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Abstract 

 

Dual hybrid boundary node method (DHBNM) is presented for solving transient 
eddy current problems in the paper. With difference to the traditional boundary 
element method (BEM), the DHBNM combines dual reciprocity method (DRM) and 
hybrid boundary node method (HBNM), which does not require the ‘boundary 
element mesh’, either for the purpose of interpolation of the solution variables, or for 
the integration of the ‘energy’. In this method, the solution composes into two parts, 
i. e., the complementary solution and the particular solution. The complementary 
solution is solved by HBNM, and the particular one is obtained by DRM. Theoretical 
analysis in details is given and a transient eddy current example is also presented to 
prove the proposed theory. 
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1. Introduction 
 
Boundary element methods (BEMs) are attractive and important computational 

techniques for reducing the dimensionality of solving problems. The construction of  
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interpolation functions and the discretization are two key steps of BEMs. Using a 
scattered set of points instead of using element, the complex mesh generation process 
can be alleviated. Several boundary-type meshless methods have been developed for 
many potential and elastic problems, such as the boundary node method(BNM) [1], 
the hybrid boundary node method (HBNM) [2,3], the boundary radial basis function 
method(BRBFM) [4], the boundary point interpolation method(BPIM) [5] and the local 
boundary integral equation method(LBIEM) [6]. They need no discretization of the 
boundary and are proven as robust numerical methods. But very few of them are 
used to solve electromagnetic problems, such as transient eddy current problems. 
This may be due to the fact that more modification is needed in transient analysis 
when compared with static analysis [7,8].  

In this paper, the HBNM is applied for solving transient eddy current problems. 
However, an initial restriction of HBNM is that the fundamental solution for the 
original partial differential equation is required to obtain a local integral equation. On 
the other hand, as a time-dependent problem, the fundamental solution is difficult to 
obtain. The inhomogeneous terms accounting distributed loads and time dependent 
term are included in the formulae of the domain integrals. Thus the method loses the 
attraction of its ‘boundary-only’ and true meshless method characters. To solve the 
obstacle, the dual reciprocity method (DRM) [9,10] is combined with the HBNM, 
which named dual hybrid boundary node (DHBNM), to avoid the domain integral 
that comes out from the inhomogeneous terms of the equation. In DHBNM, the 
solution composes two parts: complementary solution and particular solution. For the 
first part, same as HBNM, the variables inside the domain are interpolated by the 
fundamental solution while the unknown boundary variables are approximated by the 
moving least square (MLS) [11] approximation. The modified variational formulation 
is applied to form the discrete equations of HBNM. For the second one, the radial 
basis functions are applied to interpolating the inhomogeneous part of the equations. 
In order to overcome the singular integration, the rigid body moving method has 
been applied. The method keeps its ‘boundary-only’ and true meshless method 
characters. The theoretical analysis is given in details, and an example is also 
illustrated to prove the proposed theory of the DHBNM. 

The discussions of this method are arranged as following: DHBNM will be 
presented in Section 2; numerical example of transient eddy current problem will be 
shown in Section 3; finally, the paper will end with conclusions in Section 4. 

 

2. Dual hybrid boundary node method 
 
The full set of equations for a low-frequency electromagnetic field can be now 

written as 
/ , ,t∇× = ∂ ∂ =E B B Hμ                        (1a) 
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,e s e∇× = + =H J J J Eσ                         (1b) 
where eJ  and sJ  are the eddy current and source current; σ  and μ  are magnetic 
conductivity and electric conductivity respectively. For a linear conductive medium, 
with Lorentz gauge, the equivalent form by using the magnetic potential vector of (1) 
can be written as 

2
sμ μ

t
∂

∇ = σ −
∂
AA J                                                         (2) 

Therefore, for 2-D problems, (2) can be reduced to a scalar diffusion equation as 
2 uu P

t
μ ∂∇ = σ −
∂

                                                           (3) 

where u  is one of the three components of the vector potential A  and P  is the 
supplied source. The initial and boundary problems for 2-D transient eddy current 
field are written as 

 

2

0

in  at 0< <

              on  at 0< <
              on  at 0< <

                in  at 0

n

u n

q n

uu σμ P t t
t

u u t t
q q t t

u u t

∂⎧∇ = − Ω⎪ ∂⎪⎪ = Γ⎨
⎪ = Γ
⎪

= Ω =⎪⎩

                                          (4) 

where Ω  is the solver domain with boundary u qΓ = Γ + Γ , in which uΓ  and qΓ  are the 
essential and natural boundaries, u  and q  are known boundary conditions. 

