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Abstract

In this paper, we consider the initial boundary value problems of 1D
diffusion equations. Based on a high order absolutely stable implicit
scheme, we first construct two saul’yev asymmetry iterative schemes,
and then present a class of parallel alternating group explicit iterative
method in two cases. By use of the iterative method, the computation in
the whole domain can be divided into many sub domains. Convergence
analysis for the iterative method is also given. At the end of the paper
the results of numerical experiments are presented.
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1 Introduction

In order to solve AX = F , many finite difference methods have been
presented. Considering the stability and accuracy of explicit schemes and the
computation difficulty of implicit schemes, it is necessary to construct methods
with the advantages of explicit methods and implicit methods, that is, simple
for computation and good stability. Based on the concept of domain splitting,
D. J. Evans presented an AGE method in [1] originally. The AGE method is
used in computing by applying the special combination of several asymmetry
schemes to a group of grid points, and then the numerical solutions at the
group of points can be denoted explicitly. Furthermore, by alternating use of
asymmetry schemes at adherent grid points and different time levels, the AGE
method can lead to the property of unconditional stability. But the original
AGE method has only two order accurate for spatial step. The AGE method
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is soon applied to convection-diffusion equations and hyperbolic equations in
[2,3]. In [4,5], several AGE methods are presented for two-point linear and
non-linear boundary value problems. Based on the concept of AGE method,
a class of domain splitting method of order two accurate for 1D equations is
presented in [6]. We notice that almost all the AGE method have no more
than four order accurate in spatial step.

In this paper we consider the following problem:

⎧⎪⎪⎨⎪⎪⎩
∂u
∂t = a∂2u

∂x2 , 0 ≤ x ≤ 1, 0 ≤ t ≤ T

u(x, 0) = f(x),
u(0, t) = g1(t), u(1, t) = g2(t).

(1)

In section 2, we construct two saul’yev asymmetry iterative schemes based
on an O(τ 3 + h6) order unconditionally stable symmetry implicit scheme in
[7], and then present a class of parallel AGE iterative method. Convergence
analysis for the method is given in section 3. The results of numerical example
are presented at last.

2 The Parallel AGE Iterative Method

The domain Ω : [0, 1]×[0, T ] will be divided into (m×ξ) meshes with spatial

step size h= 1
m in x direction and the time step size τ=T

ξ . Grid points are

denoted by (xj , tn), xj = jh(i = 0, 1, · · ·, m), tn = nτ(n = 0, 1, · · · , T
τ ). The

numerical solution of (1) is denoted by un
j , while the exact solution u(xj , tn).

Let r=aτ
h2 .

We present the implicit finite difference scheme with absolute stability in
[7] for solving (1) as below:

(−24r3−6r2+r)un+1
j−1+(48r3+60r2+28r+3)un+1

j +(−24r3−6r2+r)un+1
j+1 = 48r2un

j−1+6un
j

+48r2un
j+1+(−24r3+6r2+r)un−1

j−1+(48r3−60r2+28r−3)un−1
j +(−24r3+6r2+r)un−1

j+1

(2)

Applying Taylor formula to the scheme at (xj , tn). Considering ∂ku
∂tk

=

ak ∂2ku
∂x2k , we have the truncation error O(τ 3 + h6).

Let Un = (un
1 , un

2 , · · · , un
m−1)

T , a1 = 1
2
(48r3 + 60r2 + 28r + 3), a2 =

1
2
(−24r3 − 6r2 + r), a3 = 1

2
(48r3 − 60r2 + 28r − 3), a4 = 1

2
(−24r3 + 6r2 + r),

then we can denote (2) as KUn+1 = Ẽn.

Here Ẽn = E1U
n + E2U

n−1 + [(24r3 + 6r2 − r)un+1
0 + 48r2un

0 + (−24r3 +
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6r2 + r)un−1
0 , 0, · · · , 0, (24r3 +6r2− r)un+1

m +48r2un
m +(−24r3 +6r2 + r)un−1

m ]T .

