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Abstract 
 
This paper proposes a model that generalizes the linear k-within-(m,s)-of-(m,n):G 
lattice system to multi-state case. In this model the system consists of mn compo-
nents arranged in m rows and n columns. Both the system and its components can 
have different states: from complete failure up to perfect functioning. The system is 
in state τ or above if and only if the rectangles of dimension m×s contain at least 
τk  components are in state τ or above. An algorithm is provided for evaluating re-

liability of a special case of multi-state k-within-(m,s)-of-(m,n):G lattice system. 
Also numerical results of the formerly published test examples and new examples 
are given.  
 
Keywords: Linear k-within-(m,s)-of-(m,n):G lattice system; Multi-state system; Sys-
tem reliability with equal components 
 
 
Notations 
 
N : n-s+1. 
M+1 : number of states of the system and its components such that state M: per-

fect functioning and state 0: complete failure. 
W : {0,1,…,M}. 
τk  : minimum number of components in state ≥  τ out of m×s components, 

which cause system in state≥  τ , τk ≤  ms. 
xij  : state of component (i,j), xij ∈  W, for all i ∈{1,2,…,m} and j 

∈{1,2,…,n}. 
x : (x11, x12,…, xmn) vector of component states. 
φ (x) : System-state structure function,φ (x) ∈ W. 

τp  : Pr{xij = τ }, ∑ =
=

M

b bp
0

1. 
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τP  : Pr {xij≥ τ } =∑ =

M

b bp
τ

.            

τR  : Pr{ τφ ≥)(x }, R0 = 1, RM+1 = 0. 

τr  : Pr{ τφ =)(x } = τR - 1+τR , for τ =0,1,…,M. 
 
 
1. Introduction 
 
The consecutive-k-out-of-r-from-n: F system was introduced by Tong [7]. The con-
secutive-k-out-of-r-from-n: G and consecutive (r-k+1)-out-of-r-from-n: F systems 
are equivalent [8]. The consecutive-k-out-of-r-from-n: G system works if and only 
if at least k components out of r consecutive work. An algorithm for evaluating the 
exact reliability of a consecutive-k-out-of-r-from-n: F system was suggested by A. 
Habib and T. Szántai [1]. As consecutive-k-out-of-r-from-n: G system involves 
consecutive-k-out-of-n: G system (when k = r) and k-out-of-n: G system (when r = 
n) as special cases. The simple k-out-n: G system was generalized to the multi-state 
case [5] where the system and its components may be in one of M+1 possible states: 
0,1,…and M. This system is in state τ or above if and only if at least τk components 
are in state τ or above. Generalizations of the consecutive-k-out-of-n:F system have 
been reported in a considerable number of papers [6]. Another generalization is 
multi-state consecutive k-out-of-n: G system [4] and extended in Ref.[10]. This sys-
tem is in state τ or above if and only if at least consecutive τk components are in 
state τ or above. Also the consecutive-k-out-of-r-from-n: G system was generalized 
to the multi-state case where the reliability was calculated for a special 
case )...( 21 Mkkk ≤≤≤ [2]. This system is in state τ or above if and only if at least 

τk components out of r consecutive are in state τ or above. Another generalization 
of consecutive-k-out-of-r-from-n: G system is linear k-within-(m,s)-of-(m,n):G lat-
tice system. The linear k-within-(m,s)-of-(m,n):G and linear (ms-k+1)-within-(m,s)-
of-(m,n):F lattice systems are equivalent [8]. The system works if and only if the 
rectangles of dimension m×s contain at least k components work. An algorithm for 
reliability evaluation system was provided by Daming Lin and Ming J. Zuo [3]. 
This paper proposes a model that generalizes the linear k-within-(m,s)-of-(m,n):G 
lattice system to multi-state case. In this model the system consists of mn compo-
nents arranged in m rows and n columns. Both the system and its components can 
have different states: from complete failure up to perfect functioning:0,1,2,…,M. 
The system is in state τ or above if and only if the rectangles of dimension m×s 
contain at least τk components are in state τ or above. An algorithm is provided for 
evaluating reliability of a special case of multi-state k-within-(m,s)-of-(m,n):G lat-
tice system with equal components )...( 21 Mkkk ≤≤≤ . The algorithm is based on 
the application of a special case taken from A. Habib et al. paper [2]. Also numeri-
cal results of the formerly published test examples and new examples are given. 
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2. Assumptions 

  
• The system is multi-state monotone [9]: 

- )x(φ  is nondecreasing in each argument. 
- ττττφτφ == ),...,,(  )(  for τ W∈ . 

