Applied Mathematical Sciences, Vol. 3, 2009, no. 30, 1479 - 1486

Generalization for Lattice System

with Equal Components

A. Habib, R. Alseedy, A. Elsherbeny and Taha Radwan

Dept. of Mathematics, Faculty of Science, Menofia Uni., Egypt taha_ali_2003@hotmail.com

Abstract

This paper proposes a model that generalizes the linear k-within-(m,s)-of-(m,n):G lattice system to multi-state case. In this model the system consists of mn components arranged in m rows and n columns. Both the system and its components can have different states: from complete failure up to perfect functioning. The system is in state τ or above if and only if the rectangles of dimension $m \times s$ contain at least k_{τ} components are in state τ or above. An algorithm is provided for evaluating reliability of a special case of multi-state k-within-(m,s)-of-(m,n):G lattice system. Also numerical results of the formerly published test examples and new examples are given.

Keywords: Linear *k*-within-(*m*,*s*)-of-(*m*,*n*):G lattice system; Multi-state system; System reliability with equal components

Notations

Ν	: <i>n</i> - <i>s</i> +1.						
M+1	: number of states of the system and its components such that state M: per-						
	fect functioning and state 0: complete failure.						
W	$: \{0,1,\ldots,M\}.$						
k_{τ}	: minimum number of components in state $\geq \tau$ out of $m \times s$ components,						
	which cause system in state $\geq \tau$, $k_{\tau} \leq ms$.						
<i>X</i> _{ij}	: state of component (i,j) , $x_{ij} \in W$, for all $i \in \{1,2,\ldots,m\}$ and j						
	\in {1,2,, <i>n</i> }.						
x	: $(x_{11}, x_{12}, \dots, x_{mn})$ vector of component states.						
$\phi(x)$: System-state structure function, $\phi(x) \in W$.						
p_{τ}	: $\Pr\{x_{ij} = \tau\}, \sum_{b=0}^{M} p_b = 1.$						

 $P_{\tau} \qquad : \Pr \{ x_{ij} \ge \tau \} = \sum_{b=\tau}^{M} p_{b} .$ $R_{\tau} \qquad : \Pr \{ \phi(x) \ge \tau \}, R_{0} = 1, R_{M+1} = 0.$ $r_{\tau} \qquad : \Pr \{ \phi(x) = \tau \} = R_{\tau} - R_{\tau+1}, \text{ for } \tau = 0, 1, \dots, M.$

1. Introduction

The consecutive-k-out-of-r-from-n: F system was introduced by Tong [7]. The consecutive-k-out-of-r-from-n: G and consecutive (r-k+1)-out-of-r-from-n: F systems are equivalent [8]. The consecutive-k-out-of-r-from-n: G system works if and only if at least k components out of r consecutive work. An algorithm for evaluating the exact reliability of a consecutive-k-out-of-r-from-n: F system was suggested by A. Habib and T. Szántai [1]. As consecutive-k-out-of-r-from-n: G system involves consecutive-k-out-of-n: G system (when k = r) and k-out-of-n: G system (when r =n) as special cases. The simple k-out-n: G system was generalized to the multi-state case [5] where the system and its components may be in one of M+1 possible states: 0,1,...and M. This system is in state τ or above if and only if at least k_{τ} components are in state τ or above. Generalizations of the consecutive-k-out-of-n:F system have been reported in a considerable number of papers [6]. Another generalization is multi-state consecutive k-out-of-n: G system [4] and extended in Ref.[10]. This system is in state τ or above if and only if at least consecutive k_{τ} components are in state τ or above. Also the consecutive-k-out-of-r-from-n: G system was generalized to the multi-state case where the reliability was calculated for a special case $(k_1 \le k_2 \le ... \le k_M)$ [2]. This system is in state τ or above if and only if at least k_{τ} components out of r consecutive are in state τ or above. Another generalization of consecutive-k-out-of-r-from-n: G system is linear k-within-(m,s)-of-(m,n):G lattice system. The linear k-within-(m,s)-of-(m,n):G and linear (ms-k+1)-within-(m,s)of-(m,n):F lattice systems are equivalent [8]. The system works if and only if the rectangles of dimension $m \times s$ contain at least k components work. An algorithm for reliability evaluation system was provided by Daming Lin and Ming J. Zuo [3]. This paper proposes a model that generalizes the linear k-within-(m,s)-of-(m,n):G lattice system to multi-state case. In this model the system consists of mn components arranged in m rows and n columns. Both the system and its components can have different states: from complete failure up to perfect functioning:0,1,2,...,M. The system is in state τ or above if and only if the rectangles of dimension $m \times s$ contain at least k_{τ} components are in state τ or above. An algorithm is provided for evaluating reliability of a special case of multi-state k-within-(m,s)-of-(m,n):G lattice system with equal components $(k_1 \le k_2 \le ... \le k_M)$. The algorithm is based on the application of a special case taken from A. Habib et al. paper [2]. Also numerical results of the formerly published test examples and new examples are given.

