
Applied Mathematical Sciences, Vol. 3, 2009, no. 28, 1387 - 1392

An Alternating Group Iterative Method

for Schrodinger Equations

Qinghua Feng1 and Wenqia Wang2

1School of Science, Shandong University of Technology
Zibo, Shandong, 255049, People’s Republic of China

fengqinghua@sdut.edu.cn

2School of Mathematics, Shandong University
Jinan, Shandong, 250100,People’s Republic of China

Abstract

Based on four saul’yev asymmetry iterative schemes we construct
a class of alternating group iterative method with intrinsic parallelism
for schrodinger equations. The method is verified to be convergent.
Results of the numerical experiments show that the method is of higher
accuracy.
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1 Introduction

In scientific and engineering computing, we usually need to solve large
equation set by numerical methods. Considering the stability and accuracy
of explicit schemes and the computation difficulty of implicit schemes, it is
necessary to construct methods with the advantages of explicit methods and
implicit methods, that is, simple for computation and good stability. Based
on the concept of domain decomposition, D. J. Evans presented a class of
AGE method in [1], which has the advantages of unconditional stability and
parallelism. The AGE method is soon applied to convection-diffusion equations
and hyperbolic equations in [2,3]. In [4-5], AGE methods are applied for two-
point linear and non-linear boundary value problems.

In this paper, we will consider the following initial boundary value problem
of schrodinger equations:
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⎧⎪⎪⎨⎪⎪⎩
∂u
∂t

= i∂
2u

∂x2 , 0 ≤ x ≤ 1, 0 ≤ t ≤ T

u(x, 0) = f(x),
u(0, t) = g1(t), u(1, t) = g2(t).

(1)

Many finite difference methods on schrodinger equations have been presented[6-
8], but to our knowledge AGE methods for schrodinger equations have scarcely
been presented.

We organize the rest of this paper as follows:
In section 2, we present a O(τ 2+h4) order unconditionally stable symmetry

six-point implicit scheme for solving (1) at first. Based on the scheme we
present a group of saul’yev asymmetry iterative schemes, and then a class
of alternating group explicit iterative method is constructed. Convergence
analysis is given in section 3. In order to verify the method, results of numerical
example are presented at the end of the paper.

2 The Alternating Group Iterative Method

The domain Ω : [0, 1] × [0, T ] will be divided into (m × N) meshes with

spatial step size h= 1
m in x direction and the time step size τ= T

N . Grid

points are denoted by (xi, tn) or (i, n), xi = ih(i = 0, 1, · · ·, m), tn = nτ(n =

0, 1, · · · , T
τ ). The numerical solution of (1) is denoted by un

i , while the exact
solution u(xi, tn). Let r = τ

h2 .
We present an implicit unconditionally stable finite difference scheme with

accurate of order O(τ 2 + h4) for solving (1) as below:

(1−6ri)un+1
i−1 +(10+12ri)un+1

i +(1−6ri)un+1
i+1 = (1+6ri)un

i−1+(10−12ri)un
i +(1+6ri)un

i+1

(2)
Let En

i = (1 + 6ri)un
i−1 + (10 − 12i)un

i + (1 + 6ri)un
i+1, a1 = 5 + 6ri, a2 =

1
2
(1 − 6ri). Then (2) can be rewritten as:

2a2u
n+1
i−1 + 2a1u

n+1
i + 2a2u

n+1
i+1 = En

i (3)

In order to get the numerical solution of (n+1)-th time level with the
solution of n-th time level known, we will present four asymmetry iterative
schemes. k denotes the iterative number.

(ρ+a1)u
n+1(k+1)
i +a2u

n+1(k+1)
i+1 = −2a2u

n+1(k)
i−1 +(ρ−a1)u

n+1(k)
i −a2u

n+1(k)
i+1 +En

i

(4)

a2u
n+1(k+1)
i−1 +(ρ+a1)u

n+1(k+1)
i +2a2u

n+1(k+1)
i+1 = −a2u

n+1(k)
i−1 +(ρ−a1)u

n+1(k)
i +En

i

(5)

2a2u
n+1(k+1)
i−1 +(ρ+a1)u

n+1(k+1)
i +a2u

n+1(k+1)
i+1 = (ρ−a1)u

n+1(k)
i −a2u

n+1(k)
i+1 +En

i

(6)
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a2u
n+1(k+1)
i−1 +(ρ+a1)u

n+1(k+1)
i = −a2u

n+1(k)
i−1 +(ρ−a1)u

n+1(k)
i −2a2u

n+1(k)
i+1 +En

i

(7)
Considering the implicit scheme (3) costs computation time, we try to di-

vide the computation in all the whole domain into many sub-domains so as to
fulfill the parallelism. Based on (4)-(7), we construct three basic computing
point groups:
”κ1”group: four grid points are involved, and (4), (5), (6), (7) are used respec-