The left-hand side of Eq.(4) can be dealt with by HBNM for the Laplace 
equation, and the integrals corresponding to the right-hand side are taken to the 
boundary using RBF interpolation. In DHBNM, the solution variables u   can be 
divided into the complementary solution cu  and the particular solution pu , i.e. 

c pu u u= +                                                                (5) 
For convenience, 0P =  is assumed. The particular solution pu  just needs to 

satisfy the inhomogeneous equation as following 
2 p uσu μ

t
∇ =

∂
∂

                                                            (6) 

 
2.1.  HBNM for complementary solution 

The complementary solution cu  must satisfy the Laplace equation and the 
modified boundary condition, so those are written as following 

2 0cu∇ =                                                                  (7) 
c c pu u u u= = −                                                                 (8) 

c c pq q q q= = −                                                                  (9) 
     The HBNM is based on a modified variational principle. The functions in the 

modified principle assumed to be independent are: displacement field within the 
domain u , boundary potential u%  and boundary normal flux q% . Consider a domain Ω  
enclosed by u qΓ = Γ +Γ  with prescribed potential u  and normal flux q  at the  
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boundary portions uΓ  and qΓ , respectively. The corresponding variational function 

ABΠ  is defined as 

( ), ,
1
2 t

AB i iu u d q u u d q ud
Ω Γ Γ

Π = Ω − − Γ − Γ∫ ∫ ∫% % %                       (10) 

where, the boundary potential u% satisfies the essential boundary condition, i.e. u u= % , 
on uΓ . 
 

 
 
 
 
 
 

 
 
 
 
 

Figure 1.  Local domain and source point of fundamental solution corresponding 
to JS  

 
 
The variational theory holds in any portion of the domain Ω , for example, a sub-

domain sΩ , defined as an intersection of a domain and a small circle centered at node 
IS , and its boundary sΓ  and sL . (see Fig.1). With the vanishing of ABΠδ  over the 

sub-domain and its boundary, the following equivalent integral can be obtained 
( ) , 0

s s s
s iiL

q q hd u hd
Γ + Ω

− Γ − Ω =∫ ∫%                                               (11) 

( ) 0
s s

sL
u u hd

Γ +
− Γ =∫ %                                                (12) 

where h  is a test function. We approximate su%  and sq%  at the boundary sΓ  by the 
moving least square (MLS) approximation. In Eqs. (11) and (12), su%  and sq% at sL  has 
not been defined yet. To solve this problem, we select h  so that all integrals vanish 
over sL . This can be easily accomplished by using the weight function in the MLS 
approximation for h , with the half-length of the major axis Id  of the support of the 
weight function being replaced by the radius of the sub-domain sΩ , i.e. 

( )
( ) ( )

( )

2 2

2

exp / exp /
, 0

1 exp /

0,

J J J J

J J
J J J

J J

d c r c
d r

h Q r c

d r

⎧ ⎡ ⎤ ⎡ ⎤− − −⎣ ⎦ ⎣ ⎦⎪ ≤ ≤⎪= ⎡ ⎤⎨ − −⎣ ⎦⎪
⎪ ≥⎩
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where Jd  is the distance between point Q  in the domain and the nodal point Js . 
Therefore, ( )Jh Q  vanishes on sL . 