2. Assumptions

- The system is multi-state monotone [9]:
 - $\phi(x)$ is nondecreasing in each argument.
 - $\phi(\tau) = \phi(\tau, \tau, ..., \tau) = \tau$ for $\tau \in W$.
- The *x_{ij}* are mutually *S*-independent.
- The possible states of each component and of the system are ordered: State $0 \le \text{State } 1 \le \dots \le \text{State } M$.
- $k_1 \leq k_2 \leq \ldots \leq k_M$.

3. System Reliability Evaluation

This section calculates the reliability of multi-state linear k-within-(m,s)-of-(m,n):G lattice system with equal component probability by the following two cases:-

Case 1:- When s < N then

$$R_{\tau} = \prod_{i=1}^{n} \sum_{y_i=t_i}^{m} {m \choose y_i} P_{\tau}^{y_i} (1-P_{\tau})^{m-y_i} , \qquad (1)$$

$$P_{\tau} = \sum_{b=\tau}^{M} p_b , \qquad (2)$$

$$t_i = \max(0, k_{\tau} - m(s - i) - \sum_{b=1}^{i-1} y_b), \qquad i = 1, 2, \dots, s,$$
(3)

$$t_i = \max(0, k_{\tau} - \sum_{b=i-s+1}^{i-1} y_b), \qquad i = s+1, s+2, \dots, n.$$
(4)

Further we can find the probabilities that the system is exactly in state τ for $\tau = 0, 1, ..., M$ by using the following equations:

$$r_{\tau} = \Pr(\phi = \tau) = R_{\tau} - R_{\tau+1}, \quad \text{for } \tau = 0, 1, ..., M ,$$
 (5)

$$r_0 = \Pr(\phi = 0) = R_0 - R_1 = 1 - R_1, \tag{6}$$

$$r_M = \Pr(\phi = M) = R_M, \tag{7}$$

Note:- The equation (1) contains n summations. The lower bounds of these summations depend on others, so we can not calculate these summations as separated. As we will illustrate by the following example.

Illustrated example:

Consider a multi-state linear k-within-(m,s)-of-(m,n):G lattice system with the following data:

m=3, *n*=4, *s*=2, *M*=3, *N*=3, *k*₁=3, *k*₂=4, *k*₃=5,

 $p_0=0.1, p_1=0.3, p_2=0.4, p_3=0.2, P_1=0.9, P_2=0.6, P_3=0.2$

This system contains three rectangles of dimension 3×2 . The system is in state τ or above if and only if every rectangle contains at least k_{τ} components are in state τ or above.

For state 3:

