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Abstract

In hypotheses testing, such as other statistical problems, we may
confront imprecise concepts. One case is a situation in which hypotheses
are imprecise.

In this paper, we redefine some concepts about fuzzy hypotheses
testing, and then we introduce the sequential probability ratio test for
fuzzy hypotheses testing. Finally, we give some examples.
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1 Introduction

Decision making in classical statistical inference is based on crispness of data,
random variables, exact hypotheses and decision rules. As there are many
different situations in which the above assumptions are rather irrealistic, there
have been some attempts to analyze these situations with fuzzy set theory
proposed by Zadeh [25].

One of the primary purposes of statistical inference is to test hypotheses.
In the traditional approach to hypotheses testing all the concepts are precise
and well defined; see e.g. [13], [7], and [16]. However, if we introduce vague-
ness into hypotheses, we face quite new and interesting problems. Arnold [2]
considered statistical tests under fuzzy constraints on the type I and II er-
rors. Testing fuzzy hypotheses was discussed by Arnold [1] and [3], Delgado
et al. [8], Watanabe and Imaizumi [24], Taheri and Behboodian [19], [20], and
[21], and Grzegorzewski [10] and [11]. Kruse and Meyer [12], Taheri and Be-
hboodian [21] considered problem of testing vague hypotheses in the presence
of vague hypothesis. Up to the present testing hypotheses with fuzzy data was
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considered by Casals et al. [6], and Son et al. [17]; see for more references
about fuzzy testing problem, Taheri [18].

In Section 2, we provide some definitions and preliminaries about fuzzy
hypotheses testing. The sequential probability ratio test for fuzzy hypotheses
testing is given in Section 3, and finally, some examples are presented in Section
4.

2 Fuzzy hypotheses testing

In this section, we consider the fuzzy hypotheses and testing such hypotheses.
We may face a fuzzy hypothesis in practice. Let us begin with an example.

Example 2.1. Suppose we are interested in evaluating the diameters of
produced washers of a factory, and we know that the distribution of such
diameters is N(μ, σ2), where σ2 is known. In the ordinary case, the test H0 :
μ = μ0 against H1 : μ �= μ0 is used. Obviously in this example, if the diameter
of a washer is slightly different from μ0, H0 is still acceptable, but a considerable
difference from μ0 makes H0 unacceptable. Thus, it is reasonable to accept the
products, if μ ≈ μ0 and to reject them if μ �≈ μ0. So the realistic hypotheses
are

{
H0 : μ is close to μ0

H1 : μ is away from μ0.

In the following, we introduce some concepts about fuzzy hypotheses testing
(henceforth FHT).

Definition 2.1. Any hypothesis of the form “H : θ is H(θ)” is called a fuzzy
hypothesis, where “H : θ is H(θ)” implies that θ is in a fuzzy set of Θ (the
parameter space) with membership function H(θ) i.e. a function from Θ to
[0, 1].

Note that the ordinary hypothesis H : θ ∈ Θ is a fuzzy hypothesis with
membership function H(θ) = 1 at θ ∈ Θ, and zero otherwise, i.e., the indicator
function of the crisp set Θ.

Example 2.2. Let θ be the parameter of a Bernoulli distribution. Consider
the following function:

H(θ) =

{
2θ, 0 < θ < 1/2
2 − 2θ, 1/2 ≤ θ < 1

The hypothesis “H : θ is H(θ)” is a fuzzy hypothesis and it means that “θ is
approximately 1/2”.
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In FHT with crisp data, the main problem is testing{
H0 : θ is H0(θ)
H1 : θ is H1(θ)

, (2.1)

according to a random sample X = (X1, · · · , Xn) from a parametric population
with the PDF f(x; θ). It is clear that the PDF of the random sample X is

f(x; θ) =

n∏
i=1

f(xi; θ).

In the following, we give some definitions in FHT theory.

Definition 2.2. The pseudo-membership function of Hj(θ) is defined by

H∗
j (θ) = Hj(θ)/

∫
Θ

Hj(θ)dθ, j = 0, 1.

Substitute
∫

by
∑

in discrete cases; i.e., in the case that Θ has just countable
values.

Note that the pseudo-membership function is not necessarily a membership
function, i.e., it may be greater than 1 for some values of θ; see Example 4.3,
H∗

0 (1/4) = 4.
In FHT like the traditional hypotheses testing, we must give a test function

φ(X). In the following, we define the test function.

Definition 2.3. Let X be a random sample with the PDF f(x; θ). φ(X)
is called a test function if it is the probability of rejecting H0 provided that
X = x is observed.

Definition 2.4. Let r.v. X have the PDF f(x; θ). Under the hypothesis
Hj(θ), j = 0, 1, the weighted probability density function (henceforth WPDF)
of X is defined by

fj(x) =

∫
Θ

H∗
j (θ)f(x; θ)dθ,

i.e., the expected value of f(x; θ) over H∗
j (θ), j = 0, 1. If X is a random sample

from PDF f(.; θ), then the joint WPDF of X is defined by

fj(x) =

n∏
i=1

fj(xi).

