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Abstract
This work concerns an enlarged problem of the asymptotic compen-

sation for a class of disturbed systems. It consists to study, with respect
to the output of the system and a given tolerance zone C, the possibil-
ity to reduce asymptotically the effect of any disturbance by bringing
back the observation in the zone C. Under convenient hypothesis, we
prove the existence and the unicity of the optimal control ensuring this
compensation and we show how to find it.
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1 Problem statement

The notions of remediability and efficient actuators, ensuring the finite time
compensation of any disturbance, have been introduced firstly in the finite
time case [1, 2, 3, 4]. These notions are motivated by environmental and
pollution problems. It is shown that the remediability is weaker and more
flexible than the controllability [10, 11, 12, 15, 16], and hence that strategic
actuators [10, 11, 12] are efficient. The converse is not true.
Extensions to the asymptotic case are given in [5, 6, 7] where it is shown
that a system may be remediable without being stable or even stabilizable
[8, 9, 12, 13, 14, 15].
In the two cases, characterization results are established and various situations
are examined. Using the Hilbert Uniqueness Method (H.U.M.), it is shown how
to find the optimal control ensuring the compensation of a disturbance.

In this work, we consider a class of linear disturbed systems and we exam-
ine a more general problem which consists to study the possibility to reduce
asymptotically the effect of a disturbance by bringing the observation in a
given tolerance zone C.
This problem has been studied in the finite time case [3]. In the asymptotic
case, the situation is more complex and need a special and adapted approach.
Indeed, the enlarged asymptotic compensation problem is approximated by a
family of finite time problems. Then, under convenient hypothesis and using a
penalization method, the H.U.M. approach and convenient mathematical de-
velopments depending on time T and also on the other parameters, particularly
those considered in the penalization criterion, we establish the convergence of
the finite time results when T −→ +∞ and we deduce the main result showing
how to find the optimal control which ensures the enlarged asymptotic com-
pensation of a known or unknown disturbance.

Without loss of generality, we consider a class of disturbed linear systems
described by the following equation

(S)

⎧⎨
⎩

·
z(t) = Az(t) + Bu(t) + f(t)

z(0) = 0

(1)

where A generates a strongly continuous semigroup (s.c.s.g) (S(t))t≥0 on
the space X, B ∈ L(U, X), U is the control space, u ∈ L2(0, +∞; U) and
f ∈ L2(0, +∞; X) is a term of a known or unknown disturbance. X and U
are two real Hilbert spaces.

The system (1) is augmented by the output equation
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(E) y(t) = Cz(t) (2)

where C ∈ L(X, Y ), Y being the observation space (a Hilbert space).
In the usual case where the system is excited by p actuators (Di, gi)1≤i≤p and
where the observation is given by means of q sensors (Ωi, hi)1≤i≤q we have [10,

11, 12] U = R
p; Bu(t) =

p∑
i=1

giui(t) and Y = R
q; Cz = (〈h1, z〉 , · · · , 〈hq, z〉)tr.

The solution of (1) is given by

zu,f (t) = S(t)z0 +

∫ t

0

S(t − s)Bu(s)ds +

∫ t

0

S(t − s)f(s)ds

and the corresponding observation is given by

yu,f(t) = CS(t)z0 +

∫ t

0

CS(t − s)Bu(s)ds +

∫ t

0

CS(t − s)f(s)ds (3)

Let us note that in the normal case where f = 0 and u = 0, the observation
is given by:

y0,0(t) = CS(t)z0 (4)

But if the system is disturbed by a term f , the observation becomes

y0,f(t) = CS(t)z0 +

∫ t

0

CS(t − s)f(s)ds (5)

Generally, y0,f(.) �= CS(.)z0.
Then we introduce a control term Bu in order to reduce asymptotically the
effect of this disturbance by bringing asymptotically the observation in a given
zone of tolerance C, i.e. such that

For any f ∈ L2(0, +∞; X) , there exists u ∈ L2(0, +∞; U) satisfying:

y∞
u,f =

∫ +∞

0

CS(t)Bu(t)dt +

∫ +∞

0

CS(t)f(t)dt ∈ C (6)
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where C is a convex, closed and nonempty subset of Y. This notion is called
enlarged asymptotic remediability. Actuators ensuring the enlarged asymp-
totic remediability of any disturbance f ∈ L2(0, +∞; X) are said to be C-
efficient actuators.

In the particular case where C is a closed boule, B(0, ε) ⊂ Y , centered in
0 and with a radius ε > 0, these actuators will be said ε-efficient actuators. If
the operators

H∞ : L2(0, +∞; U) −→ X

u −→ H∞u =

∫ +∞

0

S(t)Bu(t)dt
(7)

and

H
∞

: L2(0, +∞; X) −→ X

f −→ H
∞

f =

∫ +∞

0

S(t)f(t)dt
(8)

are well defined, then (6) is equivalent to

CH∞u + CH
∞

f ∈ C (9)

Let us note that if

∃ k ∈ L2(0, +∞; R+) such that ‖S(t)‖ ≤ k(t); ∀t ≥ 0 (10)

then H∞ and H
∞

are well defined.

Remark 1.1
1- If (S(t))t≥0 is exponentially stable, i.e. if

∃β > 0 and ∃α > 0 such that ‖S(t)‖ ≤ βe−αt ; ∀t ≥ 0 (11)

then (10) is satisfied with k(t) = βe−αt ∈ L2(0, +∞; R+), consequently H∞

and H
∞

( and hence CH∞ and CH
∞

) are well defined.

2- In fact, the stability is not necessary and we need a weaker hypothesis
than (10). Indeed, we consider the operators K∞

C and R∞
C defined by
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K∞
C u =

∫ +∞

0

CS(t)Bu(t)dt (12)

and

R∞
C f =

∫ +∞

0

CS(t)f(t)dt (13)

We assume that

∃ k ∈ L2(0, +∞; R+) such that ‖CS(t)‖ ≤ k(t) ; ∀t ≥ 0 (14)

In this case, K∞
C and R∞

C are well defined and (9) becomes

K∞
C u + R∞

C f ∈ C (15)

3- Let us note that K∞
C and R∞

C may be well defined even if H∞ and H
∞

are not well defined.

