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Abstract

In this paper, we find the numbers of positive and negative eigen-
values of integral operators with certain rational kernels.
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1 Introduction and Preliminaries

In this work we give some examples regarding the numbers of eigenvalues of
integral operators with some certain rational kernels k. In this section we begin
by setting up some notation given by G.Little in [2] with some modifications
and we introduce some definitions and theorems.

For any compact symmetric operator T on a Hilbert space H let us denote:

(a) λ+
n (T ) the positive eigenvalues of T in decreasing order

λ+
1 (T ) ≥ λ+

2 (T ) ≥ λ+
3 (T ) ≥ ...

with repetitions to account for multiplicities and λ−
n (T ) the negative

eigenvalues in increasing order.

(b) N+(T ), N−(T ) the number of positive and the number of negative eigen-
values of T , respectively, 0 ≤ N+(T ), N−(T ) ≤ +∞.

1This work was supported by the Zonguldak Karaelmas University research project
2007/2-13-04-15.
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Let k : I×I → C, I = [a, b] , −∞ < a < b < +∞ be a continuous function.
Then the integral operator K : L2(I) → L2(I) with kernel k is defined by

Kf(s) =

∫
I

k(s, t)f(t)dt.

It is well known that K is compact and the adjoint K∗ of K is an integral
operator with kernel k∗, where

k∗(t, s) = k(s, t).

So if k(t, s) = k(s, t), then K is a self-adjoint (symmetric) operator.

Definition 1 ([2]) An open set E ⊆ C2 is called symmetric if (z, w) ∈ E
implies (w, z) ∈ E. A complex-valued function k on E is called a symmetric
analytic kernel on E if

(a) k is continuous on E,

(b) k (z, w) = k (w, z), for all (z, w) ∈ E,

(c) k is analytic in its first variable at all points of E.

If I is a (bounded) closed real interval such that I × I ⊆ E and k is a
symmetric analytic kernel on E then I is called admissable for k. In this case
the integral operator K on L2(I) with kernel k is compact and symmetric.
We use Ad(k) to denote the set of all admissable intervals for k, N+(k, I) for
the sum of the multiplicities of the (strictly) positive eigenvalues of K, and
N−(k, I) for the sum of the multiplicities of the negative eigenvalues of K. In
the previous context N+(k, I) = N+(K) ve N−(k, I) = N−(K). Also we will
use λ+(k, I) to denote λ+(K) and λ−(k, I) to denote λ−(K).

Remark 2 ([1]) (a) A symmetric operator T on a Hilbert space H is called
strictly positive if it is positive (i.e. (Tf, f) ≥ 0 for all f ∈ L2(J), written
T ≥ 0) and injective.

(b) If T is a strictly positive compact linear operator on a Hilbert space H,
then ranT = H, where ranT is the range of operator T, so that N+ (T ) =
dim H, in particular if H = L2 (I) for some interval then N+ (T ) = ∞.

(c) If T, S are compact positive operators on a Hilbert Space H and T −S ≥ 0
(written T ≥ S) then S strictly positive implies T strictly positive.

(d) Let T and S be two integral operators on L2 (I) with continuous kernels k
and l on I × I respectively. In the sequel we shall say that k is positive

definite when T ≥ 0. We shall use the notation k (s, t)
◦≥ 0 and we shall

always understand that s, t ∈ I. In general we will write k (s, t)
◦≥ l (s, t)

when T ≥ S.
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Definition 3 (1, Definition 1.4.2 ) Let T be an integral operators on L2 (J)
with kernel k and T ′ be an integral operator on L2 (I) with kernel k′.

(a) We say that T is symmetrically equivalent to T ′ if

T ′ = MTM∗ (1.1)

for some continuous and invertible linear operator M : L2 (J) → L2 (I).

(b) If M in (1.1) is a unitary operator then we say that T is unitarily equiv-
alent to T

′
.

Note that unitary equivalence implies symmetric equivalence.

Lemma 4 (1, Lemma 1.4.3) (a) T unitarily equivalent to T ′ implies λ±
n (T ) =

λ±
n (T ′).

