > 0, i = 1...n}. Let C a convex closed subset of R
n, and

PC present the orthogonal projection of R
n on C .

The basic property for the projection operator is:

(x− PC (x))T (y − PC (x)) ≤ 0, for all x ∈ R
n and for all y ∈ C



Nonlinear complementarity problem 2083

For any real constant α > 0, it well known that (VIP) is equivalent to the

following projection equation:

x = PC (x− αF (x))(3)

Definitions. Let F : R
n → R

n,

• F is said to be monotone if

〈F (x) − F (y) , x− y〉 ≥ 0, for all x, y ∈ C.

• F is strongly monotone if there exists a constant μ > 0, such that

〈F (x) − F (y) , x− y〉 ≥ μ ‖x− y‖ , for all x, y ∈ C.

• F is paramonotone if F is monotone and satisfies

〈F (x) − F (y) , x− y〉 = 0 ⇒ F (x) = F (y) .

• F is Lipschitz continuous if there exists L > 0 such that

‖F (x) − F (y)‖ ≤ L ‖x− y‖ , for all x, y ∈ Rn.

2.2. Projection Method :
There is an important class of projection methods known by the extragradient
algorithms to solve (VIP), and which are inspired basically from the optimiza-
tion methods. The classical theory of these methods is insufficient and too
restrictive by its assumptions (strong monotony, the continuity of Lipschitz
. . . ). We will present in what follows, the most famous projection methods
and relative to the new proposed algorithm.

The basic iterative procedure for F strongly monotone and continuous of Lip-
schitz is given by:

xk+1 = PC

(
xk − αF

(
xk

))
, α > 0(4)

This procedure rises directly from the relation (4). The proof is based on the
fact that for α ∈

]
0, 2μ

L2

[
,(where μ,L are the constants of strong monotonicity

and lipschitz continuity respectively ) the mapping PC (I − αF ) is contraction.
Then the generated sequence

{
xk

}
converges to x the fixed point of this map-

ping and which is the unique solution of (VIP), see [2] for more details.
If the assumption of strong monotonicity isn’t satisfied, then the procedure
fails to converge even for choice of αk variable.

In order to overcome this difficulty, Korpolevich has proposed a theoretical
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improvement of the preceding method [15], where the required hypotheses are:
F is Lipschitz continuous and not necessarily strongly monotone. The iterative
formulae associated to this method is:

{
yk = PC

(
xk − αF

(
xk

))
xk+1 = PC

(
xk − αF

(
yk

))(5)

To establish the convergence of Korpolevich algorithm, we must show at first
that for the values of α ∈

]
0, 1

L

[
the vector xk − αF

(
yk

)
is the projection of

xk onto a hyperplane which separates xk from the solutions set T2. Then, the
iteration xk+1 is obtained through an other projection onto C .
The same, if the assumption of Lipschitz continuity is also removed, the de-
creasing of

{∥∥xk − x
∥∥}

, ∀x ∈ T2 is not guaranteed and an adaptive choice of
αk by using procedure search is needed at each iteration.

While basing on this idea, a new version known as modified Korpolevich
method was presented in [14], where F is only monotone and continuous.
The iterative procedure is as follows:

{
yk = PC

(
xk − σkF

(
xk

))
xk+1 = PC

(
xk − λkF

(
yk

))(6)

For the parameter σk is determined by a procedure of multiplier approxima-
tion (backtracking procedure) in such way that the hyperplane Hk normal to
F

(
yk

)
, passes through yk ( thus we can write

Hk =
{
x ∈ R

n/
〈
F

(
yk

)
, x− yk

〉
= 0

}
) , separates xk from T2, and

(
xk − λkF

(
yk

))
is the projection of xk into Hk. From the monotonicity of F
and

(
xk − λkF

(
yk

))
∈ Hk, we assure the separation of xk from T2,

and we find λk =
〈
F

(
yk

)
, xk − yk

〉
/
∥∥F (

yk
)∥∥2

.

Remark 1. The major problem of all these algorithms lies in the computation
of the projections which depends directly of the structure of C .
For the case of the complementarity problem, it is easy to calculate the pro-
jection on C = R

n
+ by using this formulae:

P�n
+
(x) =

{
xi, if xi ≥ 0
0, if xi < 0

, for i = 1, ..., n.

