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Abstract
In this paper, we present a symbolic algorithm for solving a class of

nth order linear or nonlinear ordinary differential equations with initial
conditions. This algorithm is based on Laplace Adomian Decomposition
Method (LADM). Numerical results will be presented.
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1 Introduction

The Adomian Decomposition Method (ADM) has been applied to a wide
class of problems in physics, biology and chemical reactions. The method pro-
vides the solution in a rapid convergent series with computable terms. This
method was successfully applied to nonlinear differential delay equations [1],
a nonlinear dynamic systems [2], the heat equation [3,4], the wave equation
[5], coupled nonlinear partial differential equations [6,7], linear and nonlinear
integro-differential equations [8] and Airy’s equation [9]. Different modifica-
tions of this method and their applications are given in [10-13].

The Laplace Adomian Decomposition Method (LADM) is a combination
of ADM and placeLaplace transforms. This method was successfully used for
solving Bratu and Duffing equations in [14,15].

In this paper, we developed a symbolic algorithm to find the solution of

{
anxn dny

dxn + an−1x
n−1 dn−1y

dxn−1 + · · ·+ a1x
dy
dx

+ a0y + F (y) = G(x)
y(x0) = α0, y

′(x0) = α1, . . . , y(n)(x0) = αn
(1)

initial value problem by LADM where ai and αi i = 0, 1, 2, . . . , n are real
constants.
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2 Laplace Adomian Decomposition Method

In this section we want to describe how to use LADM for problem (1). We
will study the second order equations for simplicity.

Now, consider the initial value problem

{
a2x

2 d2y
dx2 + a1x

dy
dx

+ a0y + F (y) = G(x)
y(x0) = α0, y

′(x0) = α1
(2)

First, we use a transformation x = et to reduce the equation in (2) to a
differential equation with constant coefficients. So problem (2) turn into

{
d2y
dt2

+ b1
dy
dt

+ b0y + F (y) = G(t)
y(t0) = α0, y

′(t0) = α1
(3)

where t0 = ln x0. Applying the placeLaplace transform to both sides of equa-
tion (2) we get

L {y′′} + L {b1y
′} + L {b0y} + L {F (y)} = L {G(t)} .

By using linearity of Laplece transforms the result is,

L {y′′} + b1L {y′} + b0L {y} + L {F (y)} = L {G(t)} .

Applying the formulas of placeLaplace transform, we get

(
s2L {y} − sy(t0) − y′(t0)

)
+ b1 (sL {y} − y(t0)) + b0L {y} + L {F (y)} = L {G(t)} .

Using the initial conditions in (3), we obtain

(
s2 + b1s

)
L {y} = α0 (s + b1) + α1 − b0L {y} − L {F (y)}+ L {G(t)}

L{y}=
α0

s
+

α1

s2 + b1s
− b0

s2 + b1s
L{y}− 1

s2 + b1s
L{F (y)}+

1

s2 + b1s
L{G(t)} .

(4)

The LADM represents the solution as an infinite series

y =
∞∑
i=0

yi (5)
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where the terms yi calculated recursively.

Similarly, the nonlinear term L {F (y)} decomposes as

F (y) =
∞∑
i=0

Ai (6)

where the Ais are Adomian polynomials of yis. One can calculate the polyno-
mials by the following formula.

Ai =
1

i!

di

dui
F

( ∞∑
j=0

ujyj

)
u=0

, i = 0, 1, 2, . . .

Substituting (5) and (6) into (4), we have

L

{ ∞∑
i=0

yi

}
=

α0

s
+

α1

s2 + b1s
− b0

s2 + b1s
L

{ ∞∑
i=0

yi

}
− 1

s2 + b1s
L

{ ∞∑
i=0

Ai

}

+
1

s2 + b1s
L {G(t)} .

Now, we can obtain the following algorithm

L {y0} =
α0

s
+

α1

s2 + b1s
+

1

s2 + b1s
L {G(t)}

L {y1} = − b0

s2 + b1s
L {y0} − 1

s2 + b1s
L {A0}

L {y2} = − b0

s2 + b1s
L {y1} − 1

s2 + b1s
L {A1} (7)

...

L {yi+1} = − b0

s2 + b1s
L {yi} − 1

s2 + b1s
L {Ai}

Then, applying the inverse placeLaplace transform to (7) we obtain the values
yi recursively. The last step of the algorithm is using the transformation t =
ln x to get the solution of (2).
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3 The Algorithm of the Method

Here we present an algorithm that compute the solution of problem (1).

Algorithm 1 Assume that problem (1) is given.

1. Apply the transformation x = et to problem (1).

2. Split the equation given in (1) into two pieces. The first part is

− (F (y) + b0y)

and the second part is

dny

dxn
+ bn−1

dn−1y

dxn−1
+ · · ·+ b1

dy

dx
= G(t)

3. Apply the Laplace transform to second part, determine the coefficient of
L {y} and solve this equation for L {y}. So, you can get L {y0}.