2 Notion of asymptotic compensation

In this part, we recall the principal notions of exact and weak asymptotic re-
mediability and asymptotic efficient actuators and their main characterization
results. We consider the system described by (1) augmented by the output
equation (2).

2.1 Definitions and characterizations

Definition 2.1

i) (S)+(E) is exactly remediable asymptotically, if for every f ∈ L2(0, +∞; X),
there exists a control u ∈ L2(0, +∞; U) such that

K∞
C u + R∞

C f = 0 (16)

ii) (S)+(E) is weakly remediable asymptotically, if for every f ∈ L2(0, +∞; X)
and every ε > 0, there exists u ∈ L2(0, +∞; U) such that

‖K∞
C u + R∞

C f‖ < ε (17)
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Let B∗, (R∞
C )∗, S∗(·) and C∗ be the adjoint operators of B, R∞

C , S(·) and
C respectively and let X ′, U ′ and Y ′ be the dual spaces of X, U and Y .

The operator (R∞
C )∗ is defined by

(R∞
C )∗ : Y

′ −→ L2(0, +∞; X ′)

θ −→ (R∞
C )∗θ = S∗(·)C∗θ

(18)

Under hypothesis (14), we have the following general characterization re-
sults:

Proposition 2.2

i) (S) + (E) is exactly remediable asymptotically if and only if

Im(R∞
C ) = Im(K∞

C ) (19)

this is equivalent to

ii) ∃γ > 0 such that

‖S∗(·)C∗θ‖L2(0,+∞;X ′) ≤ γ ‖B∗S∗(·)C∗θ‖L2(0,+∞;U
′
)

Proposition 2.3

i) (S) + (E) is weakly remediable asymptotically if and only if

Im(R∞
C ) ⊂ Im(K∞

C )

or equivalently

ii) Ker(B∗(R∞
C )∗) = Ker((R∞

C )∗).

2.2 Notion of efficient actuators

Definition 2.4 Actuators (Ωi, gi)1≤i≤p are said to be asymptotically efficient,
or just efficient, if the corresponding system (S) + (E) is weakly remediable
asymptotically.
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Let us note that in the case of a system (S) with a dynamics A defined as
follows:

Az =
∑
n≥1

λn

rn∑
j=1

〈z, ϕnj〉ϕnj (20)

where λ1,λ2,· · · are real parameters such that λ1 > λ2 > · · · ;
{ϕnj; n ≥ 1, j = 1, · · · , rn} is an orthonormal basis of X, rn is the multiplicity
of the eigenvalue λn, A generates a s.c.s.g. (S(t))t≥0 defined by

S(t)z =
∑
n≥1

eλnt
rn∑

j=1

〈z, ϕnj〉ϕnj

We have the following characterization:

Proposition 2.5
Actuators (Ωi, gi)1≤i≤p are asymptotically efficient if and only if

Ker(C∗) =
⋂
n≥1

Ker(Mnfn) (21)

where Mn = (〈gi, ϕnj〉) 1≤i≤p ; 1≤j≤rn and

fn : Y ′ −→ R
rn

θ −→ fn(θ) = (〈C∗θ, ϕn1〉 , · · · , 〈C∗θ, ϕnrn〉)tr

(22)

where generally M tr is the transposal matrix of M.

In the case of sensors (Di, hi)1≤i≤q [10, 11, 12], the characterization be-
comes:

Proposition 2.6
Actuators (Ωi, gi)1≤i≤p are asymptotically efficient if and only if

⋂
n≥1

Ker(MnGtr
n ) = {0} (23)

where Gn = (〈hi, ϕnj〉) 1≤i≤p ; 1≤j≤rn
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Remark 2.7
1) Let us note that in this case and using the analyticity property, the semi-
norm

‖θ‖2
FT,0

=

∫ T

0

‖B∗S∗(t)C∗θ‖2
U dt

is a norm on Y for any T > 0, and hence for T ≥ T0 (the notation FT,0

will be specified later).
2) In the case of q sensors, Y is a finite dimension space (Y = R

q). Conse-
quently, all the norms on Y are equivalent and the notions of weak and exact
asymptotic remediability are equivalent. The weak and the strong convergence
are also equivalent, and one talk only about convergence.

2.3 Asymptotic compensation with minimal energy

For f ∈ L2(0, +∞; X), does exists an optimal control u ∈ L2(0, +∞; U) such
that

K∞
C u + R∞

C f = 0

i.e. which minimizes the function J(v) = ‖v‖2 on the set

Uad =
{
v ∈ L2(0, +∞; U) / K∞

C v + R∞
C f = 0

}

This problem was resolved using an extension of the HUM approach. In-
deed, for θ ∈ Y ′ ≡ Y , we consider

‖θ‖F∞ =

(∫ +∞

0

‖B∗S∗(t)C∗θ‖2
U ′ dt

) 1
2

(24)

where F∞ is a space which will be specified.
‖.‖F∞ is a semi-norm on Y . If Ker((R∞

C )∗) = {0}, then ‖·‖F∞ is a norm on Y
if and only if (S) + (E) is weakly remediable asymptotically.

Under this condition, we consider the space

F∞ = Y
‖·‖F∞ (25)

F∞ is a Hilbert space with the inner product
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〈θ, σ〉F∞ =

∫ +∞

0

〈B∗S∗(t)C∗θ,B∗S∗(t)C∗σ〉 dt ; ∀ θ, σ ∈ F∞ (26)

and the operator Λ∞
C defined on Y by

Λ∞
C θ =

∫ +∞

0

CS(t)BB∗S∗(t)C∗θdt = K∞
C (K∞

C )∗θ (27)

has a unique extension as an isomorphism from F∞ to F ′
∞ such that

〈Λ∞
C θ, σ〉Y = 〈θ, σ〉F∞ ; ∀ θ, σ ∈ F∞

and

‖Λ∞
C θ‖F ′∞

= ‖θ‖F∞ ; ∀ θ ∈ F∞

The following result shows how to find the optimal control ensuring the
asymptotic compensation of a disturbance f .

