A Remark on Hadamard's Inequality

Zoran D. Mitrović

Faculty of Electrical Engineering
University of Banja Luka, 78000 Banja Luka, Patre
Bosnia and Herzegovina
zmitrovic@etfbl.net

Abstract

In this paper we establish some inequalities by using a fairly elementary analysis. As corollary we obtain the well known Hadamard's inequality.

Mathematics Subject Classification: 26D15, 26A51
Keywords: Hadamard's inequality, Convexity

1. Introduction

The following inequality, see for example [1-7],

$$
\frac{1}{x_{2}-x_{1}} \int_{x_{1}}^{x_{2}} f(x) d x \leq \frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}
$$

which holds for convex function $f:(a, b) \rightarrow \mathbb{R}$ and $a<x_{1}<x_{2}<b$, is known in the literature as Hadamard's inequality. This inequality has been generalized and applied in various directions, see for example [1-3] and [6]. The aim of this paper is to establish some inequalities which generalize Hadamard's inequality and which are variants of Jensen's inequality for convex functions.

We shall use the following notation

$$
\begin{gathered}
x_{\lambda}=\lambda x_{1}+(1-\lambda) x_{2}, \\
J\left(f, x_{1}, x_{2}, \lambda\right)=\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)-f\left(x_{\lambda}\right), \\
J^{\star}\left(f, x_{1}, x_{2}\right)=\sup _{\lambda \in[0,1]} J\left(f, x_{1}, x_{2}, \lambda\right), \\
H\left(f, x_{1}, x_{2}\right)=\frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}-\frac{1}{x_{2}-x_{1}} \int_{x_{1}}^{x_{2}} f(x) d x, x_{1} \neq x_{2}, \\
F\left(x_{1}, x_{2}\right)=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}, x_{1} \neq x_{2} .
\end{gathered}
$$

We need the following Lemma, see for example [1], [5] and [7] which deals with the simple characterization of convex functions.
Lemma 1. The following statements are equivalent for a function $f:(a, b) \rightarrow$ \mathbb{R}.

$$
\begin{gather*}
J\left(f, x_{1}, x_{2}, \lambda\right) \geq 0 \text { for all } a<x_{1}<x_{2}<b, \lambda \in[0,1] \tag{1}\\
F\left(x_{1}, x\right) \leq F\left(x, x_{2}\right) \text { for all } a<x_{1}<x<x_{2}<b, \tag{2}\\
f \text { is continuous and } H\left(f, x_{1}, x_{2}\right) \geq 0 \text { for all } a<x_{1}<x_{2}<b . \tag{3}\\
2 . \text { THE RESULTS }
\end{gather*}
$$

Our main result is given in the following theorem.
Theorem 1. Let $f:(a, b) \rightarrow \mathbb{R}$ be a convex function and let the derivative f^{\prime} exists, then

$$
\begin{equation*}
\frac{J^{\star}\left(f, x_{1}, x_{2}\right)}{2} \leq H\left(f, x_{1}, x_{2}\right) \leq J^{\star}\left(f, x_{1}, x_{2}\right) \tag{4}
\end{equation*}
$$

for all $a<x_{1}<x_{2}<b$.
Proof. Let $a<x_{1}<x_{2}<b$ and $\lambda \in[0,1]$. Since f is convex function we have $J\left(f, x_{1}, x_{\lambda}, \mu\right) \geq 0$ for all $\mu \in[0,1]$.
From Lemma 1. we obtain

$$
F\left(x_{1}, x\right) \leq F\left(x, x_{\lambda}\right), \text { for all } x_{1}<x<x_{\lambda}
$$

So

$$
\begin{equation*}
f(x) \leq \frac{x_{\lambda}-x}{x_{\lambda}-x_{1}} \cdot f\left(x_{1}\right)+\frac{x-x_{1}}{x_{\lambda}-x_{1}} \cdot f\left(x_{\lambda}\right) \text { for all } x_{1}<x<x_{\lambda} . \tag{5}
\end{equation*}
$$

Similarly, since

$$
J\left(f, x_{\lambda}, x_{2}, \mu\right) \geq 0 \text { for all } \mu \in[0,1]
$$

from Lemma 1. we have

$$
\begin{equation*}
f(x) \leq \frac{x_{2}-x}{x_{2}-x_{\lambda}} \cdot f\left(x_{\lambda}\right)+\frac{x-x_{\lambda}}{x_{2}-x_{\lambda}} \cdot f\left(x_{2}\right) \text { for all } x_{\lambda}<x<x_{2} \tag{6}
\end{equation*}
$$