tively. Let U
n+1(k+1)
i = (u

n+1(k+1)
i , u

n+1(k+1)
i+1 , u

n+1(k+1)
i+2 , u

n+1(k+1)
i+3 )T , Then we

have
(ρI + A1)U

n+1(k+1)
i = (ρI − B1)U

n+1(k)
i + Ên

i (8)

here Ên
i = (−2a2u

n+1(k)
i−1 + En

i , En
i , En

i ,−2a2u
n+1(k)
i+4 + En

i )T ,

A1 =

⎛⎜⎜⎜⎝
a1 a2 0 0
a2 a1 2a2 0
0 2a2 a1 a2

0 0 a2 a1

⎞⎟⎟⎟⎠ , B1 =

⎛⎜⎜⎜⎝
a1 a2 0 0
a2 a1 0 0
0 0 a1 a2

0 0 a2 a1

⎞⎟⎟⎟⎠ .

Then the numerical solution u
n+1(k+1)
i , u

n+1(k+1)
i+1 , u

n+1(k+1)
i+2 , u

n+1(k+1)
i+3 can

be obtained in ”κ1” group as below:

U
n+1(k+1)
i = (ρI + A1)

−1[(ρI − B1)U
n+1(k)
i + Ẽn

i ] (9)

”κ2”group: two inner points are involved, and (4), (5) are used respectively.

Let U
n+1(k+1)
i = (u

n+1(k+1)
i , u

n+1(k+1)
i+1 )T , then we have

(ρI + A2)U
n+1(k+1)
i = (ρI − B2)U

n+1(k+1)
i + E

n
i (10)

here E
n
i = (−2a2u

n+1(k)
i−1 + En

i ,−2a2u
n+1(k+1)
i+2 + En

i )T ,

A2 =

(
a1 a2

a2 a1

)
, B2 = A2.

If we apply κ2 group to the right two inner points (m-2,n+1),(m-1,n+1),

then the solution of u
n+1(k+1)
m−1 , u

n+1(k+1)
m−1 can be denoted as below:

U
n+1(k+1)

m−2 = (ρI + A2)
−1[(ρI − B2)U

n+1(k)

i + E
n

i ]. (11)

”κ3”group: two inner points are involved, and (6), (7) are used respectively.

Let Ũ
n+1(k+1)
i = (u

n+1(k+1)
i , u

n+1(k+1)
i+1 )T , then we have

(ρI + A3)Ũ
n+1(k+1)
i = (ρI − B3)Ũ

n+1(k+1)
i + Ẽn

i (12)

here Ẽn
i = (−2a2u

n+1(k+1)
i−1 + En

i ,−2a2u
n+1(k)
i+2 + En

i )T ,

A3 = A2, B3 = B2
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Thus we have:

Ũn+1
i = (ρI + A3)

−1[(ρI − B3)B3Ũ
n
i + Ẽn

i ] (13)

Let Un+1(k) = (u
n+1(k)
1 , u

n+1(k)
2 , · · · , un+1(k)

m−1 )T , we construct the AGE itera-
tive method in two cases as follows:

Case 1: Let m−1 = 4s, s is an integer. First in order to get the solution of
Un+1(k+ 1

2
) with Un+1(k) known, we divide all the (m− 1) inner grid points into

s groups. Four grid points are included in each group, named (i, n + 1), (i +
1, n + 1), (i + 2, n + 1), (i + 3, n + 1), and (9) is applied to get the solution of

u
n+1(k+1)
i , u

n+1(k+1)
i+1 , u

n+1(k+1)
i+2 , u

n+1(k+1)
i+3 , i = 4p + 1(p = 0, 1, · · · , m−5

4
).

Second in order to get the solution of Un+1(k+1) with Un+1(k+ 1
2
) known, we

divide all the grid points into s+1 groups. (13) is used to solve u
n+1(k+1)
1 , u

n+1(k+1)
2 ,

while (11) is used to solve u
n+1(k+1)
m−2 , u

n+1(k+1)
m−1 . (9) is used to solve (u

n+1(k+1)
i , u

n+1(k+1)
i+1

, u
n+1(k+1)
i+2 , u

n+1(k+1)
i+3 ), i = 4p + 3(p = 0, 1, · · · , m−9

4
).

By alternating use of the asymmetry schemes (9),(11),(13), the compu-
tation in the whole domain can be divided into many sub-domains. So the
method has the obvious property of parallelism.

We denote the AGE iterative method as follows:{
(ρI + A)Un+1(k+ 1

2
) = (ρI − B)Un+1(k) + En

(ρI + B)Un+1(k+1) = (ρI − A)Un+1(k+ 1
2
) + En

k = 0, 1 · · · (14)

Here ρ is an iterative parameter. En is known vectors relevant to the solution
of n-th time level.