Proposition 2.8 If R∞
C f ∈ F ′

∞, then there exists a unique θf in F∞ such that

Λ∞
C θf = −R∞

C f (28)

and the control uθf
defined by

uθf
(t) = B∗S∗(t)C∗θf = (K∞

C )∗θf ; t > 0 (29)

verifies

K∞
C uθf

+ R∞
C f = 0

Moreover, uθf
is optimal with

∥∥uθf

∥∥
L2(0,+∞;U)

= ‖θf‖F∞ (30)



1534 L. AFIFI, M. HAKAM, M. BAHADI and A. EL JAI

3 Notion of enlarged asymptotic remediability

3.1 Enlarged asymptotic remediability

Under hypothesis (14), we have the following definition.

Definition 3.1 A disturbance f ∈ L2(0, +∞; X) is said to be C-remediable
asymptotically if there exists u ∈ L2(0, +∞; U) such that

K∞
C u + R∞

C f ∈ C
where C is a convex, closed and non nonempty subset of Y , K∞

C and R∞
C

are respectively defined by (12) and (13).

We have the following characterization.

Proposition 3.2 The following properties are equivalent:

i) f is C-remediable asymptotically

ii) Im(K∞
C ) ∩ C1 �= ∅ where C1 = C − R∞

C f

Remark 3.3 If C = {0}, then we have a problem of exact asymptotic remedi-
ability.

3.2 Case where C is the boule B(0, ε)

Definition 3.4 We say that f is ε-remediable asymptotically if there exists
u ∈ L2(0, +∞; U) such that

‖K∞
C u + R∞

C f‖ ≤ ε

We have the following result which is analogous to that established in the
finite time case [3].

Proposition 3.5 The following properties are equivalent:

i) f is ε-remediable asymptotically
ii) Im(K∞

C ) ∩ B(R∞
C f, ε) �= ∅

iii)
∥∥PKer(B∗(R∞

C )∗)(R
∞
C f)

∥∥ < ε

where PF is the orthogonal projection on F, F is a closed subset of Y .

Remark 3.6
i) If f is ε-remediable asymptotically, then it’s ε′-remediable asymptotically,
for any ε′ > ε. The converse is not true.
ii) The cost increases when ε decreases.
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4 Enlarged asymptotic remediability with min-

imum energy

4.1 Problem statement

Let C be a convex, closed and nonempty subset of Y and f ∈ L2(0, +∞; X).
Under the weak asymptotic remediability hypothesis, we consider the following
problem (P ) of enlarged asymptotic compensation with minimum energy

(P )

{
min J(u) with J(u) = ‖u‖2

subject to K∞
C u + R∞

C f ∈ C (31)

We suppose that the disturbance f is C-remediable asymptotically, the
problem (P ) is well defined and has a unique solution v∗ in the set of admissible
controls defined by

Uad =
{
u ∈ L2(0, +∞; U)/K∞

C u + R∞
C f ∈ C}

The solution v∗ of (P ) is characterized by

J(v∗)(v − v∗) ≥ 0 ; ∀v ∈ Uad

i.e.

〈v∗, v − v∗〉 ≥ 0 ; ∀v ∈ Uad

Remark 4.1

1- The problem (P ) is a generalization of the following problem (P0) of
exact asymptotic compensation

(P0)

{
min ‖u‖2

subject to K∞
C u + R∞

C f = 0
(32)

It is sufficient to consider C = {0} .

2- If u∗ is the solution of the problem (P0), we have

‖v∗‖ ≤ ‖u∗‖
Hence the optimal cost corresponding to (P ) is reduced with respect to that

corresponding to (P0).
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3- The problem (P ) is also a generalization of the ε-remediability one, it
sufficient to consider C = B(0, ε).

4- If C1 and C2 are two nonempty, closed and convex subsets of Y such that
C1 ⊂ C2, then the C1-remediability implies the C2-remediability, and the cost is
decreasing when C is increasing.

4.2 The main result

We give hereafter the main result where we show the existence and the unicity
of the optimal control ensuring the C-asymptotic compensation of a distur-
bance, and we give its characterization as well as the minimum cost.
We consider, without loss of generality, the case where the dynamics A of the
system is given by (20) and the usual situation where the system is excited by
efficient actuators and where the observation (measures) is given by a finite
number of sensors. For the proof, the considered approach is not specific to
the considered case and can be extended to other systems and situations.

Theorem 4.2
If the convex and closed subset C of Y and f ∈ L2(0, +∞; X) are such that

◦
C ∩ (R∞

C f + F ′
∞) �= ∅

then

i) there exists a unique θf in F∞ such that

Λ∞
C θf + R∞

C f ∈ C (33)

and

〈θf , y − Λ∞
C θf − R∞

C f〉 ≥ 0 ; ∀y ∈ C ∩ (R∞
C f + F ′

∞) (34)

ii) The control uθf
defined by

uθf
(t) = B∗S∗(t)C∗θf ; ∀t > 0 (35)

is the unique solution of the problem (P ). Moreover, uθf
is optimal with

∥∥uθf

∥∥2

L2(0,+∞;U)
= ‖θf‖2

F∞
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4.3 Proof: Existence, unicity and characterization of
the optimal control

The unicity is easy and is proved using an extension of HUM. But the proof of
the existence is heavy and more complex, it is based on a combination of HUM
and a penalization method. The problem (P ) of asymptotic compensation is
firstly approximated by a finite time problem (PT ) conveniently chosen. Then,
for T sufficiently large, we consider an appropriate criterion depending on
another parameter α > 0. We establish intermediary and convergence results
respectively when α −→ 0 and T −→ +∞, which lead to the solution of the
initial problem (P ).

First, let us give the following remark.