$$\begin{aligned} R_{3} &= \prod_{i=1}^{4} \sum_{y_{i}=t_{i}}^{3} \binom{3}{y_{i}} (0.2)^{y_{i}} (0.8)^{3-y_{i}} & \text{Using (1)} \\ &= \sum_{y_{i}=t_{i}}^{3} \sum_{y_{3}=t_{3}}^{3} \sum_{y_{4}=t_{4}}^{3} \binom{3}{y_{2}} \binom{3}{y_{3}} \binom{3}{y_{4}} (0.2)^{y_{1}+y_{2}+y_{3}+y_{4}} (0.8)^{12-(y_{1}+y_{2}+y_{3}+y_{4})} \\ &= \binom{3}{2} \binom{3}{3} \binom{3}{2} \binom{3}{3} (0.2)^{2+3+2+3} (0.8)^{12-10} + \binom{3}{2} \binom{3}{3} \binom{3}{3} \binom{3}{2} (0.2)^{2+3+3+2} (0.8)^{12-10} \\ &+ \binom{3}{2} \binom{3}{3} \binom{3}{3} \binom{3}{3} (0.2)^{2+3+3+3} (0.8)^{12-11} + \binom{3}{3} \binom{3}{2} \binom{3}{3} \binom{3}{2} (0.2)^{3+2+3+2} (0.8)^{12-10} \\ &+ \binom{3}{3} \binom{3}{2} \binom{3}{3} \binom{3}{3} (0.2)^{2+3+3+3} (0.8)^{12-11} + \binom{3}{3} \binom{3}{3} \binom{3}{2} \binom{3}{3} (0.2)^{3+3+2+3} (0.8)^{12-11} \\ &+ \binom{3}{3} \binom{3}{3} \binom{3}{3} \binom{3}{2} (0.2)^{3+3+3+2} (0.8)^{12-11} + \binom{3}{3} \binom{3}{3} \binom{3}{3} \binom{3}{3} (0.2)^{3+3+3+3} (0.8)^{12-12} \\ &+ \binom{3}{3} \binom{3}{3} \binom{3}{3} \binom{3}{2} (0.2)^{3+3+3+2} (0.8)^{12-11} + \binom{3}{3} \binom{3}{3} \binom{3}{3} \binom{3}{3} (0.2)^{3+3+3+3} (0.8)^{12-12} \\ &+ \binom{3}{3} \binom{3}{3} \binom{3}{3} \binom{3}{2} (0.2)^{3+3+3+2} (0.8)^{12-11} \\ &+ \binom{3}{3} \binom{3}{3} \binom{3}{3} \binom{3}{3} \binom{3}{3} \binom{3}{2} (0.2)^{3+3+3+2} (0.8)^{12-11} \\ &+ \binom{3}{3} \binom{3}{3}$$

And so, For state 2:

$$R_{2} = \prod_{i=1}^{4} \sum_{y_{i}=t_{i}}^{3} \binom{3}{y_{i}} (0.6)^{y_{i}} (0.4)^{3-y_{i}} \qquad \text{Using (1)}$$

$$= \sum_{y_{1}=t_{1}}^{3} \sum_{y_{2}=t_{2}}^{3} \sum_{y_{3}=t_{2}}^{3} \sum_{y_{4}=t_{4}}^{3} \binom{3}{y_{1}} \binom{3}{y_{2}} \binom{3}{y_{3}} \binom{3}{y_{4}} (0.6)^{y_{1}+y_{2}+y_{3}+y_{4}} (0.4)^{12-(y_{1}+y_{2}+y_{3}+y_{4})} = 0.257586,$$

$$t_1 = \max (0,4-3) = 1, t_2 = \max (0,4-y_1), Using (3) t_3 = \max (0,4-y_2), t_4 = \max (0,4-y_3) Using (4)$$

Similarly, For state 1: 4 - 3 (2)

$$R_{1} = \prod_{i=1}^{4} \sum_{y_{i}=t_{i}}^{3} \binom{3}{y_{i}} (0.9)^{y_{i}} (0.1)^{3-y_{i}} \qquad \text{Using (1)}$$

$$= \sum_{y_{1}=t_{1}}^{3} \sum_{y_{2}=t_{2}}^{3} \sum_{y_{3}=t_{3}}^{3} \sum_{y_{4}=t_{4}}^{3} \binom{3}{y_{1}} \binom{3}{y_{2}} \binom{3}{y_{3}} \binom{3}{y_{4}} (0.9)^{y_{1}+y_{2}+y_{3}+y_{4}} (0.1)^{12-(y_{1}+y_{2}+y_{3}+y_{4})} = 0.996380,$$

$$t_{1} = \max(0,3-3) = 0, \qquad t_{2} = \max(0,3-y_{1}), \qquad \text{Using (3)}$$

$$t_3 = \max(0, 3 - y_2),$$
 $t_4 = \max(0, 3 - y_3)$ Using (4)

