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Abstract

Water pollution assessment problems arise frequently in environ-
mental science. The hydrodynamic model is used to simulated current
in the reservoir that provides the velocity and height of the water. In
this research, the numerical computation of velocity and water eleva-
tion in two-dimensional non-linear hydrodynamic model is considered.
The simulating processes, the Lax-Wendroff method is used to solve the
model. The accuracy of the models is tested by the illustrative example.
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1 Introduction

The increases in an industrial occupation is the principal reason for the growth
of pollution. The methods to detect the amount of pollutant both in the air
and water mostly are conducted by a field measurement and a mathematical
simulation. For the shallow water mass transport problems that presented
in [1], the method of characteristics has been reported as being applied with
success, but it presents in real cases some difficulties. In [4] and [6], the
finite element method for solving the water pollution models in one- and two-
dimensional water areas are presented, respectively. The most of mathematical
model require data concerning with velocity of the current at any point in
the domain. The hydrodynamic model provides the velocity field and tidal
elevation of the water. Those results are data for the dispersion model. In
[5], they used the finite difference method to the hydrodynamic model with
constant coefficients in the uniform reservoir.

Averaging the equation over the depth, discarding the term due to Coriolis
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force, shearing stresses and surface wind, it follows that the two-dimensional
non-linear shallow water equation is applicable [3]. In this research, we use
the Lax-Wendroff method to approximate the velocity and the tidal elevation
with non-linear terms.

2 The Hydrodynamic Model

The continuity and momentum equations are govern the hydrodynamic be-
havior of the reservoir. Averaging the equations over the depth, discarding
the term due to Coriolis parameter, shearing stresses and surface wind. The
well-known two-dimensional shallow water equations

∂ζ

∂t
+

∂

∂x
[(h + ζ)u] +

∂

∂y
[(h + ζ)v] = 0, (1)

∂u

∂t
+ g

∂ζ

∂x
= 0, (2)

∂v

∂t
+ g

∂ζ

∂y
= 0. (3)

where h(x, y) be the depth measured from the mean water level to the bed
of the reservoir, ζ(x, y, t) is the elevation from the mean water level to the
temporary water surface or the tidal elevation, g is the acceleration due to
gravity, and u(x, y, t) and v(x, y, t) are the velocity components, for all (x, y) ∈
[0, l] × [0, l]. We now introduce the two-dimensional non-linear shallow water
equations with dimensionless form by letting U = u/

√
gh, V = v/

√
gh, X =
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√
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in Ω × [0, T ] where Ω = (0, 1) × (0, 1) with the initial conditions ∂Z
∂T

= 0 and
Z(X, Y, 0) = f(X, Y ). The boundary conditions Z(0, Y, T ) = Z(1, Y, T ) =
Z(X, 0, T ) = Z(X, 1, T ) = 0 at ∂Ω.

3 The Numerical Technique

The equations (4)-(6) can be written in the matrix form
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, (7)
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where
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W1 = Z, W2 = (1+XY )U and W3 = (1+XY )V . We now discretize Eq.(7) by
dividing the interval [0, 1] into L and M subintervals such that LΔX = 1 and
MΔY = 1, and the interval [0, T ] into N subintervals such that NΔT = T .
We can then approximate W1(Xl, Ym, Tn) by W n

1l,m
, value of the difference

approximation of W1(X, Y, T ) at point X = lΔX, Y = mΔY and T = nΔT ,
where 0 ≤ l ≤ L, 0 ≤ m ≤ M and 0 ≤ n ≤ N , and similarly defined for
W n

2l,m
and W n

3l,m
. The grid point (Xl, Ym, Tn) are defined by Xl = lΔX for

all l = 0, 1, 2, . . . , L, Ym = mΔY for all m = 0, 1, 2, . . . , M and Tn = nΔT
for all n = 0, 1, 2, . . . , N in which L,M and N are positive integers. Using
the Lax-Wendroff method [2] to Eq.(7), we can simplified the following finite
difference equation
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and p = Δt/Δx. A stability analysis of Lax-Wendroff scheme (9) with matrices
A and B has shown in [2]. The Lax-Wendroff scheme is stable if p|λ0| ≤

1
2
√

2
where |λ0| = max{|λA|, |λB|} where λA, λB are eigenvalues of A and B

respectively.