The difficulties which are posed in our case are the strong convergence hy-
potheses of the algorithms, the determination of parameters (αk, σk, and λk)
and the influence of their choice on the numerical behavior of the algorithms.

We present in what follows the correspondent algorithm to the modified Kor-
polevich method.

Algorithm 1.
1. Initialization
k = 0, x0 ∈ R

n
+, ε1 ∈ ]0, 1[ and σmax > 0.
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2. Iterative step
2.1. First optimality criterion: If

∥∥f (
xk

)∥∥ = 0 then stop, xk ∈ T
1 .Otherwise continue.
Calculate yk = P�n

+

(
xk − σmaxF

(
xk

))
.

2.2. Second optimality criterion: If
∥∥yk − xk

∥∥ = 0 then stop, xk ∈ T
1 .Otherwise continue.
2.3. Selection of σk:
If

∥∥f (
yk

)
− f

(
xk

)∥∥ ≤
∥∥yk − xk

∥∥2
/2 (σmax)

2
∥∥f (

xk
)∥∥ , take σk = σmax.

Otherwise continue select σ ∈ ]0, σmax[ such that:

ε1

∥∥yk − xk
∥∥2
/2 (σmax)

2
∥∥f (

xk
)∥∥ ≤ F

(
P�n

+

(
xk − σF

(
xk

))
− F

(
xk

))
≤∥∥yk − xk

∥∥2
/2 (σmax)

2
∥∥f (

xk
)∥∥ .

Take σk = σ, and calculate yk = P�n
+

(
xk − σkF

(
xk

))
.

2.4. Third optimality criterion: If
∥∥f (

yk
)∥∥ = 0 then stop, yk ∈ T

1 .Otherwise continue.
Calculate λk =

〈
F

(
yk

)
, xk − yk

〉
/
∥∥F (

yk
)∥∥2

, and xk+1 = P�n
+

(
xk − λkF

(
yk

))
.

k = k + 1, and return to 2.1.

3. Method of interior point
3.1 Basic elements
We present in this paper, a new interior point method which was introduced
by Censor and al. The principle of this method is the same one of the modified
Korpolevich method, but this time the projections are carried out on hyper-
planes which are much simpler.

Bregman functions
It’s a class of functions introduced by Bregman [3]. These functions and the
associated distances were used in several interesting applications in convex
optimization [5, 6, 7, 8].

Let S be an open and convex subset of R
n and S its closure. We consider

both the following functions:

Dg : S × S → R+ such that Dg (x, y) = g (x) − g (y) − 〈∇g (y) , x− y〉
g is said a Bregman function with zone S denoted g ∈ BS , if the conditions
below hold

B1. g is continuous and strictly convex on S.
B2. g ∈ C2 (S) .
B3. ∀α ∈ R, the level sets L1 (y, α) =

{
x ∈ S Dg (x, y) ≤ α

}
and L2 = {y ∈ S /Dg (x, y) ≤ α} are bounded, for all y ∈ S,and for all x ∈ S
respectively.
B4. If

{
yk

}
⊂ S converges to y∗,then lim

k→∞
Dg

(
y∗, yk

)
= 0.

B5. If
{
xk

}
⊂ S and

{
yk

}
⊂ S are two sequences such that

{
xk

}
is bounded,

lim
k→∞

yk = y∗, lim
k→∞

Dg

(
xk, yk

)
= 0, then lim

k→∞
xk = y∗ .

Bregman distance
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Let g be a Bregman function with zone S, the application given previously,
defines a generalized distance and it has the following properties:

P1. ∀x ∈ S, ∀ y ∈ S, Dg (x, y) � 0.
P2. Dg (x, y) = 0 ⇔ x = y.
P3. ∀p ∈ S, ∀ q, z ∈ S we have:Dg (p, q) + Dg (q, z) − Dg (p, z) = 〈∇g (z) −∇g (q) , p − q〉.
For reasons of convergence, we need an additional condition on g :
B6. ∀ u ∈ Rn, ∃ x ∈ S such that ∇g (x) = u.