4. Calculate the Adomian polynomials for the function F (y). Apply the
Laplace transform to these polynomials.

5. Divide the first part to the coefficient of L {y}. In a loop, calculate
L {yi+1}with substituting the L {Ai}and L {yi}in the first part.

6. Construct the solution using inverse Laplace transform to L {yi} .Apply
the transformation t = ln x to the solution.

4 Numerical Examples

In this section, we will briefly describe the implementation of the Algorithm
3.1 by following examples.

Example 2 Consider the following linear problem.⎧⎨
⎩

x2 d2y
dx2 + xdy

dx
− y = x2

y (1) = 4
3

y′ (1) = 5
3

The analytic solution of this IVP is y(x) = x + x2

3
. Lets apply the Algorithm 1

1. After the transformation x = et we get the equation d2y
dt2

− y = e2tand
initial conditions y(0) = 4

3
, y′(0) = 5

3
.
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2. The first part of the equation is y and the second part of the equation is
d2y
dt2

= e2t.

3. From the second part we get L {y0} = 1
s2(s−2)

+ 4s+5
3s2 .

4. We do not need to calculate Adomian polynomials for this example be-
cause there is no non-linear term in this equation.

5. From the first part we get L {yi+1} = 1
s2 L {yi}. So we can calculate

L {yi+1}s in a loop.

6. With inverse Laplace transform we get yis and with a little calculation
we can find the series expansion below

1

3

(
4 + 5t +

7

2
t2 +

11

6
t3 +

19

24
t4 +

7

24
t5 + . . .

)
∼= et +

e2t

3

Finally with applying the transformation t = ln x we get the solution as
y(x) = x + x2

3
.

This result can be easily obtained from the computer algebra system Maple
with five calculations.

Example 3 Consider the following non-linear problem.⎧⎪⎨
⎪⎩

x2 d2y

dx2
− x

dy

dx
+ y + y2 = (x ln x)2

y (1) = 0
y′ (1) = 1

The analytic solution of this IVP is y(x) = x ln x.

1. After the transformation x = et we get the equation
d2y

dt2
−2

dy

dt
+y+ey =

ett and initial conditions y(0) = 0, y′(0) = 1.

2. The first part of the equation is −y − y2 and the second part of the

equation is
d2y

dt2
− 2

dy

dt
= tet.

3. From the second part we get L {y0} =
1

s (s − 2)
+

2

s (s − 2)4 .

4. The non-linear term of this equation is y2. The first four Adomian poly-
nomials for this term are

A0 = y2
0

A1 = 2y0y1

A2 = y2
1 + 2y0y2

A3 = 2y1y2 + 2y0y3
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5. From the first part we get L {yi+1} = −L {yi} + L {Ai}
s (s − 2)

. So we can

calculate L {yi+1}s in a loop.

6. With inverse Laplace transform we get yis and we can get the series
expansion below.

t + t2 +
t3

2
+

t4

6
+

t5

24
+

t6

120
+ . . . ∼= tet

Finally with applying the transformation t = ln x we get the solution of
the problem with regarding the noise terms as y(x) = x ln x.

In this paper, we used the LADM for solving equations given as (2). This
method is to be considered an effective method for solving many problems.
From these examples we can see that this method works efficiently.

References

[1] G. Adomian, A nonlinear differential delay equation. J. Math. Anal. Appl.,
91 (1983) 301-304.

[2] G. Adomian, The decomposition method for nonlinear dynamic systems,
J. Math. Anal. Appl., 120 (1986) 270-283.

[3] G. Adomian, A new approach to heat equation an application of the
decomposition method, J. Math. Anal. Appl., 113 (1) (1986) 202-209.

[4] G. Adomian, Modification of the decomposition approach to heat equa-
tion, J. Math. Anal. Appl., 124 (1) (1987) 290-291.

[5] B. Datta, A new approach to the wave equation – an application of the
decomposition method, J. Math. Anal. Appl., 142 (1) (1987) 6-12.

[6] G. AdomianSystem of nonlinear partial differential equations, J. Math.
Anal. Appl., 115 (1) (1986) 235-238.

[7] G. Adomian, Solution of coupled nonlinear partial differential equations
by decomposition, Comput. Math. Appl., 31 (6) (1995) 117-120.

[8] G. Adomian, R. Rach, On linear and nonlinear integro-differential equa-
tions, J. Math. Anal. Appl., 113 (1) (1986) 199-201.

[9] G. Adomian,, M. Elrod, R. Rach,, A new approach to boundary value
equations and application to a generalization of Airy’s equation, J. Math.
Anal. Appl., 140 (2) (1989) 554-568.



Algorithm for solving initial value problems 1459

[10] A. M. Wazwaz, A reliable modification of Adomian decomposition
method, Appl. Math. Comput., 102 (1999) 77-86.

[11] A. M. Wazwaz, A new algorithm for solving differential equations of Lane-
Emden type, Appl. Math. Comput., 118 (2001) 287-310.

[12] A. M. Wazwaz, A new method for solving singular initial value problems
in the second-order ordinary differential equations, Appl. Math. Comput.,
128 (2002) 45-57.
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