Remark 4.3 The condition
◦
C ∩ (R∞

C f + F ′
∞) �= ∅ implies that there exists a

unique θ in F∞ such that

Λ∞
C θ + R∞

C f ∈
◦
C (36)

Since

Λ∞
C θ =

∫ +∞

0

CS(t)BB∗S∗(t)C∗θdt

=

∫ +∞

0

CS(t)Buθ(t)dt

= K∞
C uθ(t)

where uθ(t) = B∗S∗(t)C∗θ, then (36) becomes K∞
C uθ + R∞

C f ∈
◦
C.

If we note uT
θ = uθ|[0,T ]

, i.e. the restriction of uθ to [0, T ] and

vT
θ =

⎧⎨
⎩

uT
θ on [0, T ]

0 otherwise

then vT
θ converges to uθ in L2(0, +∞; U).

Moreover, there exists T0 > 0 such that for every T ≥ T0, the control
vT

θ ∈ L2(0, +∞; U) verifies
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∫ T

0

CS(t)BvT
θ (t)dt +

∫ T

0

CS(t)f(t)dt ∈
◦
C

In other words, there exists T0 > 0 such that the convex C is reached at any
time T ≥ T0.

Unicity:
Let θf and σf ∈ F ′

∞ be such that for every y ∈ C ∩ (R∞
C f + F ′

∞), we have:

〈θf , y − Λ∞
C θf − R∞

C f〉 ≥ 0 and 〈σf , y − Λ∞
C σf − R∞

C f〉 ≥ 0

Then for y = Λ∞
C σf + R∞

C f in the first inequality and y = Λ∞
C θf + R∞

C f in
the second one, we obtain:

〈θf , Λ
∞
C σf − Λ∞

C θf〉 ≥ 0 and 〈σf , Λ
∞
C θf − Λ∞

C σf〉 ≥ 0

hence

〈θf , Λ
∞
C σf − Λ∞

C θf 〉 + 〈σf , Λ
∞
C θf − Λ∞

C σf 〉 ≥ 0
⇐⇒ 〈θf − σf , Λ

∞
C σf − Λ∞

C θf 〉 ≥ 0
⇐⇒ −‖θf − σf‖2

F∞ ≥ 0
=⇒ ‖θf − σf‖F∞ = 0
=⇒ θf = σf .

Existence:
For T ≥ T0, we consider the following minimization problem

(PT )

⎧⎨
⎩

min ‖u‖2

subject to yT
u,f ∈ C

(37)

with

yT
u,f =

∫ T

0

CS(t)Bu(t)dt +

∫ T

0

CS(t)f(t)dt (38)

If we consider the operators KT
C and RT

C defined by

KT
Cu =

∫ T

0

CS(t)Bu(t)dt and RT
Cf =

∫ T

0

CS(t)f(t)dt
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then (38) becomes

yT
u,f = KT

Cu + RT
Cf

For θ ∈ Y ′ ≡ Y , let

‖θ‖2
FT,α

=

∫ T

0

‖B∗S∗(t)C∗θ‖2
U dt +

α2

T
‖θ‖2

Y (39)

‖·‖FT,α
is a norm; ∀ T > 0 and ∀ α > 0.

Hence, in the general case, the choice of such a norm doesn’t need the
hypothesis of remediability of the system on [0, T ] and is adapted to the devel-
oped approach which is not specific to the considered case and can be extended
to other systems and situations. Let us consider the space

FT,α = Y
‖·‖FT,α

FT,α is a Hilbert space with the inner product

〈θ, σ〉FT,α
=

∫ T

0

〈B∗S∗(t)C∗θ,B∗S∗(t)C∗σ〉U dt +
α2

T
〈θ, σ〉Y

and the operator ΛT
C defined on Y by

ΛT
Cθ =

∫ T

0

CS(t)BB∗S∗(t)C∗θ dt +
α2

T
θ

has a unique extension as an isomorphism from FT,α −→ F ′
T,α such that

〈
ΛT

Cθ, σ
〉

Y
= 〈θ, σ〉FT,α

; ∀ θ, σ ∈ FT,α

Remark 4.4

1- For every α > 0, we have ‖·‖FT,α
−→ ‖·‖F∞ when T −→ +∞.

2- For every θ ∈ Y , we have ΛT
Cθ −→ Λ∞

C θ when T −→ +∞.

3- The norm (39) can be generalized to

‖θ‖2
FT,α

=

∫ T

0

‖B∗S∗(t)C∗θ‖2
U dt +

αp

T q
‖θ‖2

Y (40)

with p ≥ 2 and q ≥ 1.
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4.3.1 Penalization criterion JT,α

For T ≥ T0, we consider the following criterion

JT,α(y, v) =
1

α

∥∥yT
v,f − y

∥∥2
+ ‖v‖2 (41)

with y ∈ Y and v ∈ L2(0, T ; U). We consider the following minimization
problem

(PT,α)

{
min JT,α(y, v)

y ∈ C and v ∈ L2(0, T ; U)
(42)

Proposition 4.5 The minimization problem (PT,α) with two variables admits
a solution (yT,α, vT,α).

Proof:
Let (y

(k)
T,α, v

(k)
T,α)k≥0 be a minimizing sequence.

JT,α(y
(k)
T,α, v

(k)
T,α) ↘ inf

(y,v)∈C×L2(0,T ;U)
JT,α(y, v)

when k −→ +∞.
The sequence (JT,α(y

(k)
T,α, v

(k)
T,α))k≥0 is bounded because it is convergent. Conse-

quently, there exists c1 > 0 such that JT,α(y
(k)
T,α, v

(k)
T,α) ≤ c1; ∀k ≥ 0.

Since
∥∥∥v

(k)
T,α

∥∥∥2

= JT,α(y
(k)
T,α, v

(k)
T,α) − 1

α

∥∥∥∥yT

v
(k)
T,α,f

− y
(k)
T,α

∥∥∥∥
2

≤ JT,α(y
(k)
T,α, v

(k)
T,α)

then
∥∥∥v

(k)
T,α

∥∥∥2

≤ c1; ∀k ≥ 0, i.e. (v
(k)
T,α)k≥0 is bounded in L2(0, T ; U).