So we can find the probabilities that the system is exactly in state τ for $\tau = 0,1,2,3$ by using the equations (5-7) as the following: $r_0 = 1 - R_1 = 1 - 0.996380 = 0.003620$,

 $r_1 = R_1 - R_2 = 0.996380 - 0.257586 = 0.738794,$ $r_2 = R_2 - R_3 = 0.257586 - 0.000002 = 0.257584,$ $r_3 = R_3 = 0.000002$

Case 2:- When $s \ge N$ then

$$R_{\tau} = \prod_{i=1}^{2N-1} \sum_{y_i=t_i}^{m_i} {m_i \choose y_i} P_{\tau}^{y_i} (1-P_{\tau})^{m_i-y_i},$$

$$m_i = m, \qquad i = 1, 2, \dots, N-1, N+1, \dots, 2N-1,$$

$$m_N = m (2s - n),$$

$$t_i = \max (0, k_{\tau} - m(s-i) - \sum_{b=1}^{i-1} y_b), \qquad i = 1, 2, \dots, N-1,$$
(9)

$$t_i = \max(0, k_{\tau} - \sum_{b=i-N+1}^{i-1} y_b), \ i = N, \dots, 2N-1.$$
(10)

Illustrated example:

Consider a multi-state linear k-within-(m,s)-of-(m,n):G lattice system with the following data:

 $m=3, n=5, s=4, M=3, N=2, k_1=8, k_2=10, k_3=12, p_0=0.1, p_1=0.2, p_2=0.3, p_3=0.5, P_1=0.9, P_2=0.8, P_3=0.5$

This system contains two rectangles of dimension 3×4 . The system is in state τ or above if and only if every rectangle contains at least k_{τ} components are in state τ or above.

For state 3:

$$R_{3} = \prod_{i=1}^{3} \sum_{y_{i}=t_{i}}^{m_{i}} \binom{m_{i}}{y_{i}} (0.5)^{y_{i}} (0.5)^{m_{i}-y_{i}} \qquad \text{Using (8)}$$

$$= \sum_{y_{i}=t_{i}}^{3} \sum_{y_{2}=t_{2}}^{9} \sum_{y_{3}=t_{3}}^{3} \binom{3}{y_{1}} \binom{9}{y_{2}} \binom{3}{y_{3}} (0.5)^{y_{1}+y_{2}+y_{3}} (0.5)^{15-(y_{1}+y_{2}+y_{3})}$$

$$= \binom{3}{3} \binom{9}{9} \binom{3}{3} (0.5)^{3+9+3} (0.5)^{12-12} = 0.000031,$$

$$t_{1} = \max (0,12-9)=3, \qquad \qquad \text{Using (9)}$$

$$t_{2} = \max (0,12-y_{1}), \qquad t_{3} = \max (0,12-y_{2}) \qquad \qquad \text{Using (10)}$$
And so, **For state 2:**

5. Numerical Results

The same results of some test examples given by A. Habib et al. [2] for calculation the reliability of multi-state consecutive *k*-out-of-*m*-from-*n*:G system be in Table 1 when the components have the same probabilities (such that $p_0=0.1$, $p_1=0.3$, $p_2=0.4$ and $p_3=0.2$) by using equations (1) and (8) to show that the multi-state consecutive *k*-out-of-*m*-from-*n*:G system is a special case of the multi-state linear *k*-within-(*m*,*s*)-of-(*m*,*n*):G lattice system when *m*=1. A new examples for calculation the reliability of the multi-state linear *k*-within-(*m*,*s*)-of-(*m*,*n*):G lattice system with $W=\{0,1,2,3\}$ given in Table 2 where the components have the same probabilities ($p_0=0.1$, $p_1=0.2$, $p_2=0.3$ and $p_3=0.4$) by using equations (1) and (8).

