A Remark on Hadamard's Inequality

Zoran D. Mitrović

Faculty of Electrical Engineering
University of Banja Luka, 78000 Banja Luka, Patre
Bosnia and Herzegovina
zmitrovic@etfbl.net

Abstract. In this paper we establish some inequalities by using a fairly elementary analysis. As corollary we obtain the well known Hadamard's inequality.

Mathematics Subject Classification: 26D15, 26A51

Keywords: Hadamard's inequality, Convexity

1. Introduction

The following inequality, see for example [1-7].

$$\frac{1}{x_2 - x_1} \int_{x_1}^{x_2} f(x) dx \le \frac{f(x_1) + f(x_2)}{2},$$

which holds for convex function $f:(a,b)\to\mathbb{R}$ and $a< x_1< x_2< b$, is known in the literature as Hadamard's inequality. This inequality has been generalized and applied in various directions, see for example [1-3] and [6]. The aim of this paper is to establish some inequalities which generalize Hadamard's inequality and which are variants of Jensen's inequality for convex functions.

We shall use the following notation

$$x_{\lambda} = \lambda x_1 + (1 - \lambda)x_2,$$

$$J(f, x_1, x_2, \lambda) = \lambda f(x_1) + (1 - \lambda)f(x_2) - f(x_{\lambda}),$$

$$J^{\star}(f, x_1, x_2) = \sup_{\lambda \in [0, 1]} J(f, x_1, x_2, \lambda),$$

$$H(f, x_1, x_2) = \frac{f(x_1) + f(x_2)}{2} - \frac{1}{x_2 - x_1} \int_{x_1}^{x_2} f(x) dx, x_1 \neq x_2,$$

$$F(x_1, x_2) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}, x_1 \neq x_2.$$

We need the following Lemma, see for example [1], [5] and [7] which deals with the simple characterization of convex functions.

Lemma 1. The following statements are equivalent for a function $f:(a,b) \to \mathbb{R}$.

(1)
$$J(f, x_1, x_2, \lambda) \ge 0 \text{ for all } a < x_1 < x_2 < b, \lambda \in [0, 1],$$

(2)
$$F(x_1, x) \le F(x, x_2)$$
 for all $a < x_1 < x < x_2 < b$,

(3)
$$f$$
 is continuous and $H(f, x_1, x_2) \ge 0$ for all $a < x_1 < x_2 < b$.

2. The results

Our main result is given in the following theorem.

Theorem 1. Let $f:(a,b) \to \mathbb{R}$ be a convex function and let the derivative f' exists, then

(4)
$$\frac{J^{\star}(f, x_1, x_2)}{2} \le H(f, x_1, x_2) \le J^{\star}(f, x_1, x_2),$$

for all $a < x_1 < x_2 < b$.

Proof. Let $a < x_1 < x_2 < b$ and $\lambda \in [0, 1]$. Since f is convex function we have $J(f, x_1, x_\lambda, \mu) \ge 0$ for all $\mu \in [0, 1]$.

From Lemma 1. we obtain

$$F(x_1, x) \le F(x, x_{\lambda})$$
, for all $x_1 < x < x_{\lambda}$.

So

(5)
$$f(x) \le \frac{x_{\lambda} - x}{x_{\lambda} - x_1} \cdot f(x_1) + \frac{x - x_1}{x_{\lambda} - x_1} \cdot f(x_{\lambda}) \text{ for all } x_1 < x < x_{\lambda}.$$

Similarly, since

$$J(f, x_{\lambda}, x_{2}, \mu) \geq 0 \text{ for all } \mu \in [0, 1],$$

from Lemma 1. we have

(6)
$$f(x) \le \frac{x_2 - x}{x_2 - x_\lambda} \cdot f(x_\lambda) + \frac{x - x_\lambda}{x_2 - x_\lambda} \cdot f(x_2) \text{ for all } x_\lambda < x < x_2.$$