Making use of fundamental solutions, we approximate u  inside the domain by 

1

N
s
I I

I
u u x

=

= ∑                                                                   (14) 

where s
Iu  is the fundamental solution; Ix  are unknown parameters; N  is the total 

number of boundary nodes. The fundamental solution is written as  

( )1 ln ,
2

s
I Iu r Q s

π
=                                                         (15) 

where Q  and Is  are field point and source point, respectively. 
By substituting Eqs.(14) and (15) into Eqs. (11) and (12), and using the MLS, we 

have 

( ) ( ) ( )
1 1

ˆ
s s

sN N
I

J I I J I
I I

u
h Q x d s h Q q d

nΓ Γ
= =

∂
Γ = Φ Γ

∂∑ ∑∫ ∫                                   (16) 

( ) ( ) ( )
1 1

ˆ
s s

N N
s
I J I I J I

I I
u h Q x d s h Q u d

Γ Γ
= =

Γ = Φ Γ∑ ∑∫ ∫                                         (17) 

where ( )I sΦ  is the shape function of MLS. 
Using the above equations for all nodes, we can get the system equations 

cˆ=Tx Hq                                                                     (18) 
  cˆ=Ux Hu                                                                     (19) 

where 
( )

s

s
IJ I JU u h Q d

Γ
= Γ∫                                                           (20) 

( )
s

s
I

IJ J
uT h Q d
nΓ

∂
= Γ

∂∫                                                        (21) 

                     ( ) ( )
s

IJ I JH s h Q d
Γ

= Φ Γ∫                                                    (22) 

2.2.  RBF interpolation for particular solution 
The DRM can be used in transient eddy current problem to transform the domain 

integral arising from the application of inhomogeneous into equivalent boundary 
integrals. Applying interpolation for inhomogeneous term, the following 

approximation can be proposed for the term uσμ
t

∂
∂

: 

( )
1

/
N L

J J

J

u t fσμ α
+

=

∂ ∂ = ∑                                                       (23) 

where Jα  are a set of initially unknown coefficients; the Jf  are approximation 
functions; N  and L  are the total number of boundary nodes and total number of 
interior nodes,  respectively. 

As the same of the Eq.(23), the particular solution can be approximated by the 
basis form of the particular solutions. It can be written as following 
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1

N L
p J J

J

u u α
+

=

= ∑                                                         (24) 

If pu  satisfies Eq.(20), the following equation can be obtained 
   2 J Ju f∇ =                                                                     (25) 

The approximation function Jf can be chosen as 21Jf r r= + + . Obviously, the 
basis form of the particular solution u  satisfying Eq.(25) can be obtained as 

                    
2 3 4

4 9 16
r r ru = + +                                                         (26) 

The corresponding expression for the flux q  is 
2

, ,
1( )( )
2 3 4x y

x y r rq r r
n n

∂ ∂
= + + +

∂ ∂
                                                (27) 

Solving Eq. (24), (26) and (27), the particular solution can be written in matrix 
form as following 

1p σμ −=u uF u&                                                           (28) 
                          1p σμ −=q qF u&                                                           (29) 

where each column of F  consists of a vector Jf  containing the values of the 
function Jf  at the DRM collocation nodes; u  and q  are the matrix forms of the basis 
type of particular solution. 
2.3. Dual hybrid boundary node method 

For a well-posed problem, either u%  or q%  is known at each node on the boundary. 
However, transformation between Iû  and Iu%  or Iq̂  and Iq%  is necessary because the 
MLS approximation lacks the delta function property. For the panels where Iu%  is 
prescribed, Iu%  is related to Iû  by 

1 1

t tN N

I IJ J IJ J
J J

û R u R u
= =

= =∑ ∑%                                                        (30) 

and for the panels where Iq%  is prescribed, Iq% is related to Iq̂  by 

1 1

t tN N

I IJ J IJ J
J J

q̂ R q R q
= =

= =∑ ∑%                                                    (31) 

where ( ) 1
IJ J IR s

−
= Φ⎡ ⎤⎣ ⎦ ; tN  is the total number on a piece of the edge； Ju  and Jq  are 

the related nodal values.  
Substituting Eqs.(28), (29), (30) and (31) into Eq. (5), then substituting the result 

into Eqs. (18) and (19), we can obtain 
1σμ −+ =Ux HRuF u HRu&                                                 (32) 
1σμ −+ =Tx HRqF u HRq&                                                (33) 

Eqs. (32) and (33) are the system equations of the DHBNM for transient eddy 
current problem. Assuming that N  nodes are located on the boundary, we can get N  
unknown variables on the boundary from Eqs. (32) and (33). However, the Eqs. 
above include the displacement of the L  internal nodes, so the additional equations 
are needed.  
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2.4. Additional Equations  

  The Eqs. (32) and (33) can not be solved for the variables of the internal node, 
and additional equations for transient eddy current problem will be developed in this 
section. 