The map v ∈ L2(0, T ; U) −→ KT
Cv =

∫ T

0

CS(t)Bv(t)dt ∈ Y is linear and

continuous, then there exists c2 > 0 such that

∥∥KT
Cv

∥∥ =
∥∥yT

v,f − yT
0,f

∥∥ ≤ c2 ‖v‖ ; ∀v ∈ L2(0, T ; U)

Consequently, (yT

v
(k)
T,α,f

)k≥0 is bounded in Y .

On the other hand∥∥∥∥yT

v
(k)
T,α,f

− y
(k)
T,α

∥∥∥∥
2

= αJT,α(y
(k)
T,α, v

(k)
T,α) − α

∥∥∥v
(k)
T,α

∥∥∥2

≤ αJT,α(y
(k)
T,α, v

(k)
T,α) ≤ αc1; ∀k ≥ 0
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then (y
(k)
T,α)k≥0 is bounded in Y .

Finally, the sequence (y
(k)
T,α, v

(k)
T,α)k≥0 is bounded in Y × L2(0, T ; U).

Hence, one can extract a convergent subsequence which converges to a limit
(yT,α, vT,α).

JT,α is continuous on Y × L2(0, T ; U), then

JT,α(yT,α, vT,α) ≤ lim inf
k

JT,α(y
(k)
T,α, v

(k)
T,α) = inf

(y,v)∈C×L2(0,T ;U)
JT,α(y, v)

Since C is closed, (yT,α, vT,α) ∈ C × L2(0, T ; U) and

inf
(y,v)∈C×L2(0,T ;U)

JT,α(y, v) ≤ JT,α(yT,α, vT,α)

then JT,α(yT,α, vT,α) = inf
(y,v)∈C×L2(0,T ;U)

JT,α(y, v)

i.e. (yT,α, vT,α) is a solution of (PT,α).

4.3.2 Characterization of the minimum of JT,α

We have the following results.

Proposition 4.6 Let (yT,α, vT,α) be a solution of (PT,α).

(yT,α, vT,α) verifies the inequalities

1

α

〈
yT,α − yT

vT,α,f , y − yT,α

〉
≥ 0 ; ∀y ∈ C (43)

and

− 1

α

〈
yT,α − yT

vT,α,f , y
T
v,f − yT

vT,α,f

〉
+ 〈vT,α, v − vT,α〉 ≥ 0 ; ∀v ∈ L2(0, T ; U)

(44)

Proof:
(yT,α, vT,α) satisfies the following necessary condition

J ′
T,α(yT,α, vT,α)(y − yT,α, v − vT,α) ≥ 0 ; ∀y ∈ C × L2(0, T ; U) (45)

Since
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J ′
T,α(yT,α, vT,α)(y, v) =

2

α

〈
yT

vT,α,f − y, yT
v,f − RT

Cf
〉
− 2

α

〈
yT

vT,α,f − yT,α, y
〉

+2 〈vT,α, v〉
then

J ′
T,α(yT,α, vT,α)(y − yT,α, v − vT,α) =

2

α

〈
yT

vT,α
− yT,α, yT

v,f − yT
vT,α,f

〉

− 2

α

〈
yT

vT,α,f − yT,α, y − yT,α

〉
+ 2 〈vT,α, v − vT,α〉

The necessary condition (45) becomes

1

α

〈
yT

vT,α,f − yT,α, yT
v,f − yT

vT,α,f

〉
− 1

α

〈
yT

vT,α,f − yT,α, y − yT,α

〉
+ 〈vT,α, v − vT,α〉 ≥ 0

(46)

By replacing v = vT,α in (46), we obtain (43).
By replacing y = yT,α in (46), we obtain (44).

Proposition 4.7 (yT,α, vT,α) is characterized by

〈dT,α, y − yT,α〉 ≥ 0 ; ∀y ∈ C (47)

vT,α(t) = B∗pT,α(t) (48)

where dT,α is given by

dT,α =
1

α
(yT,α − yT

vT,α,f ) (49)

and pT,α (·) is defined by

pT,α(t) = S∗(t)C∗dT,α (50)

i.e. the solution of the adjoint equation

⎧⎨
⎩

ṗT,α(t) = A∗pT,α(t)

pT,α(0) = C∗dT,α

(51)
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Proof:
In inequality (43) of proposition 4.6, the element dT,α given by (49) appears.

If we replace vT,α(·) by its value, the expression given by (44) becomes

− 1

α

〈
yT,α − yT

vT,α,f , y
T
v,f − yT

vT,α,f

〉
+

∫ T

0

〈B∗S∗(t)C∗dT,α, v(t) − vT,α(t)〉 dt

= − 1

α

〈
yT,α − yT

vT,α,f , y
T
v,f − yT

vT,α,f

〉
+

〈
dT,α,

∫ T

0

CS(t)B(v(t) − vT,α(t))dt

〉

= − 1

α

〈
yT,α − yT

vT,α,f , y
T
v,f − yT

vT,α,f

〉
+

〈
dT,α, yT

v,f − yT
vT,α,f

〉
= 0.

4.3.3 The convergence when α −→ 0

We have the following result.

Proposition 4.8 For every T ≥ T0 and when α decreases to 0:

1- The sequence (yT
vT,α,f − yT,α) converges strongly in Y to 0.

2- The sequence JT,α(yT,α, vT,α) is increasing and bounded and then con-
vergent.

3- The sequence (yT,α, vT,α, dT,α) is bounded in Y × L2(0, T ; U) × FT,0.