(b) T symmetrically equivalent to T ′ implies N± (T ) = N± (T ′) .

Let I = [−ρ, ρ], (ρ > 0) and let L2
e(I), L2

o(I) be the spaces of even, odd
functions in L2(I) respectively. Given f ∈ L2(I), write fe = projection of f
on L2

e(I) and fo = projection of f on L2
o(I). That is, we can write f = fe +fo.

The following theorem will play a central role while calculating the numbers
of eigenvalues.

Theorem 5 (1, Theorem 1.2.3 ) Let I = [−ρ, ρ], where ρ > 0, and suppose
that k is a continuous symmetric kernel on I × I satisfying

k(s, t) = k(−s,−t) (s, t ∈ I) .

If T is the integral operator on L2(I) corresponding to k, then

(a) L2
e(I) and L2

o(I) are invariant subspaces of T (i.e T (L2
e(I)) ⊆ L2

e(I) and
T (L2

o(I)) ⊆ L2
o(I)).

(b) if Te : L2
e(I) → L2

e(I) is the restriction of T to L2
e(I) then Te is unitarily

equivalent to the integral operator T+ on L2(0, ρ) given by

T+g(s) =

∫ ρ

0

(k(s, t) + k(s,−t))g(t)dt
(
g ∈ L2(0, ρ), 0 ≤ s ≤ ρ

)
.

(c) if To : L2
o(I) → L2

o(I) is the restriction of T to L2
o(I) then To is unitarily

equivalent to the integral operator T− on L2(0, ρ) given by

T−g(s) =

∫ ρ

0

(k(s, t) − k(s,−t))g(t)dt
(
g ∈ L2(0, ρ), 0 ≤ s ≤ ρ

)
.
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The next remark is very useful to calculate the positive and negative num-
bers of eigenvalues.

Remark 6 (1, Remark 1.2.4 ) If Te ≥ 0 and To ≤ 0 then

N+(T ) = N+(Te) and N−(T ) = N−(To).

Lemma 7 (3, Lemma 2) Let S, T be symmetric integral operators on L2 (I)
with kernels

1

q (s, t)
,

1

q (s, t) − r (s, t)

respectively, and suppose that

(a) q and r are continuous on I × I;

(b) q (s, t) = q (t, s), r (s, t) = r (t, s) on I × I;

(c) |r (s, t)| < q (s, t) on I × I.

If S is positive and r is a positive definite kernel on I, then T is positive
and S ≤ T ; in particular rank T ≥ rank S and 0 ≤ λn (S) ≤ λn (T ) for
all n ≥ 0.

2 Main Result

We are ready to give our main result.

Theorem 8 Let

k (s, t) =
1

(A + st)2n , n ∈ N

where A > 0 and suppose I = [−ρ, ρ] is a symmetric interval where ρ > 0
is small enough to ensure that I ∈ Ad (k). Let T be the integral operator on
L2 (I) corresponding to k. Then N+ (T ) = N− (T ) = ∞.

Proof. Since I ∈ Ad (k) ,

q(s, t) = (A + st)2n �= 0

for all s, t ∈ I so that the integral operator T on L2 (I) with kernel k is compact
and symmetric. Clearly k (s, t) = k (−s,−t). By Theorem 5, L2

e (I) and L2
o (I)

are invariant subspaces of T where Te : L2
e(I) → L2

e(I) is a operator with kernel

ke (s, t) =
1

2
[k(s, t) + k(s,−t)]
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and To : L2
o(I) → L2

o(I) is a operator with kernel

ko (s, t) =
1

2
[k(s, t) − k(s,−t)]

and T = Te + To. Firstly, we will show that Te ≥ 0 with N+ (Te) = ∞ by
Remark 6 and then we will investigate the number of negative eigenvalues of
this operator. Now note that

(s + t)2n = C (2n, 0) s2nt0 + C (2n, 1) s2n−1t1 + C(2n, 2)s2n−2t2 + ... + C (2n, 2n) s0t2n.

Here C (n, r) =
n!