4 The Numerical Experiment

We consider the uniform reservoir with dimension 3.2×3.2 km and the constant
depth h = 1 m. The reservoir is meshed with 6,400 grids points with Δx =
Δy = 40 m and taking time interval Δt = 2.5 sec. Initially the water in the
reservoir is assumed to be motionless U = 0, V = 0 and the water elevation is
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specified Z(X, Y, 0) = X(1 − X)Y (1 − Y ). Using the equation (9), the water
elevation and velocity in x-direction and y-direction are shown in Tables 1-3
respectively.

5 Conclusions

In this research the model for approximation of the the velocity of the reservoir
is constructed. This model can be applied to the real cases for current in the
reservoir by the industry, which we can change the inputs elevation f(x, y).
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Table 1: The elevation ζ(x, y, t) m for 0 ≤ x, y ≤ 3.2 km at t = 1 hr 24 min
y, x(m) 0 400 800 1,200 1,600 2,000 2,400 2,800 3,200

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
400 0.0000 0.0220 0.0293 0.0332 0.0295 0.0186 0.0162 0.0091 0.0000
800 0.0000 0.0293 0.0491 0.0534 0.0462 0.0375 0.0269 0.0151 0.0000

1,200 0.0000 0.0336 0.0536 0.0586 0.0545 0.0447 0.0316 0.0162 0.0000
1,600 0.0000 0.0294 0.0465 0.0547 0.0517 0.0434 0.0300 0.0152 0.0000
2,000 0.0000 0.0190 0.0380 0.0449 0.0434 0.0358 0.0244 0.0117 0.0000
2,400 0.0000 0.0160 0.0272 0.0317 0.0301 0.0244 0.0158 0.0080 0.0000
2,800 0.0000 0.0084 0.0141 0.0155 0.0148 0.0117 0.0084 0.0041 0.0000
3,200 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 2: The velocity u(x, y, t) m/s for 0 ≤ x, y ≤ 3.2 km at t = 1 hr 24 min
y, x(m) 0 400 800 1,200 1,600 2,000 2,400 2,800 3,200

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
400 0.0071 0.0308 0.0555 0.0763 0.0830 0.0872 0.0807 0.0501 0.0100
800 0.0020 0.0127 0.0294 0.0532 0.0656 0.0645 0.0542 0.0297 0.0064

1,200 0.0027 0.0062 0.0205 0.0324 0.0396 0.0399 0.0293 0.0100 0.0011
1,600 -0.0010 -0.0002 0.0035 0.0013 0.0027 0.0029 -0.0045 -0.0031 0.0007
2,000 -0.0015 -0.0107 -0.0214 -0.0279 -0.0362 -0.0429 -0.0426 -0.0276 -0.0035
2,400 -0.0064 -0.0233 -0.0469 -0.0734 -0.0904 -0.0963 -0.0779 -0.0564 -0.0024
2,800 -0.0121 -0.0516 -0.0955 -0.1262 -0.1415 -0.1350 -0.1097 0.0069 -0.0359
3,200 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 3: The velocity v(x, y, t) m/s for 0 ≤ x, y ≤ 3.2 km at t = 1 hr 24 min
y, x(m) 0 400 800 1,200 1,600 2,000 2,400 2,800 3,200

0 0.0000 0.0073 0.0024 0.0029 -0.0008 -0.0012 -0.0066 -0.0108 0.0000
400 0.0000 0.0303 0.0125 0.0063 0.0003 -0.0096 -0.0227 -0.0489 0.0000
800 0.0000 0.0562 0.0287 0.0196 0.0036 -0.0201 -0.0455 -0.0912 0.0000

1,200 0.0000 0.0772 0.0526 0.0313 0.0015 -0.0268 -0.0712 -0.1219 0.0000
1,600 0.0000 0.0839 0.0644 0.0389 0.0031 -0.0345 -0.0871 -0.1350 0.0000
2,000 0.0000 0.0880 0.0645 0.0388 0.0029 -0.0414 -0.0915 -0.1249 0.0000
2,400 0.0000 0.0797 0.0530 0.0278 -0.0051 -0.0401 -0.0658 -0.0942 0.0000
2,800 0.0000 0.0506 0.0286 0.0076 -0.0062 -0.0282 -0.0348 -0.0141 0.0000
3,200 0.0000 0.0212 0.0435 0.0614 0.0758 0.0751 0.0611 0.0455 0.0000