Lemma 1. Under the conditions B1 and B2 ,we have this equivalence
B6 ⇔ B7 and B8 where

B7. If
{
xk

}
is sequence which converges to x ∈ ∂S ( boundary of S ), then :〈

∇g
(
xk

)
, u− xk

〉
= +∞, ∀ u ∈ Rn ⇔ lim

k→∞
Dg

(
u, xk

)
= +∞.

B8. The level sets of the function ω are bounded, where
ω : S → R+ and ω (x) = ‖∇g (x)‖ .
Bregman projection

Let H = {x ∈ Rn /atx = β} where 0 �= a ∈ R
n, β ∈ R, an hyperplane of R

n,
and g ∈ BS satisfying B7 with H ∩ S �= ∅. Take y ∈ S, and consider the
following problem: {

min Dg (x, y)
x ∈ H ∩ S(7)

The problem (7) admit a unique solution x which presents the Bregman pro-
jection of y on H noted x = PBH (y).
Moreover, the the solution is completely characterized by using the necessary
and sufficient conditions of Karuch Kuhn Tuker
It exists λ ∈ R such that:{

∇g (x) = ∇g (y) − λ a
〈a, x〉 = β

(8)

There exist several Bregman functions for C = R
n
+, the most important in

the literature are:
1) g (x) =

∑n
i=1 xi ln (xi) the entropy function with the convention such that

0 ln 0 = 0.
2) g (x) =

∑n
i=1 xi ln (xi)− xi.

3) g (x) =
∑n

i=1 (xμ
i − xσ

i ), with μ > 1 and σ ∈ ]0, 1[

We have use the first function because it’s least expansive than the other in
practice.

Consequently, Dg (x, y) =
∑n

i=1 xi ln
(

xi

yi

)
+ yi − xi,

[∇g (x)]i = ln (xi) + 1, ∀i = 1...n, and ∇2g (x) = Diag
(

1
xi

)
, ∀i = 1...n.

3.2. Presentation of the method
In this part, we discuss about the presentation of the new method [4]. It’s
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based on the following results which we summarize here:
Let g ∈ BS satisfying B6 and F : R

n → R
n a continuous mapping , such that

S̄ = C. We define the following functions:

h : S × R∗
+ → S

(x, σ) �→ h (x, σ) = y, where y is a solution of the system below:

∇g (y) = ∇g (x) − σF (x)(9)

ϕ, ϕ̄ : S × R∗
+ → R where

ϕ (x, σ) =

(
1

σ

)
〈F (x) , x− h (x, σ)〉(10)

ϕ (x, σ) =

(
1

σ

)
〈F (h (x, σ)) , x− h (x, σ)〉(11)

and φ: S → R where

φ (x) = F (x)t [∇2g (x)
]−1

F (x)(12)

We have the following properties:

i) Under the assumption B6, h is well defined, because in this case y exists,
unique and belongs to S. Moreover h is continuous and h (x, 0) = x, for all
x ∈ S.

ii) The functions ϕ, ϕ are continuous onto S × R
∗
+, and for x ∈ S, we have

lim
(x,σ)→(x,0)

ϕ (x, σ) = lim
(x,σ)→(x,0)

ϕ (x, σ) = φ (x) ≥ 0.

Being given xk ∈ S such that : F
(
xk

)
�= 0, we obtain yk, xk+1 by resolving

the system below (13-15):

∇g
(
yk

)
= ∇g

(
xk

)
− σkF

(
xk

)
⇔ yk =

(
h

(
xk

)
, σk

)
(13)

∇g
(
xk+1

)
= ∇g

(
xk

)
− λkF

(
yk

)
(14)

〈
F

(
yk

)
, xk+1 − yk

〉
= (1 − αk)

〈
F

(
yk

)
, xk − yk

〉
(15)

where αk ∈ [α̂, 1] and α̂>̀0.

Remark 2. From (8), we remark that yk is not only the Bregman projection
of xkonto a hyperplane of normal vector F

(
xk

)
supposed different from 0.