• The xij are mutually S-independent. 
• The possible states of each component and of the system are ordered: State 0 

≤State 1≤  …≤State M. 
• k1 ≤   k2  ≤… ≤  kM . 

 
 

3. System Reliability Evaluation 
 

This section calculates the reliability of multi-state linear k-within-(m,s)-of-(m,n):G 
lattice system with equal component probability by the following two cases:- 
Case 1:- When s < N then 
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PP
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R −

= =

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∏∑ )1(

1
τττ  ,                  (1) 

τP =∑
=

M

b
bp

τ

,                               (2) 

ti = max (0, τk -m(s-i) - ∑
−

=

1

1

i

b
by ),   i = 1,2,…,s,           (3) 

ti = max (0, τk - ∑
−

+−=

1

1

i

sib
by ),    i = s+1, s+2,…,n.         (4) 

Further we can find the probabilities that the system is exactly in state τ for 
τ = 0, 1, . . . , M by using the following equations: 

1)Pr( +−=== τττ τφ RRr ,    for M,...,1,0=τ ,         (5) 

1100 1)0Pr( RRRr −=−=== φ ,                (6) 

MM RMr === )Pr(φ ,                   (7) 
Note:- The equation (1) contains n summations. The lower bounds of these sum-
mations depend on others, so we can not calculate these summations as separated. 
As we will illustrate by the following example.   
 
 
Illustrated example: 

 
Consider a multi-state linear k-within-(m,s)-of-(m,n):G lattice system with the 

following data:  
m=3, n=4, s=2, M=3, N=3, k1=3, k2=4, k3=5,  
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p0=0.1, p1=0.3, p2=0.4, p3=0.2, P1=0.9, P2=0.6, P3=0.2 
This system contains three rectangles of dimension 3×2. The system is in state τ or 
above if and only if every rectangle contains at least τk components are in state τ or 
above.  
For state 3: 
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t1 = max (0,5-3)=2,          t2 = max (0,5-y1),    Using (3) 
t3 = max (0,5-y2),          t4 = max (0,5-y3)    Using (4) 
And so, For state 2: 
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t1 = max (0,4-3)=1,          t2 = max (0,4-y1),    Using (3) 
t3 = max (0,4-y2),          t4 = max (0,4-y3)    Using (4) 
Similarly, For state 1: 
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t1 = max (0,3-3)=0,          t2 = max (0,3-y1),    Using (3) 
t3 = max (0,3-y2),          t4 = max (0,3-y3)    Using (4) 
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So we can find the probabilities that the system is exactly in state τ for τ = 

0,1,2,3 by using the equations (5-7) as the following: 
,003620.0996380.011 10 =−=−= Rr  

,738794.0257586.0996380.0211 =−=−= RRr  
,257584.0000002.0257586.0322 =−=−= RRr  

000002.033 == Rr  
Case 2:- When s≥N then 
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mi = m,     i = 1,2,…,N-1,N+1,…,2N-1,  
mN = m (2s - n), 
ti = max (0, τk - m(s-i) - ∑
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by ),  i = N,…,2N-1.                 (10) 

 
 
Illustrated example: 