The unknown variables of the internal nodes can be expressed as following 
1c p s σμ∗ −= + = +u u u u x uF u&                                              (34) 

where ∗u  is the displacement of the internal nodes; su  is the matrix of the 
fundamental solution on each internal nodes; u  is the matrix of values of basis type 
of particular solution. 

   Solving out the coefficient vector x  in Eq. (32), we can obtain 
( )1 1σμ− −= −x U HR u u F u&                                              (35) 

   Substituting Eq. (35) into Eqs. (34) and (33), we can obtain 
ˆ ˆˆ+ =Cu Hu Gq&                                                      (36) 

where   
1 1 1

1 1 1s
ˆ σμ σμ

σμ σμ

− − −

− − −

⎡ ⎤−
= ⎢ ⎥−⎣ ⎦

HRq F TU HRuF
uF u U HRuF

C                                     (37) 

ˆ ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

-1

s -1

TU HR 0
u U HR -I

H                                                               (38) 

 
0

ˆ ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

HR
G                                                                            (39) 

Like other hybrid models (for example, the hybrid boundary element method), 
the present method has a drawback of ‘boundary layer effect’ (the accuracy of the 
results in the vicinity of the boundary is very sensitive to the proximity of the interior 
points to the boundary). To avoid this drawback, an adaptive integration scheme has 
been proposed in [3]. As demonstrated, the DHBNM is a boundary-only meshless 
approach. No boundary elements are used for both interpolation and integration 
purpose. The nodes in the domain are needed just for interpolation for the particular 
solution, which can not influence the present method as a boundary-type method. 

 

3. Numerical Example 
 
   In order to verify the proposed method, a metal column with infinite length is 

magnetized here. Its cross section of one quadrant is shown as Fig.2.  
The parameters of the size and the medium type are 0.4mOA = , 0.2mOB = , 
5000rμ =  and 5200S/ mσ = . At time 0t = , a step magnetic field 0H  with direction z−  

is posed on the outer surface of the metal column. In the present calculation, the 
boundary of the column is divided into four piecewise smooth segments. The regular 
meshes of 30 nodes (10 nodes on OA and BC each, 5 node on OB and AC each) on 
the boundary ( 30N = ) and 20 internal nodes ( 20L = ) are used. Points (0,0)O ,  
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( )0.1,0.1P  and ( )0.3,0Q  are investigated here to compare the analytical solution and 

the numerical one by using the DHBNM. The corresponding initial-boundary 
problem is 
 
  

2

0

          in  at 0

              on ,  at t>0

0                on ,  at t>0

0                       in  at 0

z
Z

z

z

z

H
H σμ t

t
H H AC BC

H
OB OA

n
H t

∂⎧∇ = Ω >⎪ ∂⎪
=⎪

⎨ ∂⎪ =
⎪ ∂
⎪ = Ω =⎩

                                   (40) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. Cross section of one quadrant of the metal column 
 

 
 
Fig.3 shows the numerical solution by DHBNM and the analytical one. The 

results yielded by using the proposed method are found to be in good agreement with 
the analytical solution. The eddy current density on symmetry axis OA is also given 
by using the proposed method in Fig. 4. Those prove that DHBNM is an effective 
technique to analyze and solve transient eddy current problems.                                          

 
 

    Numerical example shows that the number of internal node 
2
NL = , where N  

is the number of boundary nodes, provides solutions which are satisfactory for the 
transient eddy current problem.  
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4. Conclusion 

 

A truly meshless method for solving the transient eddy current problem, which 
called DHBNM, has been presented in this paper. This method combines the DRM 
and the HBNM. The HBNM is used to solve the homogeneous equations, and the 
DRM is employed to solve the inhomogeneous terms. No cells are needed either for 
the interpolation purposes or for integration process, only discrete nodes are 
constructed on the boundary of a domain, several nodes in the domain are needed 
just for the RBF interpolation. Further work is in progress to test the method in more 
realistic problems such as large geometrical deformation and the propagating cracks 
in nondestructive evaluation. 
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