6. Conclusions

This paper proposes a model that generalizes linear k-within-(m,s)-of-(m,n):G lattice system to multi-state case. An algorithm for evaluating reliability of a special

case of multi-state linear k-within-(m,s)-of-(m,n):G lattice system with equal components $(k_1 \le k_2 \le ... \le k_M)$. The numerical results showed that:

- 1. The multi-state consecutive *k*-out-of-*r*-from-*n*: G system and linear *k*-within-(*m*,*s*)-of-(*m*,*n*):G lattice system are special cases of the multi-state linear *k*within-(*m*,*s*)-of-(*m*,*n*):G lattice system (when *m*=1 and *M*=1 respectively).
- 2. For all τ we have $\sum_{b=0}^{M} r_b = 1$
- 3. r_{τ} or R_{τ} satisfies the probability distribution of the system in various states.

 k_3 R_2 R_3 S k_1 k_2 R_1 п 20 8 7 0.0000000 3 5 0.9997903 0.1614302 40 15 12 13 14 0.7513515 0.0000194 0.0000000 50 20 17 18 19 0.5520580 0.0000002 0.0000000 15 10 4 6 7 0.9999643 0.4171952 0.0000273 30 20 16 17 18 0.8988619 0.0014037 0.0000000 50 30 27 28 29 0.3888692 0.0000000 0.0000000

Table 1:-Multi-state Linear *k*-within-(1,*s*)-of-(1,*n*):G Lattice System ($p_0=0.1, p_1=0.3, p_2=0.4, p_3=0.2$).

Table 2:-

Multi-state Linear k-within-(3,s)-of-(3,n):G Lattice System ($p_0=0.1, p_1=0.2, p_2=0.3$ and $p_3=0.4$).

$s=2, k_1=4, k_2=5, k_3=6$				s=5	$s=5, k_1=12, k_2=13, k_3=14$			
п	R_1	R_2	R_3	n	R_1	R_2	R_3	
5	0.9464318	0.0924460	0.0000011	5	0.9444444	0.1268277	0.0000252	
10	0.8866368	0.0069671	0.0000000	10	0.8402642	0.0104280	0.0000000	
15	0.8306196	0.0005264	0.0000000	15	0.7487573	0.0007965	0.0000000	
20	0.7781416	0.0000398	0.0000000	20	0.6672703	0.0000607	0.0000000	

References

- [1] A. Habib, and T. Szántai., "An Algorithm Evaluating the Exact Reliability of a consecutive *k*-out-of-*r*-from-*n*:F System," *Proc. IMACS Conf.*, 1997;421–425.
- [2] A. Habib, R. Al-Seedy and Taha Radwan, "Reliability Evaluation of Multi-state Consecutive *k*-out-of-*r*-from-*n*: G system," *Applied Mathematical Modelling*, November 2007, vol. 31, pp. 2412-2423.
- [3] Daming Lin and Ming J. Zuo, "Reliability Evaluation of A linear *k*-within-(*r*,*s*)-of-(*m*,*n*):F lattice system," *Probability in the Engineering and Informational Sciences*, 2000, vol. 14, pp. 435-443.
- [4] Jinsheng Huang, Ming J. Zuo, and Zhide Fang, "Multi-State consecutive *k*-out-of-*n* systems," *IIE Transactions*, 2003, vol. 35, pp. 527-534.
- [5] Jinsheng Huang, Ming J. Zuo, Member, IEEE, and Yanhong Wu., "Generalized Multi-State *k*-out-of-*n*:G Systems," *IEEE Transactions on reliability*, March 2000, vol. 49, No. 1, pp. 105-111.
- [6] Malinowski J., Preuss W., "On the Reliability of Generalized Consecutive Systems," –A Survey. International Journal of Reliability, Quality and Safety Engineering, 1995, 2(2), pp. 187-201.
- [7] Tong YL., "Rearrangement inequality for the longest run with an application to network reliability," *J. Appl. Prob.*, 1985;22:286–393.
- [8] W. Kuo, W. Zhang and M. Zuo, "A consecutive *k*-out-of-*n*: G System: The mirror image of a consecutive *k*-out-of-*n*: F System," *IEEE Trans. Reliability*, June 1990, vol. 39, pp 244-253.
- [9] W. S. Griffith, "Multistate reliability models," *J. Applied Probability*, 1980, vol. 17, pp. 735–744.
- [10] Zuo, M.J., Fang, Z., Huang, J., and Xu. X., "Performance evaluation of decreasing multi-state consecutive-k-out-of-n: G systems," *Int. J. of Reliability, Quality and Safety Eng.*, 2003, 10 (3), pp. 345-358.

Received: May 21, 2008