The computation of λk is simple , owing to fact that we have informations
concerning the hyperplane Hk. It passes through yk, separates xk from T2 and
xk+1 is Bregman projection of xk onto Hk. Consequently, Hk is explicitly given
by this equation

〈
F

(
yk

)
, x− yk

〉
= (1 − αk)

〈
F

(
yk

)
, xk − yk

〉
We write the equations (12-14) in the case of complementarity problem as
follows : (13) ⇔ yk

i = xk
i exp

(
−σkFi

(
xk

))
(14) ⇔ xk+1

i = xk
i exp

(
−λkFi

(
yk

))
(15) is nonlinear equation with λk as an unknown
f (λk) =

∑n
i=1 x

k
iFi

(
yk

)
exp

(
−λkFi

(
yk

))
− (1 − αk)x

k
iFi

(
yk

)
−αky

k
i Fi

(
yk

)
.

The functions ϕ, ϕ, and ψ become
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ϕ
(
xk, σk

)
= 1

σk

∑n
i=1 x

k
iFi

(
xk

) (
1 − exp

(
−σkFi

(
xk

)))
ϕ

(
xk, σk

)
= 1

σk

∑n
i=1 x

k
iFi

(
yk

) (
1 − exp

(
−σkFi

(
xk

)))
.

ψ
(
xk

)
=

∑n
i=1 x

k
i

(
Fi

(
xk

) )2

Optimality criteria
Proposition 1.
1) If F (x) = 0 ⇒ x ∈ T2

2) If x ∈ int (C) and x ∈ T2 ⇒ F (x) = 0. [12]

Unfortunately, the criterion given by 1) proposition 1, does not cover the
possibility where the solution x ∈ ∂S and F

(
xk

)
�= 0. We have been able to

regulate this problem as shows it the following proposition.

Proposition 2. Let x and y be a cluster points respectively for the sequences{
xk

}
and

{
yk

}
defined by the system (13 -15 ) given above.

If F (x) = F (y), then x ∈ T2.
We note that this condition hold under the paramonotonicity of F. We give
the proof of this proposition at end of the analysis.

Now, we give the basic algorithm.
Algorithm 2.
1. Initialization
k = 0, x0 ∈ S, ε1, ε2 >0 such that: ε1 + ε2 < 1.
2. Iterative step:
2.1. First optimality criterion: If

∥∥F (
xk

)∥∥ = 0 then stop, xk ∈ T2.
Otherwise continue.
2.2. Selection of σk:
Choice σmax > 0
Calculate ϕ

(
xk, σmax

)
, ϕ

(
xk, σmax

)
and φ

(
xk

)
If ϕ

(
xk, σmax

)
≥ ε1 max

{
ϕ

(
xk, σmax

)
, φ

(
xk

)}
(16)

we take σk = σmax, otherwise select σ ∈ ]0, σmax[ such that:

ε1 max
{
ϕ

(
xk, σ

)
, φ

(
xk

)}
≤ ϕ

(
xk, σ

)
≤ (1 − ε2) max

{
ϕ

(
xk, σ

)
, φ

(
xk

)}(17)

we take : σk = σ, then calculate : yk = h
(
xk, σk

)
2.3. Second optimality criterion:
If

∥∥F (
xk

)
− F

(
yk

)∥∥ = 0, then stop xk ∈ T2. Otherwise continue

2.4. Bregman projection : solve the following system:{
∇g

(
xk+1

)
= ∇g

(
xk

)
− λkF

(
yk

)
〈
F

(
yk

)
, xk+1 − yk

〉
= (1 − αk)

〈
F

(
yk

)
, xk − yk

〉
where the unknowns are xk+1, λk.
k = k + 1, and return to 2.1.

4. Analysis convegence
Firstly we must show that it exists σk satisfying (17). We have xk ∈ S,
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F
(
xk

)
�= 0, from B1, B2 imply that the matrix ∇2g

(
xk

)
is positive definite.

Then, using (12) we obtain φ
(
xk

)
�= 0.

Consider the following function: ξ (σ) =
ϕ(xk,σ)

max{ϕ(xk,σ),φ(xk)} .

On one hand, by using the second case of σk selection we conclude that
ξ (σmax) < ε1, and from the properties of ϕ, ϕ imply lim

σ→0
ξ (σ) = 1.

In the other hand, the continuity of ξ, ξ (σmax) < 1, and ε1 < 1− ε2 assure the
existence of an interval

[
σ

′
, σ′′] ⊂ ]0, σmax[ such that

∀σ ∈
[
σ

′
, σ

′′]
, ε1 < ξ (σ) < (1 − ε2) .

