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Abstract

In this work we consider the application of the Homotopy Perturba-
tion Method (HPM) to compute the eigenvalues and the corresponding
normalized eigenfunction of Sturm-Liouville problem. To illustrate the
method some experiments are provided. The results show the efficiency
and accuracy of the HPM.
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1 Introduction

Recently a great deal of interest has been focused on the application of HPM
for the solution of many different problems. The technique has been applied
with great success to obtain the solution of a large variety of nonlinear prob-
lems in both ordinary and partial differential equations and integro-differential
equations[1-10]. In this work we apply HPM to approximate eigenvalues and
eigenfunctions of a Sturm-Liouville problem. It will be shown that the method
is easy to use and to compute. Numerical experiments are presented to show
the efficiency of the method. A Sturm-Liouville (SL) boundary value problem
is a second order linear ordinary differential equation and can be written as:

Ly = − 1

w(x)
[
d

dx
(P (x)

dy

dx
) + Q(x)y] = λy, (1)

with the conditions:

α1y(a) + α2y
′
(a) = 0, (α1, α2) �= (0, 0),
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β1y(a) + β2y
′
(a) = 0, (β1, β2) �= (0, 0),

where y is a eigenfunction and λ is a eigenvalue. In this problem we assume
P (x), P

′
(x), Q(x) and w(x) are continuous functions on [a, b] . In addition

we assumed that P (x) and w(x) are positive functions on [a, b]. The concept
of an eigenvalue problem is rather important both in pure and applied math-
ematics. We refer to the books [11,12] and [13] where the subject is studied
in more details. Several authors have considered the numerical computation
of the eigenvalues and the corresponding normalized eigenfunctions [14-18]. In
section 2 we explain the HPM. Numerical experiments and their results are
presented in section 3. In section 4 conclusion is expressed.

2 Homotopy Perturbation Method [19]

To describe HPM, we consider the following non-linear differential equation:

A(u) − f(r) = 0, r ∈ Ω, (2)

with the boundary conditions:

B(u,
∂u

∂n
) = 0, r ∈ Ω,

where A is differential operator, B is boundary operator, f(r) is a known
analytic function and Γ is the boundary of the domain Ω. The operator A can
be divided into two parts L and N , where L is a linear and N is non-linear
operators. Therefore equation A(u) − f(r) = 0 can be rewritten :

L(u) + N(u) − f(r) = 0.

Now we construct a homotopy υ(r, p) : Ω × [0, 1] −→ R which satisfies

H(υ, p) = (1 − p)[L(u) − L(u0)] + p[A(υ) − f(r)] = 0, p ∈ [0, 1], r ∈ Ω, (3)

where p ∈ [0, 1] is embedding parameter, u0 is an initial approximation, which
satisfies the boundary conditions. Obviously we have:

H(υ, 0) = L(υ) − L(u0),

H(υ, 1) = A(υ) − f(r),

Changing process of p from zero to unity is just that of υ(r, p) from u0 to u(r).
We assume that the solution of equation:

H(υ, p) = (1 − p)[L(u) − L(u0)] + p[A(υ) − f(r)] = 0, p ∈ [0, 1], r ∈ Ω, (4)

can be written as a power series in p, υ = υ0 + pυ1 + p2υ2 + p3υ3 + · · · . By
setting p = 1, the approximation solution of A(u) − f(r) = 0 is obtained.
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3 Numerical experiments

In this section the numerical results of three Sturm-Liouville problems are
presented. We describe the method outlined in the previous section for these
problems.
Problem 3.1 Consider the boundary value problem:

−y′′ + y = λy; x ∈ (0, 1), (5)

with the boundary conditions:y(0) = y(1) = 0, x ∈ (0, 1).
Let L(y) = y′′ and N(y) = y − λy. We also assume that:

Y (x, p) = y0(x) + py1(x) + p2y2(x) + p3y3(x) + · · · . (6)

By substituting (6) in (4) and equating the coefficients of p we obtain:
coefficient of p0 : −y′′

0 = 0, y0(0) = 0,
coefficient of p1 : −y′′

1 + (λ − 1)y0 = 0, y′
1(0) = y1(0) = 0,

coefficient of p2 : −y′′
2 + (λ − 1)y1 = 0, y′

2(0) = y2(0) = 0,
.
.
coefficient of pn : −y′′

n + (λ − 1)yn−1 = 0, y′
n(0) = yn(0) = 0.

