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Abstract

In this paper, we present a four order unconditionally stable implicit
scheme for hyperbolic equations. Based on the scheme a class of par-
allel alternating group explicit (AGE) iterative method is derived, and
convergence analysis is given. Results of numerical experiments show
the iterative method can fast converge to the exact solution.
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1 Introduction

With the development of parallel computer many scientists payed much
attention to the finite difference methods with the property of parallelism. D. J.
Evans presented an AGE method in [1] originally. The AGE method is used in
computing by applying the special combination of several asymmetry schemes
to a group of grid points, and then the numerical solutions at the group of
points can be denoted explicitly. Furthermore, by alternating use of asymmetry
schemes at adherent grid points and different time levels, the AGE method can
lead to the property of unconditional stability. But the original AGE method
has only two order accurate for spatial step. The AGE method is soon applied
to convection-diffusion equations and hyperbolic equations in [2,3]. In [4-5],
Several AGE methods are given for two-point linear and non-linear boundary
value problems. N. Bildik applied the concept of AGE method to poisson
equations originally in [6], but the method has also only two order accurate.
To our knowledge AGE methods for hyperbolic equations have scarcely been
presented.

In this paper, we will consider the initial boundary value problem of 1D
hyperbolic equations, and organize the rest of this paper as follows:



1382 Qinghua Feng

In section 2, we present a four order accurate unconditionally stable im-
plicit scheme for hyperbolic equations. Based on the scheme we present two
saul’yev asymmetry schemes, and construct a class of parallel AGE iterative
method. Convergence analysis for the AGE iterative methods is given in sec-
tion 3. Comparison between the method and the original AGE method in [3]
is presented at the end of the paper.

2 The Four Order AGE Iterative Method

We consider the following initial boundary value problem of 1D hyperbolic
equations: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂2u
∂t2

= a2 ∂2u
∂x2 , 0 ≤ x ≤ 1, 0 ≤ t ≤ T

u(x, 0) = f(x), 0 ≤ x ≤ 1
∂u(x, 0)

∂t
= φ(x), 0 ≤ x ≤ 1

u(0, t) = e1(t), u(1, t) = e2(t).

(1)

The domain Ω : [0, 1] × [0, T ] will be divided into (m × N) meshes with

spatial step size h= 1
m in x direction and the time step size τ= T

N . Grid

points are denoted by (xi, tn) or (i, n), xi = ih(i = 0, 1, · · ·, m), tn = nτ(n =

0, 1, · · · , T
τ ). The numerical solution of (1) is denoted by un

i , while the exact

solution u(xi, tn). Let r = a2 τ 2

h2 .

We present an absolutely stable implicit finite difference scheme with ac-
curate of order O(τ 2 + h4) for solving (1) as below:

(1 − 6r)un+1
i−1 + (10 + 12r)un+1

i + (1 − 6r)un+1
i+1 =

2un
i−1 + 20un

i + 2un
i+1 − (1 − 6r)un−1

i−1 − (10 + 12r)un−1
i − (1 − 6r)un−1

i+1 (2)

Let Un = (un
1 , u

n
2 , · · · , un

m−1)
T , then we rewrite (3) as: KUn+1 = En.

Here En = E1U
n + E2U

n−1 + E3.
E3 = [−2un

0 − (1− 6r)un−1
0 − (1− 6r)un+1

0 , 0, · · · , 0,−2un
m − (1− 6r)un−1

m −
(1 − 6r)un+1

m ]T .

K =

⎛⎜⎜⎜⎜⎜⎜⎝
10 + 12r 1 − 6r
1 − 6r 10 + 12r 1 − 6r

... ... ...
1 − 6r 10 + 12r 1 − 6r

1 − 6r 10 + 12r

⎞⎟⎟⎟⎟⎟⎟⎠ , E1 =

⎛⎜⎜⎜⎜⎜⎜⎝
20 2
2 20 2

... ... ...
2 20 2

2 20

⎞⎟⎟⎟⎟⎟⎟⎠

E2 =

⎛⎜⎜⎜⎜⎜⎜⎝
−10 − 12r −1 + 6r
−1 + 6r −10 − 12r −1 + 6r

... ... ...
−1 + 6r −10 − 12r −1 + 6r

−1 + 6r −10 − 12r

⎞⎟⎟⎟⎟⎟⎟⎠
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K, E1, E2 are all (m − 1) × (m − 1) matrices.
In order to solve Un+1 with Un and Un−1 known, we will try to construct

an AGE iterative method so as to avoid solving an implicit equation set.
We present two saul’yev asymmetry iterative schemes as follows:

(ρ+5+6r)u
n+1(k+ 1

2
)

i +(1−6r)u
n+1(k+ 1

2
)

i+1 = −(1−6r)u
n+1(k)
i−1 +ρ−(5+6r)u

n+1(k)
i +En

i

(3)

(1−6r)u
n+1(k+ 1

2
)

i−1 +(ρ+5+6r)u
n+1(k+ 1

2
)

i = ρ−(5+6r)u
n+1(k)
i −(1−6r)u

n+1(k)
i+1 +En

i

(4)
Here En

i is known. Based on the two schemes, we construct three basic
computation groups:

”κ1”group: two grid points are involved, and the following two iterative
schemes are used respectively. Let Ũn

i = (un
i , un

i+1)
T , Ũn

i(k) = (u
n(k)
i , u

n(k)
i+1 )T .