4.1. Selectionof σk

See [12]. Being given, the hyperplane Hk defined by (15).
If F

(
xk

)
�= 0, we have:

•
〈
F

(
yk

)
, z − yk

〉
− (1 − αk)

〈
F

(
yk

)
, xk − yk

〉
≤ 0,∀z ∈ T2.

•
〈
F

(
yk

)
, xk − yk

〉
− (1 − αk)

〈
F

(
yk

)
, xk − yk

〉
= αk

〈
F

(
yk

)
, xk − yk

〉
> 0.

These last inequalities express the separation of xk from T2 , and they are
satisfied under the assumption

〈
F

(
yk

)
, xk − yk

〉
> 0 which depends directly

from the selection of σk.

First criterion of selection
Let σmax > 0 be a initial value, and F

(
xk

)
�= 0. We have:

(16) ⇔
〈
F

(
yk

)
, xk − yk

〉
� ε1 max

{〈
F

(
xk

)
, xk − yk

〉
, σmax

(
F (x)T [

∇2g (x)
]−1

F (x)
)}

⇔
〈
F

(
yk

)
, xk − yk

〉
> 0.

Since F
(
xk

)
�= 0, xk ∈ S and the matrix ∇2g

(
xk

)
is positive definite.

Then we take σk = σmax, if this criterion isn’t verified, we must select an other
σk ∈ ]0, σmax[ that the existence is entirely assured.

Second criterion of selection
The second criterion is given by the double inequality (17) which guaranteed
the separation and avoid the smallest values for σk.

Before given the principles stages of convergence, we note that the sequence{
Dg

(
z, xk

)}
k
, ∀z ∈ T2 is decreasing under the condition〈

∇g
(
xk

)
−∇g

(
xk+1

)
, z − xk+1

〉
≤ 0, ∀z ∈ T 2. See [12].

Lemma 2. If T2 �= ∅, then
〈
∇g

(
xk

)
−∇g

(
xk+1

)
, z − xk+1

〉
≤ 0, ∀z ∈ T2.

Lemma 3. Let F be a continuous and monotone mapping, then

i) z ∈ T2 ⇔ ∀x ∈ C, 〈F (x) , x− z〉 ≥ 0.
ii) Further more if F is paramonotone, z ∈ T 2 and x ∈ C satisfying
〈F (x̄) , z − x̄〉 = 0, then x̄ is solution of (VIP).
Lemma 4. If the sequence

{
xk

}
is bounded, then

{
yk

}
is bounded.

Lemma 5. The assumption B7 holds if and only if lim
k→∞

D
(
u, xk

)
= ∞, ∀u ∈ S,

and for all sequence
{
xk

}
⊂ S which converges to a point x ∈ ∂S.

For the demonstration of the algorithm convergence, it is enough to prove the
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following results:
1. The sequence

{
xk

}
is well defined and belongs to S.

2. The sequence
{
xk

}
admits a limit x ∈ C.

3. The limit x satisfies the optimality condition.

Indeed, for the first point the iteration yk is well defined (from the definition
of h). The fact that Hk ∩ S �= ∅ (because there exist at least one element
x̂k = yk +(1 − αk)

(
xk − yk

)
which belongs to Hk and S) where the possibility

to applied the Bregman projection. Then xk exists, unique and belongs to S.

The demonstration of second point is based on the following proposition which
rises from lemma 2 and 3.

Proposition 3. If T2 �= ∅, then:
i)

{
xk

}
is bounded.

ii) lim
k→+∞

(
xk+1 − xk

)
= 0.

iii) If x̄ is cluster point for the sequence
{
xk

}
belonging to T2,then lim

k→+∞
xk = x̄.

Proof . i) By using the third property of Dg, taking p = z, q = xk+1, r = xk,
and from lemma 1 we obtain

Dg

(
z, xk+1

)
≤ Dg

(
z, xk

)
−Dg

(
xk+1, xk

)
(18)

Thus, the sequence
{
Dg

(
z, xk

)}
k

, ∀z ∈ T2 is decreasing ∀k � 0.