A = diag(A1, · · · , A1)(m−1)×(m−1), B = diag(B2, B̂1, · · · , B̂1, B3)(m−1)×(m−1), B̂1 = A1.

Case 2: Let m−1 = 4s+2, s is an integer. First in order to get the solution
of Un+1(k+ 1

2
) with Un+1(k) known, we divide all the (m − 1) inner grid points

into s + 1 groups. (11) is used to solve un+1
m−2, u

n+1
m−1, while the left 4s inner grid

points are divided into s κ1 groups, and (9) is applied to get the solution of

u
n+1(k+1)
i , u

n+1(k+1)
i+1 , u

n+1(k+1)
i+2 , u

n+1(k+1)
i+3 , i = 4p + 1(p = 0, 1, · · · , m−7

4
).

Second in order to get the solution of Un+1(k+1) with Un+1(k+ 1
2
) known, we

still divide all the inner grid points into s + 1 groups. (13) is used to solve

u
n+1(k+1)
1 , u

n+1(k+1)
2 , while (9) is used to solve (u

n+1(k+1)
i

, u
n+1(k+1)
i+1 , u

n+1(k+1)
i+2 , u

n+1(k+1)
i+3 ), i = 4p + 3(p = 0, 1, · · · , m−7

4
).

Then we obtain the alternating group iterative method II :{
(ρI + Ã)Un+1(k+ 1

2
) = (ρI − B̃)Un+1(k) + En

(ρI + B̃)Un+1(k+1) = (ρI − Ã)Un+1(k+ 1
2
) + En

k = 0, 1 · · · (15)

Here

Ã = diag(A1, A1, · · · , A1, A2)(m−1)×(m−1), B̃ = diag(B2, B̂1, · · · , B̂1, B1)(m−1)×(m−1).
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3 Convergence Analysis For The Group Iter-

ative Method

Lemma 1 Let ρ >0, and G + GT is nonnegative, then (ρI + G)−1exists, and{ ‖(ρI + G)−1‖ 2 ≤ ρ−1

‖(ρI − G)(ρI + G)−1‖2 ≤ 1
(16)

From the construction of the matrices we can see that A, B, (A+AT ), (B+
BT ) are all nonnegative matrices. Then we have

‖(ρI − A)(ρI + A)−1‖2 ≤ 1, ‖(ρI − B)(ρI + B)−1‖2 ≤ 1

From (6), we can obtain Un+1(k+1) = HUn+1(k) + (ρI + B)−1[(ρI − A)(ρI +
A)−1En +En]. Here H = (ρI +B)−1(ρI −A)(ρI +A)−1(ρI −B) is the growth
matrix.

Let H̃ = (ρI + B)H(ρI + B)−1 = (ρI − A)(ρI + A)−1(ρI − B)(ρI + B)−1,
then ρ(H) = ρ(H̃) ≤ ‖H̃‖2 ≤ 1, which shows the AGEI method given by (6)
is convergent. Then we have:

Theorem 1 The alternating group iterative method I denoted by (14)
is convergent.

Analogously we have:

Theorem 1 The alternating group iterative method II denoted by (15)
is also convergent.

4 Numerical Experiments

We consider the following problem:⎧⎪⎪⎨⎪⎪⎩
∂u
∂t

= i∂
2u

∂x2 , 0 ≤ x ≤ 1, 0 ≤ t ≤ T

u(x, 0) = ei2πx,
u(0, t) = e−it, u(1, t) = e−it.

(17)

The exact solution of (17) is denoted as below:

u(x, t) = ei(2πx−4π2t)

Let A.E=|un
i − u(xi, tn)| and P.E=100 × |un

i − u(xi, tn)|
u(xi, tn)

denote maximum

absolute error and relevant error of the presented method in this paper respec-
tively. We present the numerical results in table 1:
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Table 1: numerical results at m = 25

τ = 10−3 t = 100τ t = 200τ t = 500τ t = 1000τ
A.E. 4.188 ×10−4 4.418 ×10−4 1.671 ×10−4 7.928 ×10−5

P.E. 6.190 ×10−2 4.678 ×10−2 2.416 ×10−2 9.273 ×10−3

τ = 10−4 t = 100τ t = 200τ t = 500τ t = 1000τ
A.E. 5.777 ×10−5 2.711 ×10−5 7.351 ×10−5 4.385 ×10−6

P.E. 5.902 ×10−3 2.746 ×10−3 7.524 ×10−3 4.455 ×10−4

τ = 10−5 t = 10000τ t = 20000τ t = 50000τ t = 100000τ
A.E. 7.884 ×10−6 2.686 ×10−5 2.831 ×10−5 5.012 ×10−5

P.E. 1.447 ×10−3 3.031 ×10−3 5.368 ×10−3 5.784 ×10−3

From the results of table 1 we can see that the method is of high accuracy.
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