Proof:
1- For T ≥ T0 and using remark 4.3, there exists a control ûT in L2(0, T ; U)

such that yT
ûT ,f ∈ C. By noting ŷT = yT

ûT ,f , we have (ŷT , ûT ) ∈ C ×L2(0, T ; U),
and hence

JT,α(yT,α, vT,α) ≤ JT,α(ŷT , ûT ) = ‖ûT‖2 (52)

Then for every α > 0, we have

∥∥∥yT
vT,α,f − yT,α

∥∥∥2

= αJT,α(yT,α, vT,α) − α ‖vT,α‖2 ≤ αJT,α(yT,α, vT,α) ≤ α ‖ûT‖2

and hence lim
α−→0

∥∥∥yT
vT,α,f − yT,α

∥∥∥ = 0.

2- i) Using (52), (JT,α(yT,α, vT,α))α>0 is bounded.
ii) If δ ≤ α, we have

JT,α(y, v) ≤ JT,δ(y, v) ; ∀(y, v) ∈ C × L2(0, T ; U)

consequently
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JT,α(yT,α, vT,α) ≤ JT,α(yT,δ, vT,δ) ≤ JT,δ(yT,δ, vT,δ)

then JT,α(yT,α, vT,α) increases when α −→ 0.

3- i) (vT,α)α>0 is bounded because

‖vT,α‖2 ≤ JT,α(yT,α, vT,α) ≤ JT,α(ŷT , ûT ) = ‖ûT‖2

ii) The map v ∈ L2(0, T ; U) −→ yT
v,f ∈ Y is affine and continuous, then

there exists c3 > 0 such that

∥∥yT
v,f − RT

Cf
∥∥ ≤ c3 ‖v‖ ; ∀v ∈ L2(0, T ; U)

then (yT
vT,α,f )α>0 is bounded in Y because (vT,α)α>0 is bounded.

This shows that yT,α = (yT,α − yT
vT,α,f ) + yT

vT,α,f is bounded in Y .

iii- We have

‖dT,α‖2
FT,α

=

∫ T

0

‖B∗S∗(t)C∗dT,α‖2
U dt +

α2

T
‖dT,α‖2

Y

=

∫ T

0

‖vT,α‖2
U dt +

α2

T
‖dT,α‖2

Y

= ‖vT,α‖2
L2(0,T ;U) +

1

T
‖αdT,α‖2

Y

Since (αdT,α)α>0 is convergent, then it is bounded and (vT,α)α>0 is also
bounded. Consequently, (‖dT,α‖FT,α

)α>0 is bounded and hence (dT,α)α>0 is

bounded in FT,0.

Proposition 4.9 We consider a convergent subsequence of (yT,α, vT,α, dT,α)α>0,
with the same notation. Its limit (y∗

T , v∗
T , dT ) is characterized by

1- y∗
T = yT

v∗T ,f

2- v∗
T is a solution of the problem (PT ) given by (37).

3- The sequence JT,α(yT,α, vT,α) is increasing with a limit ‖v∗
T‖2 and (vT,α)α>0

converges strongly to v∗
T in L2(0, T ; U).

4- The control v∗
T is given by
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v∗
T (t) = B∗pT (t) (53)

where pT (t) = S∗(t)C∗dT , i.e. the solution of the adjoint equation

{
ṗT (t) = A∗pT (t)
pT (0) = C∗dT

(54)

5- The element dT is characterized by

〈
dT , y − yT

v∗T ,f

〉
≥ 0 ; ∀y ∈ C ∩ (RT

Cf + F ′
T,0) (55)

Proof:
1- The sequence (vT,α)α>0 converges weakly to v∗

T and the map v ∈
L2(0, T ; U) −→ yT

v,f − RT
Cf ∈ Y is linear and continuous, then yT

vT,α,f con-

verges to yT
v∗T ,f and hence

y∗
T = lim

α−→0
yT,α

= lim
α−→0

(yT,α − yT
vT,α,f ) + lim

α−→0
yT

vT,α,f

= 0 + lim
α−→0

yT
vT,α,f

= yT
v∗T ,f

2- The set C is closed, then yT
v∗T ,f = lim

α−→0
yT,α ∈ C.

Moreover, if v ∈ L2(0, T ; U) is such that yT
v,f ∈ C, then

‖vT,α‖2 = JT,α(yT,α, vT,α) − 1

α

∥∥∥yT
vT,α,f − yT,α

∥∥∥2

≤ JT,α(yT,α, vT,α) ≤ JT,α(yT
v,f , v) = ‖v‖2

(56)

i.e. ‖vT,α‖2 ≤ ‖v‖2, consequently

‖v∗
T‖2 ≤ lim inf

α
‖vT,α‖2 ≤ ‖v‖2

then (v∗
T ) is a solution of (PT ).
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3.i- We show in proposition 4.8 that the sequence JT,α(yT,α, vT,α) is increas-
ing when α is decreasing to 0.

ii- For any v ∈ L2(0, T ; U) such that yT
v,f ∈ C, we have using (56),

‖vT,α‖2 ≤ JT,α(yT,α, vT,α) ≤ ‖v‖2

Particularly for v = v∗
T , we have

‖vT,α‖2 ≤ JT,α(yT,α, vT,α) ≤ ‖v∗
T‖2 (57)

The weak convergence of (vT,α)α>0 to v∗
T implies

‖v∗
T‖2 ≤ lim inf

α
‖vT,α‖2 ≤ lim

α
JT,α(yT,α, vT,α) ≤ ‖v∗

T‖2

then

lim
α−→0

JT,α(yT,α, vT,α) = ‖v∗
T‖2

iii- Using inequality (57), we have

‖v∗
T‖2 ≤ lim inf

α
‖vT,α‖2 ≤ lim sup

α
‖vT,α‖2 ≤ ‖v∗

T‖2

and then ‖vT,α‖2 converges to ‖v∗
T‖2. Then, using the weak convergence of

(vT,α)α>0 to v∗
T , (vT,α)α>0 converges strongly to v∗

T in L2(0, T ; U).