 
Consider a multi-state linear k-within-(m,s)-of-(m,n):G lattice system with the 

following data:  
m=3, n=5, s=4, M=3, N=2, k1=8, k2=10, k3=12,  
p0=0.1, p1=0.2, p2=0.3, p3=0.5, P1=0.9, P2=0.8, P3=0.5 
This system contains two rectangles of dimension 3×4. The system is in state τ or 
above if and only if every rectangle contains at least τk components are in state τ or 
above.  
For state 3: 
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t1 = max (0,12-9)=3,                  Using (9) 
t2 = max (0,12-y1),      t3 = max (0,12-y2)          Using (10) 
And so, For state 2: 
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t1 = max (0,10-9)=1,                  Using (9) 
t2 = max (0,10-y1),      t3 = max (0,10-y2)          Using (10)  
Similarly, For state 1: 
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t1 = max (0,8-9)=0,                   Using (9) 
t2 = max (0,8-y1),        t3 = max (0,8-y2)          Using (10)  
So we can find the probabilities that the system is exactly in state τ for τ = 0,1,2,3 
by using the equations (5-7) as the following: 

,007186.00.99281411 10 =−=−= Rr  
,539134.00.4536800.992814211 =−=−= RRr  
,257555.0000031.0257586.0322 =−=−= RRr  

0.00003133 == Rr  
 
 
5. Numerical Results 
 
The same results of some test examples given by A. Habib et al. [2] for calculation 
the reliability of multi-state consecutive k-out-of-m-from-n:G system be in Table 1 
when the components have the same probabilities (such that p0=0.1, p1=0.3, p2=0.4 
and p3=0.2) by using equations (1) and (8) to show that the multi-state consecutive 
k-out-of-m-from-n:G system is a special case of the multi-state linear k-within-
(m,s)-of-(m,n):G lattice system when m=1. A new examples for calculation the re-
liability of the multi-state linear k-within-(m,s)-of-(m,n):G lattice system with 
W={0,1,2,3}given in Table 2 where the components have the same probabilities 
(p0=0.1, p1=0.2, p2=0.3 and p3=0.4) by using equations (1) and (8). 
 
6. Conclusions 

 
This paper proposes a model that generalizes linear k-within-(m,s)-of-(m,n):G lat-
tice system to multi-state case. An algorithm for evaluating reliability of a special  
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case of multi-state linear k-within-(m,s)-of-(m,n):G lattice system with equal compo-
nents )...( 21 Mkkk ≤≤≤ . The numerical results showed that: 
 

1. The multi-state consecutive k-out-of-r-from-n: G system and linear k-within-
(m,s)-of-(m,n):G lattice system are special cases of the multi-state linear k-
within-(m,s)-of-(m,n):G lattice system (when m=1 and M=1 respectively). 

2. For all τ we have∑ =
=

M

b br0
1 

 
3. τr  or τR  satisfies the probability distribution of the system in various states. 

 
 
 
 
 
 
 
Table 1:-  
Multi-state Linear k-within-(1,s)-of-(1,n):G Lattice System (p0=0.1, p1=0.3, p2=0.4, p3=0.2). 

n s k1 k2 k3 R1 R2 R3 

20 8 3 5 7 0.9997903 0.1614302 0.0000000
40 15 12 13 14 0.7513515 0.0000194 0.0000000
50 20 17 18 19 0.5520580 0.0000002 0.0000000
        
15 10 4 6 7 0.9999643 0.4171952 0.0000273
30 20 16 17 18 0.8988619 0.0014037 0.0000000
50 30 27 28 29 0.3888692 0.0000000 0.0000000

 
 
 
 
Table 2:-  
Multi-state Linear k-within-(3,s)-of-(3,n):G Lattice System (p0=0.1, p1=0.2, p2=0.3 and p3=0.4). 
s=2, k1=4, k2=5, k3=6  s=5, k1=12, k2=13, k3=14 
n R1 R2 R3  n R1 R2 R3 

5 0.9464318 0.0924460 0.0000011  5 0.9444444 0.1268277 0.0000252 
10 0.8866368 0.0069671 0.0000000  10 0.8402642 0.0104280 0.0000000 
15 0.8306196 0.0005264 0.0000000  15 0.7487573 0.0007965 0.0000000 
20 0.7781416 0.0000398 0.0000000  20 0.6672703 0.0000607 0.0000000 
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