From the condition B3, we have as consequence
{
xk

}
is bounded.

ii) The sequence
{
Dg

(
z, xk

)}
k

, ∀z ∈ T2 is positive ∀kS � 0, and from (17)

we have 0≤ Dg

(
xk+1, xk

)
≤ Dg

(
z, xk

)
−Dg

(
z, xk+1

)
.

Taking the limit k → +∞, imply lim
k→+∞

Dg

(
xk+1, xk

)
= 0.

Using i) and the condition B5, we prove the result ii).

iii) Let {xjk} be subsequence of
{
xk

}
such that lim

k→+∞
xjk = x̄ ( hence

{
xk

}
is bounded from i)).
Then, from B4, we conclude that lim

k→+∞
Dg (x̄, xjk) = 0.

If x̄ ∈ T2, we have
{
Dg

(
x̄, xk

)}
is a positive decreasing sequence, where

it’s convergent. Further more it admit a subsequence which converges to 0,
then

{
Dg

(
x̄, xk

)}
is also. Finally, the result lim

k→+∞
xk = x̄ rises from B5.

�
The third point of the analysis convergence passes through several proposi-
tions. Consider x ∈ S̄ such that:
1) x̄ = lim

k→+∞
xjk , ( {xjk} is a subsequence of

{
xk

}
, and let x be its limit).

The same for
{
yk

}
, by using lemma 3, then

2) ȳ = lim
k→+∞

yjk , 3) σ̄ = lim
k→+∞

σjk
, 4) ᾱ = lim

k→+∞
αjk

.

As consequence from proposition 3, we have 5) x̄ = lim
k→+∞

xjk+1. �
The proposition below presents the case where the limit x satisfies the first
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optimalty criterion ( 1), proposition 1).

Proposition 4.
i) If there exists x ∈ S satisfying 1) - 5), then 〈F (ȳ) , x̄− ȳ〉 = 0.
ii) If there exists x ∈ S satisfying 1) - 5), then F (x̄) = 0.
Proof . We replace

{
xk

}
and

{
yk

}
by the subsequences {xjk}and {yjk} in the

equation of the hyperplane Hk, we find
〈F (yjk) , xjk+1 − yjk〉 = (1 − αjk

) 〈F (yjk) , xjk − yjk〉 .
Taking the limit k → +∞, and using the fact that F is continuous,we get
〈F (ȳ) , x̄− ȳ〉 = (1 − ᾱ) 〈F (ȳ) , x̄− ȳ〉 .
In addition, we have ᾱ ≥ α̂ > 0, we find the result.
ii) We distinguish two cases for the parameter σ.

First case. (σ bounded away from 0)

Since σ > 0, then we are in first selection criterion of σk which is express by
the relation (15). But, we apply the relation to the subsequences {xjk}, {yjk},
and taking the limit k → +∞, we obtain

0 ≤
(
F (x̄)

t
[∇2g (x̄)]

−1
F (x̄)

)
≤ 1

ε1σjk
〈F (ȳ) , x̄− ȳ〉 .

Using the first result i) and the fact that ∇2g (x̄) is positive definite, we con-

clude
(
F (x̄)t [∇2g (x̄)]

−1
F (x̄)

)
= 0 ⇒ F (x̄) = 0.

Second case. (σ = 0, σ not bounded away from 0)

For this case, we use the second selection criterion of σk given by (16) and
applied for {xjk}and {yjk}. Then, taking the limit (xjk , σjk

) → (x̄, 0) .
From the properties of ϕ and ϕ̄, we obtain φ (x̄) ≤ (1 − ε2) φ (x̄) ,
where F (x̄) = 0. �
The proposition 5 analyzes the case where x∈ ∂S, and F (x̄) �= 0.

Proposition 5. If there exists x ∈ ∂S satisfying 1) - 5), F (x̄) �= 0, and F is

paramonotone, then F (x) = F (y).
Proof . The same, we replace

{
xk

}
and

{
yk

}
by the subsequences {xjk}and

{yjk} in the following relation ε1

〈
F

(
xk

)
, xk − yk

〉
≤

〈
F

(
yk

)
, xk − yk

〉
, which

rises from (13). Taking the limit k → +∞, we find 〈F (x̄) , x̄− ȳ〉 ≤ 1
ε1
〈F (ȳ) , x̄− ȳ〉 .