Therefore the solution of the problem is:

y(x, λ) = a
∞∑

k=0

(−1)k(λ− 1)k x2k+1

(2k + 1)!
=

a√
λ − 1

∞∑

k=0

(−1)k (
√

λ − 1 t)2k+1

(2k + 1)!
(7)

The infinite series converges to

y(x, λ) =
a√

λ − 1
sin(

√
λ − 1t), a �= 0. (8)

To satisfy the other boundary condition we have y(1) = 0, which implies the
eigenvalues are λn = 1 + n2π2, n = 0, 1, 2, · · ·. By this method in this case we
get the exact solution for both eigenvalues and eigenfunctions.
Problem 3.2 Consider the boundary value problem:

y′′ = λy; x ∈ (0, π), (9)

with the boundary conditions:y′(0) = y(π) = 0, x ∈ (0, π).
Let L(y) = y′′ and N(y) = −λy. We also assume that:

Y (x, p) = y0(x) + py1(x) + p2y2(x) + p3y3(x) + · · · (10)

By substituting (10) in (4) and equating the coefficients of p we obtain:
coefficient of p0 : y′′

0 = 0, y′
0(0) = 0,

coefficient of p1 : y′′
1 − λy0 = 0, y′

1(0) = y1(0) = 0,
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coefficient of p2 : y′′
2 − λy1 = 0, y′

2(0) = y2(0) = 0,
.
.
coefficient of pn : y′′

n − λyn−1 = 0, y′
n(0) = yn(0) = 0.

Therefore the solution of the problem is:

y(x, λ) = acos(
√

λx), a �= 0. (11)

To satisfy the other boundary condition we have y(π) = 0, which implies the
eigenvalues are λn = (2n+1

2
)2, n = 0, 1, 2, 3, .... By this method in this case we

get the exact solution for both eigenvalues and eigenfunctions.
Problem 3.3 Consider the boundary value problem:

y′′ = λy; x ∈ (0, π), (12)

with the boundary conditions:y(0) = y′(π) = 0, x ∈ (0, π). Let L(y) = y′′ and
N(y) = −λy. We also assume that:

Y (x, p) = y0(x) + py1(x) + p2y2(x) + p3y3(x) + · · · (13)

By substituting (13) in (4) and equating the coefficients of p we obtain:
coefficient of p0 : y′′

0 = 0, y′
0(0) = 0,

coefficient of p1 : y′′
1 − λy0 = 0, y′

1(0) = y1(0) = 0,
coefficient of p2 : y′′

2 − λy1 = 0, y′
2(0) = y2(0) = 0,

.

.
coefficient of pn : y′′

n − λyn−1 = 0, y′
n(0) = yn(0) = 0.

Therefore the solution of the problem is:

y(x, λ) = asin(
√

λx), a �= 0. (14)

To satisfy the other boundary condition we have y′(π) = 0, which implies the
eigenvalues are λn = (2n+1

2
)2, n = 0, 1, 2, 3, .... By this method in this case we

get the exact solution for both eigenvalues and eigenfunctions.

4 Conclusion

According to the results we have obtained, we infer that HPM is a powerful tool
for solving the eigenvalues and the corresponding normalized eigenfunction of
the Sturm-Liouville problem. We have experienced that, this method is easy
to implement and produces exact solution in these problems. Also, it competes
very well with Adomian decomposition method [17].
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