4- Since vT,α(·) = B∗S∗(·)C∗dT,α, then for w ∈ L2(0, T ; U), we have

〈vT,α, w〉 =

∫ T

0

〈B∗S∗(t)C∗dT,α, w(t)〉dt

=

〈
dT,α,

∫ T

0

CS(t)Bw(t)dt

〉

=
〈
dT,α, yT

w,f − RT
Cf

〉

Since yT
w,f −RT

Cf ∈ F ′
T,0, from the weak convergence of (vT,α)α>0 to v∗

T and
the convergence of (dT,α)α>0 to dT , we deduce that
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〈v∗
T , w〉 =

〈
dT , yT

w,f − RT
Cf

〉

=

〈
dT ,

∫ T

0

CS(t)Bw(t)dt

〉

=

∫ T

0

〈B∗S∗(t)C∗dT , w(t)〉dt

and hence v∗
T (·) = B∗S∗(·)C∗dT .

5- The inequality (47) can be written

〈dT,α, yT,α〉 ≤ 〈dT,α, y〉 ; ∀y ∈ C
i.e.

〈
dT,α, yT,α − RT

Cf
〉 ≤ 〈

dT,α, y − RT
Cf

〉
; ∀y ∈ C (58)

We have

JT,α(yT,α, vT,α) =
1

α

∥∥∥yT
vT,α,f − yT,α

∥∥∥2

+ ‖vT,α‖2

=
1

α

〈
yT

vT,α,f − yT,α, yT
vT,α,f − yT,α

〉
+ ‖vT,α‖2

=
〈
dT,α, yT,α − yT

vT,α,f

〉
+ ‖vT,α‖2

=
〈
dT,α, yT,α − RT

Cf
〉 − 〈

dT,α, yT
vT,α,f − RT

Cf
〉

+ ‖vT,α‖2

=
〈
dT,α, yT,α − RT

Cf
〉 −

〈
dT,α,

∫ T

0

CS(t)BvT,α(t)dt

〉
+ ‖vT,α‖2

=
〈
dT,α, yT,α − RT

Cf
〉 −

∫ T

0

〈B∗S∗(t)C∗dT,α, vT,α(t)〉 dt + ‖vT,α‖2

=
〈
dT,α, yT,α − RT

Cf
〉 − ‖vT,α‖2 + ‖vT,α‖2

=
〈
dT,α, yT,α − RT

Cf
〉
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then

〈
dT,α, yT,α − RT

Cf
〉

= JT,α(yT,α, vT,α)

Consequently

lim
α−→0

〈
dT,α, yT,α − RT

Cf
〉

= lim
α−→0

JT,α(yT,α, vT,α)

= ‖v∗
T‖2

=

∫ T

0

〈B∗S∗(t)C∗dT , v∗
T (t)〉 dt

=

〈
dT ,

∫ T

0

CS(t)Bv∗
T (t)dt

〉

=
〈
dT , yT

v∗T ,f − RT
Cf

〉

For y − RT
Cf ∈ F ′

T,0 and when α −→ 0 in (58), we obtain

〈
dT , yT

v∗T ,f − RT
Cf

〉
≤ 〈

dT , y − RT
Cf

〉
; ∀y ∈ C ∩ (RT

Cf + F ′
T,0)

i.e.

〈
dT , y − yT

v∗T ,f

〉
≥ 0 ; ∀y ∈ C ∩ (RT

Cf + F ′
T,0)

4.3.4 The convergence when T −→ +∞
First, let us show the following results.

Proposition 4.10 The sequence (y∗
T , v∗

T )T≥T0 is bounded in Y ×L2(0, +∞; U).

Proof:
i- Using remark 4.3, there exists u ∈ L2(0, +∞; U) such that for T ≥ T0,

we have yT
uT ,f ∈ C with uT = u|[0,T ] and

vT =

{
uT on [0, T ]
0 otherwise

(59)
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converges to u in L2(0, +∞; U) when T −→ +∞.
Then, since (v∗

T ) is a solution of (PT ), we have

‖v∗
T‖ ≤ ‖uT‖L2(0,T ;U) = ‖vT‖L2(0,+∞;U) (60)

and (vT )T is convergent and then bounded. Consequently, (v∗
T )T is bounded.

One can also remark that

‖uT‖L2(0,T ;U) = ‖vT‖L2(0,+∞;U) ≤ ‖u‖L2(0,+∞;U) (61)

ii- We have
∥∥y∗

T − RT
Cf

∥∥ =
∥∥KT

Cv∗
T

∥∥ = ‖K∞
C wT‖, where wT is given by

wT =

{
v∗

T on [0, T ]
0 otherwise

(62)

Since the map v −→ K∞
C v is linear and continuous, there exists c > 0 such

that

∥∥y∗
T − RT

Cf
∥∥ ≤ c ‖wT‖ = c ‖v∗

T‖

then (y∗
T )T is bounded because (RT

Cf)T is and using (60) and (61).

Proposition 4.11
1- The sequence (dT )T≥T0 is bounded in FT0,0.
2- We consider a convergent subsequence of (dT )T≥T0 with the same notation.
Its limit d is independent on T0, i.e. constant and is in F∞.

Proof:
1- For T ≥ T0, we have

‖dT‖2
FT0,0

≤ ‖dT‖2
FT,0

=

∫ T

0

‖B∗S∗(t)C∗dT‖2 dt = ‖v∗
T‖2

L2(0,T ;U)

Then (dT )T≥T0 is bounded in FT0,0 because (v∗
T )T≥T0 is and using (60) and

(61).

2- Let (Tn)n≥0 be an increasing sequence such that Tn ≥ T0 and Tn ∈ N .
The sequence (dTn)Tn≥T0 is bounded in FT1,0, hence, we can extract a subse-
quence (d1

Tn
)Tn≥T0 which converges in FT1,0 to a limit d1.



1550 L. AFIFI, M. HAKAM, M. BAHADI and A. EL JAI

The sequence (d1
Tn

)Tn≥T0 is also bounded in FT2,0, then, we can extract a sub-
sequence (d2

Tn
)Tn≥T0 which converges in FT2,0 to a limit d2.