On one hand, 〈F (x̄) , x̄− ȳ〉 ≤ 1
ε1
〈F (ȳ) , x̄− ȳ〉 = 0.(proposition 4, i)).

On the other hand, 0 = 〈F (ȳ) , x̄− ȳ〉 ≤ 〈F (x̄) , x̄− ȳ〉 (F is monotone).
As consequence, 〈F (x̄) − F (ȳ) , x̄− ȳ〉 = 0

Using the paramonotoncity condition of F, we have the result F (x̄) = F (ȳ) .

�
Before presenting the main theorem in the convergence analysis, we give in
brief the following propositions which enter in the framework of the proof of
proposition 2.

Proposition 6.
i) If the sequence

{
xk

}
is bounded and has not cluster point in S,

then lim
k→+∞

Dg

(
u, xk

)
= +∞, ∀u ∈ S.
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ii) In addition to the preceding condition and lim
k→+∞

(
xk+1 − xk

)
= 0, then

∀u ∈ S, there exists a cluster point x (u) of
{
xk

}
belonging to ∂S such as

〈F (x (u)) , u− x (u)〉 � 0.

Proposition 7. If T2 �= ∅, and
{
xk

}
has no cluster point on S, then it exists

x belonging to ∂S and x is (VIP) solution.

Proof . (Proposition 2)
Using the propositions 5 and 6 to prove that when the sequence

{
xk

}
has no

cluster point in S and all clusters point are in the boundary. Then for each
u ∈ S such that

〈
F

(
x

(
uk

))
, uk − x

(
uk

)〉
� 0. Finally, from proposition 7, we

approach the solution z through points in S, we find a cluster point x such that
〈F (x) , z − x〉 = 0 and so x is (VIP) solution. �
Theorem 1. Let F be a continuous, paramonotone mapping and g a Bregman
function satisfying B6 with zone S = R

n
++. Then, the sequence generated by

the preceding algorithm is well defined and converges if and only if T1 �= ∅ and
its limit x ∈ T1.

Proof . The proof rises from all these propositions. For more details, see [4].

5.Numerical results
See [12]. We will present the whole of the obtaining results from the numer-
ical implementation for the class of complementarity problem known by its
importance. Let us note that for this class class, an adaptation of the basic
algorithm is necessary. We also implemented the algorithm of modified kor-
polevich method, to compare the obtained results. The programs are carried
out in Pascal- Turbo with precision of order ε = 10−7and while taking ε1 = 0.3,
ε2 = 0.5. The relaxation parameter is taken constant αk = α, ∀k � 0. Dur-
ing the test, we have varied the formal parameters σmax, α and x0 to see the
influence of each one on the numerical behavior of the algorithm. We have
proposed the Newton procedure to so solve the nonlinear equation of the un-
known λk.

Example Size Iterations number CPU (s)
Censor Korpolevich m Censor Korpolevich m

1 2 169 736 0.05 0.06
2 3 31 8700 * 0.05 4.68
3 4 37 6127 * 0.06 2.14
4 4 75 84 0.06 0.06
5 6 200 732 0.06 0.11
6 9 8 22179 ** 0.05 21.42
7 10 784 610 0.33 0.22
8 20 44 12117 ** 0.05 62.37

( Table 1)

(*, ** mean that the precision is 10−4,10−3 respectively, for modified Korpole-
vich algorithm.
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6. Conclusion
In general, the behavior of the interior point algorithm for the class (NCP) is
definitely better than the modified Korpolevich algorithm. But, the execution
time increased a little due to the Newton’s procedure for the calculation of λk.
We note the divergence of modified Korpolevich algorithm in the case where
the solution x ∈ ∂S and F (x) �= 0 for the classes nonlinear (NCP). Through
the tests carry out, we have noticed that the values of the parameters σmax, α
vary in an interval ]0, 1]. In particular, we can take for α values larger than the
higher value of this theoretical interval and the results obtained in general are
better. The principal contribution that we have brought for this study is to
introduce the second criterion of optimality. Because if we are limited to use
the first criterion and the only one given by Censor, then the case where the
solution x ∈ ∂S and F (x) �= 0 will not be detected and the algorithm enter
in an infinite cycle. The approach of interior point is considerably promis-
ing for the resolution of (VIP). We need to push this alternative to its higher
improvement level.
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