(n − r)!r!
where n and r are integers. We have

ke (s, t) =
1

2
[k (s, t) + k (s,−t)]

=
1

2

[
1

(A + st)2n +
1

(A − st)2n

]

≥ 1

C (2n, 0)A2n + C(2n, 2)A2n−2s2t2 + ... + C (2n, 2n)A0s2nt2n

= l(s, t)
◦≥ 0

so that Te ≥ 0 and N+ (Te) = ∞ because of Theorem 7, Remark 2(c) and the
operator L corresponding to kernel l(s, t) is positive. To complete the proof
let us investigate the case of operator To. Now we want to show that To ≤ 0
with N− (To) = ∞. To do this let T ′ = −To and k′ = −ko. It is sufficient to
show that T

′ ≥ 0. Since

ko (s, t) =
1

2
[k (s, t) − k (s,−t)]

we have

k′ (s, t) =
1

2
[k (s,−t) − k (s, t)]

=
1

2

[
1

(A − st)2n − 1

(A + st)2n

]

=
C (2n, 1)A2n−1st + C(2n, 3)A2n−3s3t3 + ... + C (2n, 2n − 1)As2n−1t2n−1

(A + st)2n (A − st)2n

=
C (2n, 1)A2n−1st

(A2 − s2t2)2n +
C(2n, 3)A2n−3s3t3

(A2 − s2t2)2n + ... +
C (2n, 2n − 1)As2n−1t2n−1

(A2 − s2t2)2n

= l1 + l3 + ... + lk.
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where

lk =
C (2n, k)A2n−ksktk

(A2 − s2t2)2n , k = 1, 3, 5, ...., 2n − 1.

Firstly we investigate the kernel l1(s, t). Let

M1f (s) =
√

C (2n, 1)A2n−1s

be the multiplication operator then we have

l1(s, t) =
C (2n, 1)A2n−1st

(A2 − s2t2)2n

=
√

C (2n, 1)A2n−1s
1

(A2 − s2t2)2n

√
C (2n, 1) A2n−1t.

If we take

m1 (s, t) =
1

(A2 − s2t2)2n

then we obtain

l1 = M1m1M
∗
1 .

By m1(s, t)
◦≥ 0 and the unitarily equivalence in Definition 3, we can see that

l1 = M1mM∗
1 ≥ 0. Now we do the same operations to the kernel l3 (s, t) . Let

M3f(s) =
√

C(2n, 3)A2n−3s3

be the multiplication operator then we have

l3 (s, t) =
C(2n, 3)A2n−3s3t3

(A2 − s2t2)2n

=
√

C(2n, 3)A2n−3s3 1

(A2 − s2t2)2n

√
C(2n, 3)A2n−3t3

If we set

m3 (s, t) =
1

(A2 − s2t2)2n

we have l3 = M3m3M
∗
3 . Again by m3(s, t)

◦≥ 0 and the unitarily equivalence in
Definition 3, we can see that

l3 = M3m3M
∗
3 ≥ 0.
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Finally we take the kernel lk (s, t) for any k = 2n − 1, n ∈ N. Let

Mkf(s) =
√

C (2n, 2n − 1)As2n−1

be the multiplication operator then we have

lk (s, t) =
C (2n, 2n − 1) As2n−1t2n−1

(A2 − s2t2)2n

=
√

C (2n, 2n − 1)As2n−1 1

(A2 − s2t2)2n

√
C (2n, 2n − 1)At2n−1.

If we let

mk (s, t) =
1

(A2 − s2t2)2n

then it can be seen that lk = MkmkM
∗
k . Since mk(s, t)

◦≥ 0 and the unitarily
equivalance in Definition 3, we have

lk = MkmkM
∗
k ≥ 0.

Thus we obtain l1, l3, ..., lk ≥ 0. Hence

k′(s, t) = l1(s, t) + l3(s, t) + ... + lk(s, t) ≥ 0

so T ′ ≥ 0. Because of the T ′ = −To, we have To ≤ 0 and N− (To) = ∞. Now
we obtained the desired conclusion, i.e N+ (T ) = N− (T ) = ∞.
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