Since

$$\int_{x_1}^{x_2} f(x)dx = \int_{x_1}^{x_{\lambda}} f(x)dx + \int_{x_{\lambda}}^{x_2} f(x)dx,$$

using (5) and (6) we observe

$$\int_{x_1}^{x_2} f(x)dx \le \frac{x_\lambda - x_1}{2} \cdot f(x_\lambda) + \frac{x_\lambda - x_1}{2} \cdot f(x_1) + \frac{x_2 - x_\lambda}{2} \cdot f(x_2) + \frac{x_2 - x_\lambda}{2} \cdot f(x_\lambda).$$

So, we have

$$\int_{x_1}^{x_2} f(x)dx \le \frac{x_2 - x_1}{2} [f(x_\lambda) + (1 - \lambda)f(x_1) + \lambda f(x_2)],$$

$$\int_{x_1}^{x_2} f(x)dx \le \frac{x_2 - x_1}{2} [f(x_1) + f(x_2) - J(f, x_1, x_2, \lambda)],$$

and

$$\frac{J(f, x_1, x_2, \lambda)}{2} \le H(f, x_1, x_2).$$

Now we prove the right half of inequality (4). We prove that there exists $\lambda_c \in [0, 1]$, such that

$$H(f, x_1, x_2) \le J(f, x_1, x_2, \lambda_c).$$

Since derivative the f' exists from Lagrange theorem we obtain that there exists $c \in (x_1, x_2)$, such that

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c).$$

So, exists $\lambda_c \in [0,1]$ such that

$$(7) c = \lambda_c x_1 + (1 - \lambda_c) x_2.$$

We prove that

$$H(f, x_1, x_2) \le J(f, x_1, x_2, \lambda_c).$$

Since f is convex function, we have

(8)
$$f(x) \ge f(c) + \frac{f(x_2) - f(x_1)}{x_2 - x_1}(x - c)$$
 for all $a < x_1 < x < x_2 < b$.

Using (8) we obtain

$$\int_{x_1}^{x_2} f(x)dx \ge f(c)(x_2 - x_1) + \frac{f(x_2) - f(x_1)}{x_2 - x_1} \cdot \frac{(x_2 - c)^2}{2} - \frac{f(x_2) - f(x_1)}{x_2 - x_1} \cdot \frac{(x_1 - c)^2}{2}.$$

Now using (7) we conclusion

$$\int_{x_1}^{x_2} f(x)dx \ge \frac{x_2 - x_1}{2} [f(x_1) + f(x_2) + 2(f(c) - \lambda_c f(x_1) - (1 - \lambda_c) f(x_2))],$$
so,

$$H(f, x_1, x_2) \le J(f, x_1, x_2, \lambda_c).$$

Remark 1. For the proof of the left side of inequality (4) it is enough to assume that function f is convex. In this case as corollary we obtain Hadamard's inequality. As immediate corollary, we obtain the following inequality

$$|J(f, x_1, x_2, \lambda) - H(f, x_1, x_2)| \le H(f, x_1, x_2)$$
 for all $a < x_1 < x_2 < b, \lambda \in [0, 1]$.

REFERENCES

- [1] Mihály Bessenyei and Zsolt Páles, Characterizations of convexity via Hadamard's inequality, Mathematical Inequalities & Applications Volume 9, Number 1 (2006), 53-62.
- [2] S. S. Dragomir, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl., 167 (1992), 49-56.
- [3] A. M. Fink, Zsolt Páles, What is Hadamard's inequality? Applicable Analysis and Discrete Mathematics, 1 (2007), 29-35.
- [4] M. Merkle, Conditions for convexity of a derivate and applications to the gamma and digamma function, Facta Universitatis (Niš) Ser. Math. Inform., 16 (2001) 13-20.
- [5] D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, Berlin, New York ,1970.
- [6] J. E. Pečarić and S. S. Dragomir, A generalization of Hadamard's inequality for Isotonic linear functionals, Radovi Matematički, 7 (1991), 103-107.
- [7] A. W. Roberts and D. E. Varberg, Convex functions, Academic Press, New York London, 1973.

Received: February 5, 2008