K =

⎛⎜⎜⎜⎜⎜⎜⎝
2a1 2a2

2a2 2a1 2a2

... ... ...
2a2 2a1 2a2

2a2 2a1

⎞⎟⎟⎟⎟⎟⎟⎠

E1 =

⎛⎜⎜⎜⎜⎜⎜⎝
6 48r2

48r2 6 48r2

... ... ...
48r2 6 48r2

48r2 6

⎞⎟⎟⎟⎟⎟⎟⎠ , E2 =

⎛⎜⎜⎜⎜⎜⎜⎝
2a3 2a4

2a4 2a3 2a4

... ... ...
2a4 2a3 2a4

2a4 2a3

⎞⎟⎟⎟⎟⎟⎟⎠
K, E1, E2 are all (m − 1) × (m − 1) matrices.

Let k denotes the iterative number, Un(k) = (u
n(k)
1 , u

n(k)
2 , · · · , un(k)

m−1)
T . Then

based on (2) we present two saul’yev asymmetry iterative schemes as follows:

a1u
n+1(k+1)
j + 2a2u

n+1(k+1)
j+1 = −2a2u

n+1(k)
j−1 − a1u

n+1(k)
j + Ẽn (3)

2a2u
n+1(k+1)
j+1 + a1u

n+1(k+1)
j = −a1u

n+1(k)
j − 2a2u

n+1(k)
j−1 + Ẽn (4)

If we apply (3)-(4) to (j, n + 1), (j + 1, n + 1), it follows u
n+1(k+1)
j , u

n+1(k+1)
j+1

can be solved explicitly as one ”two point group” as below:

(
U

n+1(k+1)
j

U
n+1(k+1)
j+1

)
=

(
a1 2a2

2a2 a1

)−1 ( −2a2U
n+1(k)
j−1 − a1U

n+1(k)
j + Ẽn

−a1U
n+1(k)
j − 2a2U

n+1(k)
j−1 + Ẽn

)
(5)

Let Un+1(k) = (u
n+1(k)
1 , u

n+1(k)
2 , · · · , un+1(k)

m−1 )T , we construct the AGE itera-
tive method in two cases as follows:

Case 1: Let m − 1 = 2s, s is an integer. First in order to get the solution
of Un+1(k+ 1

2
) with Un+1(k) known, we divide all the (m − 1) inner grid points

into
(m − 1)

2 groups. Two grid points are included in each group, named

(j, n), (j, n + 1), and (5) is applied to get the solution of u
n+1(k+1)
j , u

n+1(k+1)
j+1 .

Second in order to get the solution of Un+1(k+1) with Un+1(k+ 1
2
) known, we

divide all the grid points into
(m + 1)

2 groups. (4) and (3) are used to solve

u
n+1(k+1)
1 , u

n+1(k+1)
m−1 respectively. (5) is used to solve (u

n+1(k+1)
j , u

n+1(k+1)
j+1 ), j =

2p(p = 1, 2, · · · , m−3
2

).
By alternating use of the asymmetry schemes (3)-(4) the computation in

the whole domain can be divided into many sub-domains. So the method has
the obvious property of parallelism.
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We denote the AGE iterative method I as follows:{
(θI + H1)U

n+1(k+ 1
2
) = (θI − H2)U

n+1(k) + Ẽn

(θI + H2)U
n+1(k+1) = (θI − H1)U

n+1(k+ 1
2
) + Ẽn

k = 0, 1 · · · (6)

Here θ is an iterative parameter.

H1 = diag(H11, H11, · · · , H11, H11)(m−1)×(m−1), H2 = diag(a1, H11, · · · , H11, a1)(m−1)×(m−1)

H11 =

(
a1 2a2

2a2 a1

)
Case 2: Let m − 1 = 2s + 1, s is an integer. First in order to get the

solution of Un+1(k+ 1
2
) with Un+1(k) known, we divide all the (m− 1) inner grid

points into s+1 groups. (3) is used to solve uk+1
m−1,j+1, while (5) is used to solve

(u
n+1(k+1)
j , u

n+1(k+1)
j+1 ), j = 2p − 1(p = 1, 2, · · · , m−2

2
).