Consequently, and from the unicity of the limit, we have d1 = d2.
We show by the same that at a step k ≥ 3, there exists a subsequence (dk

Tn
)Tn≥T0

which converges in FTk,0 to a limit dk with d1 = d2 = ... = dk = d and
d ∈ FTk,0

; ∀k ≥ 1, i.e.

d ∈
⋂
k≥1

FTk,0
= F∞.

Now, we have the following convergence result.

Proposition 4.12 We consider a convergent subsequence of (y∗
T , v∗

T ) with the
same notation. Its limit (y∗, v∗) is characterized by

1- The control v∗ is given by

v∗(.) = B∗p(.) (63)

where p(t) = S∗(t)C∗d, i.e. the solution of the adjoint equation

{
ṗ(t) = A∗p(t)
p(0) = C∗d

(64)

2- v∗ is the solution of the problem (P ).

3- y∗ = y∞
v∗,f

4- The element d is characterized by

〈
d, y − y∞

v∗,f

〉 ≥ 0 ; ∀y ∈ C ∩ (R∞
C f + F ′

∞) (65)

Proof:

1- For u ∈ L2(0, +∞; U) and wT given by (62), we have
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〈wT , u〉L2(0,+∞;U) =

∫ T

0

〈v∗
T (t), u(t)〉 dt

=

∫ T

0

〈B∗S∗(t)C∗dT , u(t)〉 dt

=

〈
dT ,

∫ T

0

CS(t)Bu(t)dt

〉

=

〈
dT ,

∫ +∞

0

CS(t)Bu(t)dt

〉
−

〈
dT ,

∫ +∞

T

CS(t)Bu(t)dt

〉

=
〈
dT , y∞

u,f − R∞
C f

〉 −
〈

dT ,

∫ +∞

T

CS(t)Bu(t)dt

〉

Since y∞
u,f−R∞

C f ∈ F ′
∞, the convergence of (dT )T to d implies that

〈
dT , y∞

u,f − R∞
C f

〉
converge to

〈
d, y∞

u,f − R∞
C f

〉
.

Moreover (dT )T is bounded and

∫ +∞

T

CS(t)Bu(t)dt −→ 0 when T −→

+∞, then

〈
dT ,

∫ +∞

T

CS(t)Bu(t)dt

〉
−→ 0 when T −→ +∞.

Hence, the weak convergence of (wT )T to v∗ implies that

〈v∗, u〉 =
〈
d, y∞

u,f − R∞
C f

〉

=

〈
d,

∫ +∞

0

CS(t)Bu(t)dt

〉

=

∫ +∞

0

〈B∗S∗(t)C∗d, u(t)〉 dt

Consequently v∗(·) = B∗S∗(·)C∗d in L2(0, +∞; U).

2- We have y∗ = lim
T−→+∞

y∗
T ∈ C because C is closed.

Moreover, for every u ∈ L2(0, +∞; U) satisfying y∞
u,f ∈ C, there exists T0 such

that for T ≥ T0, we have yT
uT ,f ∈ C with uT = u|[0,T ] and vT , given by (59),

converges to u in L2(0, +∞; U) when T −→ +∞. Then

‖v∗
T‖ ≤ ‖uT‖L2(0,T ;U) = ‖vT‖L2(0,+∞;U)

and hence
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‖v∗‖ ≤ lim inf
T

‖v∗
T‖ ≤ ‖u‖

consequently v∗ is the solution of (P ).

3- We have

y∗
T = yT

v∗T ,f = KT
Cv∗

T + RT
Cf

= K∞
C wT + R∞

C f −
∫ +∞

T

CS(t)f(t)dt

= y∞
wT ,f −

∫ +∞

T

CS(t)f(t)dt

where wT is given by (62). The weak convergence of (wT ) to v∗ implies the
convergence of y∞

wT ,f to y∞
v∗,f . On the other hand

lim
T−→+∞

∫ +∞

T

CS(t)f(t)dt = 0

then, y∗ = lim
T−→+∞

y∗
T = y∞

v∗,f .

4- We have seen in (55) that
〈
dT , y − yT

v∗T ,f

〉
≥ 0 ; ∀y ∈ C ∩ (RT

Cf + F ′
T,0) and T ≥ T0 (66)

which can be written

〈
dT , yT

v∗T ,f − RT
Cf

〉
≤ 〈

dT , y − RT
Cf

〉
; ∀y ∈ C ∩ (RT

Cf + F ′
T,0) and T ≥ T0

(67)

Since (dT )T converges to d and yT
v∗T ,f −RT

Cf converges to y∞
v∗,f −R∞

C f , then〈
dT , yT

v∗T ,f − RT
Cf

〉
converges to

〈
d, y∞

v∗,f − R∞
C f

〉
.

On the other hand

〈
dT , y − RT

Cf
〉

= 〈dT , y − R∞
C f〉 +

〈
dT ,

∫ +∞

T

CS(t)f(t)dt

〉

Then for y − R∞
C f ∈ F ′

∞ and when T −→ +∞, we have
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lim
T−→+∞

〈
dT , y − RT

Cf
〉

= 〈d, y − R∞
C f〉

Finally, when T −→ +∞ in (67) and for y − R∞
C f ∈ F ′

∞, we have

〈
d, y∞

v�,f − R∞
C f

〉 ≤ 〈d, y − R∞
C f〉 ; ∀y ∈ C ∩ (R∞

C f + F ′
∞)

i.e.

〈
d, y − y∞

v∗,f

〉 ≥ 0 ; ∀y ∈ C ∩ (R∞
C f + F ′

∞)

In fact, in the considered case, this is not necessary and one can consider
directly the limit in (66) when T −→ +∞.

Conclusion

In this work, we defined and characterized the notion of enlarged asymp-
totic remediability which is a generalization of the exact asymptotic one. Using
an appropriate combination of an extension of the HUM approach with a con-
venient penalization method, we showed the existence and the unicity of the
optimal control ensuring enlarged asymptotic remediability and also how to
find it. It is equally established that in the enlarged case, the cost is reduced
with respect to the problem of exact asymptotic remediability.
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