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Abstract 
 

 In this paper an attempt is made to define the multivariate abel series 
distributions (MASDs) of order k. From MASD of order k, a new distribution 
called the quasi multivariate logarithmic series distribution (QMLSD) of order k is 
derived. Some well known distributions are also obtained by a new method of 
derivation. Limiting distribution of QNMD of order k are studied. 
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1. Introduction  
 
 In this study, considering the multivariate Abel series distribution of order 
k, we have defined multivariate Abel series distributions of order k. From the 
MASDs of order k, a new distribution called Quasi Multivariate logarithmic series 
distribution of order k is obtained. Also a variant of quasi negative multinomial 
distribution of order k is studied. Moreover, on using a new method of derivation 
some well known distributions, viz. quasi multinomial distribution of type-I of 
order k (QMD-I (k)), quasi multinomial distribution of type-II of order k (QMD-II 
(k)), multiple generalized poisson distribution of order k (MGPD (k)) etc. are 
obtained. A property, i.e. the limiting distribution of the QNMD of order k has 
been found out. 
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2. Multivariate Abel series distribution of order k and its special 
cases 
 
 Let us consider a finite and positive function ( )f a  of ( )11,....., mka a a= , 
where each ija (i = 1 (1) m), j = 1 (1) k is a non-negative integer. For any real z, 
we have the multinomial abel series expansion of order k as, 
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denoted by ( ),x zβ  is independent of ‘a’, which is always greater than zero. The 

domain of  ( )11,....., mka a a=  is a subspace of an mk-dimensional parameter space 

subject to restrictions 0ija ≥ , if 0z ≤  and ( ) 0ij ija x z− ≥ , if 0z ≥ , z belonging to a 
suitable subject of real numbers. Thus, (2.1) can be written, 
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using the formal series expansion (2.1), we suggest the following definition for 
the multivariate abel series distribution of order k (MASD (k)) 
 
Definition   
 A multivariate discrete distribution of order k, ( )kp x is said to be a MASD 
(k) family, if it has the following probability function (p.f.), 
 

( ) ( ) ( ) ( )1
( ) ( ; , ) / ! / ( )ij

ij i
j

x k
k k ij ij ij ij a xzi jjx x

p x p x a z a a x z k d f a f a
−

=
=

⎡ ⎤ ⎡ ⎤≡ = −⎢ ⎥ ⎣ ⎦⎣ ⎦∑
∑ ∏∏                      
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where ij i

j

jx x=∑ , each ix  being a non-negative integer, the 

ija ( 1(1) ; 1(1)i m j k= = ) and z are parameters and f(a) are stated in (2.1).  
 For z = 0, the probability function (2.3) becomes multivariate power series 
distribution of order k. 
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For z = 0 and k = 1, the probability function (2.3) becomes multivariate 
Abel series distribution (Nandi and Das, 1996) and the z = 0, it becomes usual 
multivariate power series distribution (Patil, 1965). 
 
Derivation of some distributions 
 

I. Here we derive a new distribution from MASD (k), called the 
multivariate logarithmic series distribution of order k. 

 
 Let us consider Abel series expansion of order k of the logarithmic series 
function f(a) given by, 
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 Thus the associated MASD-family of order k has the following probability 
function, 
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11~ ( ,....., )k mkMLSD a a   (Aki, Kuboki and Hirano (1984)) 

 For k = 1, the probability function (2.5) becomes usual MLSD with 
parameters 1 2 3, , ,...., ma a a a , i.e., 
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 For m = 1, the p.f. (2.5) becomes the multiparameter logarithmic series 
distribution of order k (Philippou, 1988). 
 
II. Here we derive a new distribution from MASD (k), called the quasi-
multivariate logarithmic series distribution of order k (QMLSD (k)) as follows. 
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 Consider the logarithmic series function ( ) ( )log 1f a a= − − , where 

11 .... mka a a= + +  and ( )11,...., mka a a= . Then the multivariate Abel series 

expansion of ( )log 1 a− −  of order k is, 
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where 

ij i
j

jx x=∑
∑ is defined in (2.1) and 110 ...... 1mka a a< = + + < . 