Second in order to get the solution of Un+1(k+1) with Un+1(k+ 1
2
) known, we

still divide all the inner grid points into s+1 groups. (4) is used to solve uk+1
1,j+1,

while (5) is used to solve (u
n+1(k+1)
j , u

n+1(k+1)
j+1 ), j = 2p(p = 1, 2, · · · , m−2

2
).

Then we obtain the alternating group iterative method II :

{
(θI + H̃1)U

n+1(k+ 1
2
) = (θI − H̃2)U

n+1(k) + Ẽn

(θI + H̃2)U
n+1(k+1) = (θI − H̃1)U

n+1(k+ 1
2
) + Ẽn

k = 0, 1 · · · (7)

H̃1 = diag(H11, H11, · · · , H11, a1)(m−1)×(m−1), H2 = diag(a1, H11, · · · , H11, H11)(m−1)×(m−1)

3 Convergence Analysis For The AGE Method

Lemma 1 Let θ >0, and G + GT is nonnegative, then (θI + G)−1exists, and{ ‖(θI + G)−1‖ 2 ≤ θ−1

‖(θI − G)(θI + G)−1‖2 ≤ 1
(8)

From the construction of the matrices we can see that H1, H2, (H1 +
HT

1 ), (H2 + HT
2 ) are all nonnegative matrices. Then we have

‖(θI − H1)(θI + H1)
−1‖2 ≤ 1, ‖(θI − H2)(θI + H2)

−1‖2 ≤ 1

From (6), we can obtain Un+1(k+1) = HUn+1(k) + (θI + H2)
−1[(θI − H1)(θI +

H1)
−1Ẽn + Ẽn]. Here H = (θI + H2)

−1(θI − H1)(θI + H1)
−1(θI − H2) is the

growth matrix.
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Let H̃ = (θI+H2)H(θI+H2)
−1 = (θI−H1)(θI+H1)

−1(θI−H2)(θI+H2)
−1,

then ρ(H) = ρ(H̃) ≤ ‖H̃‖2 ≤ 1, which shows the AGEI method given by (6)
is convergent. Then we have:

Theorem 1 The AGE iterative method I given by (6) is convergent.
Analogously we have:

Theorem 2 The AGE iterative method II given by (7) is also convergent.

4 Numerical Experiments

We consider the following example:⎧⎪⎪⎨⎪⎪⎩
∂u
∂t = ∂2u

∂x2 , 0 ≤ x ≤ 1, 0 ≤ t ≤ T

u(x, 0) = sinπx,
u(0, t) = 0, u(1, t) = 0.

(9)

The exact solution for the problem is u(x, t) = e−π2tsinπx. Let ||E1||∞
denote maximum absolute error, while ||E2||∞ denote maximum relevant error.
||E1||∞ = |un

i − u(xi, tn)|, ||E2||∞ = 100× |un
i − u(xi, tn)/u(xi, tn)|. Let θ = 1.

In order to verify the AGEI method, we use the iterative error 1 × 10−10 to
control the process of iterativeness, and the results of numerical experiments
are listed in the following tables:

Table 1: The numerical results at m = 17, τ = 10−4

t = 100τ t = 500τ t = 1000τ t = 5000τ
||E1||∞ 8.909 ×10−4 8.072 ×10−4 3.671 ×10−4 7.926 ×10−6

||E2||∞ 9.875 ×10−2 9.876 ×10−2 9.891 ×10−2 11.06 ×10−2

average iterative times 6.93 6.965 6.774 5.769

Table 2: The numerical results at m = 17, τ = 5 × 10−5

t = 100τ t = 500τ t = 1000τ t = 5000τ
||E1||∞ 4.679 ×10−4 3.842 ×10−4 3.003 ×10−4 4.366 ×10−5

||E2||∞ 4.936 ×10−2 4.938 ×10−2 4.941 ×10−2 5.171 ×10−2

average iterative times 5.94 5.988 5.994 5.324

5 Conclusions

From the results of table 1-2 we can see that the numerical solution by the
iterative method presented in this paper can fast converge to the exact solution
with high accurate. On the other hand, considering the whole domain can be
divided into many sub-domains in computation, the AGE iterative method is
suitable for parallel computation obviously.
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