Since

$$
\int_{x_{1}}^{x_{2}} f(x) d x=\int_{x_{1}}^{x_{\lambda}} f(x) d x+\int_{x_{\lambda}}^{x_{2}} f(x) d x
$$

using (5) and (6) we observe

$$
\begin{gathered}
\int_{x_{1}}^{x_{2}} f(x) d x \leq \frac{x_{\lambda}-x_{1}}{2} \cdot f\left(x_{\lambda}\right)+\frac{x_{\lambda}-x_{1}}{2} \cdot f\left(x_{1}\right)+ \\
\frac{x_{2}-x_{\lambda}}{2} \cdot f\left(x_{2}\right)+\frac{x_{2}-x_{\lambda}}{2} \cdot f\left(x_{\lambda}\right)
\end{gathered}
$$

So, we have

$$
\begin{aligned}
& \int_{x_{1}}^{x_{2}} f(x) d x \leq \frac{x_{2}-x_{1}}{2}\left[f\left(x_{\lambda}\right)+(1-\lambda) f\left(x_{1}\right)+\lambda f\left(x_{2}\right)\right], \\
& \int_{x_{1}}^{x_{2}} f(x) d x \leq \frac{x_{2}-x_{1}}{2}\left[f\left(x_{1}\right)+f\left(x_{2}\right)-J\left(f, x_{1}, x_{2}, \lambda\right)\right],
\end{aligned}
$$

and

$$
\frac{J\left(f, x_{1}, x_{2}, \lambda\right)}{2} \leq H\left(f, x_{1}, x_{2}\right)
$$

Now we prove the right half of inequality (4). We prove that there exists $\lambda_{c} \in[0,1]$, such that

$$
H\left(f, x_{1}, x_{2}\right) \leq J\left(f, x_{1}, x_{2}, \lambda_{c}\right)
$$

Since derivative the f^{\prime} exists from Lagrange theorem we obtain that there exists $c \in\left(x_{1}, x_{2}\right)$, such that

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=f^{\prime}(c)
$$

So, exists $\lambda_{c} \in[0,1]$ such that

$$
\begin{equation*}
c=\lambda_{c} x_{1}+\left(1-\lambda_{c}\right) x_{2} . \tag{7}
\end{equation*}
$$

We prove that

$$
H\left(f, x_{1}, x_{2}\right) \leq J\left(f, x_{1}, x_{2}, \lambda_{c}\right) .
$$

Since f is convex function, we have

$$
\begin{equation*}
f(x) \geq f(c)+\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}(x-c) \text { for all } a<x_{1}<x<x_{2}<b \tag{8}
\end{equation*}
$$

Using (8) we obtain

$$
\begin{aligned}
& \int_{x_{1}}^{x_{2}} f(x) d x \geq f(c)\left(x_{2}-x_{1}\right)+\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \cdot \frac{\left(x_{2}-c\right)^{2}}{2}- \\
& \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \cdot \frac{\left(x_{1}-c\right)^{2}}{2} .
\end{aligned}
$$

Now using (7) we conclusion

$$
\int_{x_{1}}^{x_{2}} f(x) d x \geq \frac{x_{2}-x_{1}}{2}\left[f\left(x_{1}\right)+f\left(x_{2}\right)+2\left(f(c)-\lambda_{c} f\left(x_{1}\right)-\left(1-\lambda_{c}\right) f\left(x_{2}\right)\right)\right]
$$

so,

$$
H\left(f, x_{1}, x_{2}\right) \leq J\left(f, x_{1}, x_{2}, \lambda_{c}\right)
$$

Remark 1. For the proof of the left side of inequality (4) it is enough to assume that function f is convex. In this case as corollary we obtain Hadamard's inequality. As immediate corollary, we obtain the following inequality
$\left|J\left(f, x_{1}, x_{2}, \lambda\right)-H\left(f, x_{1}, x_{2}\right)\right| \leq H\left(f, x_{1}, x_{2}\right)$ for all $a<x_{1}<x_{2}<b, \lambda \in[0,1]$.

REFERENCES

[1] Mihály Bessenyei and Zsolt Páles, Characterizations of convexity via Hadamard's inequality, Mathematical Inequalities \& Applications Volume 9, Number 1 (2006), 53-62.
[2] S. S. Dragomir, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl., 167 (1992), 49-56.
[3] A. M. Fink, Zsolt Páles, What is Hadamard's inequality? Applicable Analysis and Discrete Mathematics, 1 (2007), 29-35.
[4] M. Merkle, Conditions for convexity of a derivate and applications to the gamma and digamma function, Facta Universitatis (Niš) Ser. Math. Inform., 16 (2001) 13-20.
[5] D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, Berlin, New York ,1970.
[6] J. E. Pečarić and S. S. Dragomir, A generalization of Hadamard's inequality for Isotonic linear functionals, Radovi Matematički, 7 (1991), 103-107.
[7] A. W. Roberts and D. E. Varberg, Convex functions, Academic Press, New York - London, 1973.

Received: February 5, 2008