Thus the associated MASD family of order k has the following p. f. 
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 ; ( ) ( )0, 1 1 , 1 1 & 0 1ijx i m j k a≥ = = < <  
 
The p.f. (2.8) is called the QMLSD (k). 
 If 0z → , then the p. f. (2.8) becomes the multinomial logarithmic series 
distribution of order k. 
 For k = 1, the p.f. (2.8) becomes QMLSD (Nandi & Das, 1996) and then as 

0z →  , it becomes the common multinomial logarithmic series distribution 
(Johnson & Kotz, 1969, p.303). 
 
III. Next we obtain quasi multinomial distribution of type-I of order k (QMD-I 
(k)). 
 Let us consider the simple series function ( ) ( )nf a a b= + , where 

( )11,...., mka a a=  and 11 .... mka a a= + + . Then the multivariate Abel series 

expansion of ( )na b+  of order k is, 
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Hence the corresponding MASD family finds the p.f. of QMD-I (k), 
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where, 0 ij i

j

jx x n≤ = ≤∑ , each ijx  being a non- negative integer and  
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Using (2.10) in (2.9), we get 
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For k = 1, we get the p.f. (2.9) as QMD-I (Janardan, 1975). 
 
IV. Now, we derive the multiple generalized poisson distribution of order k. 
 Let us consider the exponential series function ( ) af a e= , where 

( )11,...., mka a a=  and 11 .... mka a a= + + . Then the multivariate Abel series 

expansion of ( ) af a e=  is, 
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where ij i
j

jx x=∑  is stated in (2.1) 

Thus the corresponding p.f. of the MASD family of order k is, 
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where ij i
j

jx x=∑  and each ijx  being a non-negative integer. 

The p.f. (2.13) is known as the MGPD of order k and for k = 1, the p.f. (2.13) 
reduces to MGPD (Janardan, 1975). 
V. Finally, we derive the quasi negative multinomial distribution of order k. 
 Let us consider the series function, ( ) ( ) nf a b a −= − , where 

( )11,...., mka a a=  and 11 .... mka a a= + + . Then the multivariate Abel series 

expansion of ( ) nb a −− of order k is, 
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Then the associated family of the MASD of order k has the p.f. 
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Applying (2.15) to the p.f. (2.14), we get 

( )
( ) 1

( )
!

ij
i jij

n xij
xi j

k ij ij ij ij
i ji j

ij
i j

n x
p x P P x Q x

x n
φ φ

− −
−

⎛ ⎞
Γ +⎜ ⎟ ∑∑⎛ ⎞⎝ ⎠= − −⎜ ⎟⎛ ⎞ ⎝ ⎠Γ⎜ ⎟
⎝ ⎠

∑∑
∑∑∏∏

∏∏
 …..(16) 

where 0ij ijP x φ− ≥  and 1ij
i j

Q P− =∑∑  

The probability functions (2.14) and (2.16) are called QNMD of order k. 
If z = 0, then (2.14) and (2.16) reduces to negative multinomial distribution of 
order k. 
If k = 1, then (2.14) and (2.16) reduces to QNMD and then for z = 0, it reduces to 
common negative multinomial distribution (Johnson and Kotz, 1969, p. 292). 
 
 
3. Properties of QNMD of order k 
 
 
Limiting distributions 
 
The QNMD of order k, (2.16) with ijP  (i = 1 (1) m, j = 1 (1) k), Q, φ  and n tends 
to multiple generalized poisson distribution with parameters ijλ (i = 1 (1) m, j = 1  
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(1) k) and ϕ , as n →∞ , 0ijP →  and 0φ → , such that ij ijnP λ=  and nφ ϕ= . The 
probability function of this limiting distribution is given in (2.13). 
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