Then the numerical solution of Ũn+1
i(k+1) at grid nodes (i,n+1), (i+1,n+1) can

be obtained explicitly as below:

Ũn+1
i(k+1) =

(
5 + 6r 1 − 6r
1 − 6r 5 + 6r

)−1 (
ρ − 5 − 6r −1 + 6r
−1 + 6r ρ − 5 − 6r

)
Ũn+1

i(k) + En
i (5)

”κ2”group: one inner point (m-1,n+1) is involved, and (3) is used.
”κ3”group: one inner point (1,n+1) is involved, and (4) is used.

Let Un+1
k = (u

n+1(k)
1 , u

n+1(k)
2 , · · · , un+1(k)

m−1 )T , then the alternating group iter-
ative method will be constructed as follows:

Let m − 1 = 2s, s is an integer. First in order to get the solution of Un+1
k+ 1

2

with Un+1
k known, we divide all the (m − 1) inner grid points into s groups.

Two grid points are included in each group, named (i, n), (i + 1, n + 1), and

(5) is applied to get the solution of u
n+1(k+1)
i , u

n+1(k+1)
i+1 .

Second in order to get the solution of Un+1
k+1 with Un+1

k+ 1
2

known, we di-

vide all the grid points into s + 1 groups. (4) and (3) are used to solve

u
n+1(k+1)
1 , u

n+1(k+1)
m−1 respectively. (5) is used to solve (u

n+1(k+1)
i , u

n+1(k+1)
i+1 ), i =

2p(p = 1, 2, · · · , m−3
2

).
By alternating use of the asymmetry schemes (3)-(4) the computation in

the whole domain can be divided into many sub-domains. So the method has
the obvious property of parallelism.

We denote the AGE iterative method I as follows:⎧⎨⎩ (ρI + H1)U
n+1
k+ 1

2

= (ρI − H2)U
n+1
k + En

(ρI + H2)U
n+1
k+1 = (ρI − H1)U

n+1
k+ 1

2

+ En k = 0, 1, · · · (6)

Here En, k is the iterative number, ρ is the iterative parameter.

H1 = diag(H11, · · · , H11)(m−1)×(m−1), H2 = diag(H21, H11, · · · , H11, H21)(m−1)×(m−1)
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H11 =

(
5 + 6r 1 − 6r
1 − 6r 5 + 6r

)
, H21 = 5 + 6r.

3 Convergence Analysis

Lemma 1 Let θ >0, and G + GT is nonnegative, then (θI + G)−1exists, and

{ ‖(θI + G)−1‖ 2 ≤ θ−1

‖(θI − G)(θI + G)−1‖2 ≤ 1
(8)

We can see that H1, H2, (H1+HT
1 ), (H2+HT

2 ) are all nonnegative matrices.
Then we have ‖(θI−H1)(θI+H1)

−1‖2 ≤ 1, ‖(θI−H2)(θI+H2)
−1‖2 ≤ 1. From

(6), we can obtain Un+1
k+1 = HUn+1

k +(ρI+H2)
−1[(ρI−H1)(ρI+H1)

−1En+En].
here H = (ρI + H2)

−1(ρI − H1)(ρI + H1)
−1(ρI − H2) is the growth matrix.

Let H̃ = (ρI+H2)H(ρI+H2)
−1 = (ρI−H1)(ρI+H1)

−1(ρI−H2)(ρI+H2)
−1,

then ρ(H) = ρ(H̃) ≤ ‖H̃‖2 ≤ 1, which shows the AGEI method given by (6)
is convergent. Then we have:

Theorem 1 The alternating group iterative method I is convergent.

4 Numerical Experiments

We consider the following problems:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂2u
∂t2

= ∂2u
∂x2 , 0 ≤ x ≤ 1, 0 ≤ t ≤ T

u(x, 0) = 0,
∂u(x, 0)

∂t = sin(πx), 0 ≤ x ≤ 1

u(0, t) = 0, u(1, t) = 0.

(9)

The exact solution of (9) is denoted as below:

u(x, t) = sinπtsin(πx)

Let ||E1||∞ = max|un
i −u(xi, tn)|, ||E2||∞ = 100×max|(un

i −u(xi, tn))/u(xi, tn)|, i =
1, 2, · · · , m − 1. We use the iterative error 1 × 10−10 to control the process of
iterativeness. Then we compare the numerical results of the presented AGE
iterative method in this paper with the method from [3] and the results from
the implicit scheme (3) in table 1 . Let t1/t2 denote the ratio of running time
between the AGE method and the implicit scheme (3).



AGE method for hyperbolic equations 1385

Table 1: Results of comparison at m = 17, τ = 10−3, ρ = 1

t = 100τ t = 200τ t = 500τ
average iterative times 50.49 50.54 48.68

||E1||∞ 2.978 ×10−4 4.683 ×10−4 2.475 ×10−5

||E1||∞[3] 3.104 ×10−2 1.243 ×10−2 7.638 ×10−3

||E2||∞ 9.677 ×10−2 4.336 ×10−2 2.527 ×10−3

||E2||∞[3] 4.258 9.491 ×10−1 6.573 ×10−1

t1/t2 0.246 0.253 0.261

From the results of table 1 we can see that the numerical solution for the
AGE method can fast converge to the exact solution, and is of higher accuracy
than the original AGE method in [3], which accords to convergence analysis
in section 5. Furthermore, for its intrinsic parallelism, the AGE method can
shorten the running computing time in comparison with the fully implicit
scheme (2).
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