Remark 2.1. fj(x) is a PDF, since fj(x) is nonnegative and∫
�

fj(x)dx =
∫

R

∫
Θ

H∗
j (θ)f(x; θ)dθdx

=
∫

Θ
H∗

j (θ)[
∫
�

f(x; θ)dx]dθ
=

∫
Θ

H∗
j (θ)dθ

= 1

,
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Substitute
∫

by
∑

in the discrete cases. Hence fj(x1, · · · , xn) is also a joint
PDF. Note that using the Fubini’s theorem (see for example Billingsley [4],
pp. 233-234) the interchange of the double integrals is satisfied because the
integrands are non-negative and integrable.

Remark 2.2. If Hj is the crisp hypothesis Hj : θ = θj , then fj(x) = f(x; θj)
and then fj(x1, · · · , xn) = f(x1, · · · , xn; θj), j = 0, 1.

Definition 2.5. Let φ(X) be a test function. The probability of type I and II
errors of φ(X) for the fuzzy testing problem (2.1) is defined by αφ = E0[φ(X)],
and βφ = 1 − E1[φ(X)], respectively, in which Ej [φ(x)] means the expected
value of φ(X) over the joint WPDF fj(x),j = 0, 1.

Note that in the case of simple crisp hypothesis against simple crisp alter-
native, i.e., {

H0 : θ = θ0

H1 : θ = θ1
,

the above definition of αφ and βφ gives the classical probability of errors.

Example 2.3. Let X be a random variable from the normal distribution with
mean μ and variance 1. Suppose that crisp hypothesis H0 : μ = 0 against crisp
hypothesis H1 : μ = 1 is rejected if X > 2. The test function of this test is

φ(X) =

{
1, X > 2
0, X ≤ 2.

In this problem, we have α = E0[φ(X)] = P (X > 2|μ = 0) ≈ 0.02 and
β = 1 − E1[φ(X)] = P (X ≤ 2|μ = 1) ≈ 0.84.

Regarding to the definitions of error sizes, it is concluded that fuzzy hy-
potheses testing problem (2.1) is equivalent to the following ordinary hypothe-
ses testing {

H ′
0 : X ∼ f0

H ′
1 : X ∼ f1

Definition 2.6. A fuzzy testing problem with a test function φ is said to be
a test of (significance) level α if αφ ≤ α, where α ∈ [0, 1]. We call αφ as the
size of φ.

3 Sequential probability ratio test for fuzzy

hypotheses testing

In this section, first, we define the sequential probability ratio test(henceforth
SPRT) for the ordinary simple hypotheses testing and then the sequential
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probability ratio test for ordinary hypotheses. Concerning Section 2, we extend
this case to the FHT.

Consider testing a simple null hypothesis against a simple alternative hy-
pothesis. In other words, suppose a sample can be drawn from one of two
known distributions and it is desired to test that the sample came from one
distribution against the possibility that it came from the other. If X1, X2, · · ·
denote the iid r.v.’s, we want to test H0 : Xi ∼ f0(.) versus H1 : Xi ∼
f1(.). For a sample of size m, the Neyman-Pearson criterion rejects H0 if
Rm(x) = L0(x)/L1(x) < k, for some constant k > 0, where x = (x1, · · · , xm),
Lj(x) =

∏m
i=1 fj(xi), j = 0, 1. Compute sequentially R1, R2, · · ·. For fixed k0

and k1 satisfying 0 < k0 < k1, adopt the following procedure: Take observa-
tion x1 and compute R1; if R1 ≤ k0, reject H0; if R1 ≥ k1, accept H0; and if
k0 < R1 < k1, take observation x2, and compute R2; if R2 ≤ k0, reject H0; if
R2 ≥ k1, accept H0; and if k0 < R2 < k1, take observation x3, etc. The idea is
to continue sampling as long as k0 < Rj < k1 and stop as soon as Rm ≤ k0 or
Rm ≥ k1, rejecting H0 if Rm ≤ k0 and accepting H0 if Rm ≥ k1. The critical
region of the described sequential test can be defined as C =

⋃∞
n=1 Cn, where

Cn = {(x1, · · · , xn)|k0 < Rj(x1, · · · , xj) < k1, j = 1, · · · , n − 1,
Rn(x1, · · · , xn) ≤ k0}.

Similarly, the acceptance region can be defined as A =
⋃∞

n=1 An, where

An = {(x1, · · · , xn)|k0 < Rj(x1, · · · , xj) < k1, j = 1, · · · , n − 1,
Rn(x1, · · · , xn) ≥ k1}.

Definition 3.1. For fixed k0 and k1, a test as described above is defined to be
a sequential probability ratio test (henceforth SPRT). Therefore for the SPRT,
the probability of type I and II errors is calculated by α =

∑∞
n=1

∫
Cn

L0(x)dx,

and β =
∑∞

n=1

∫
An

L1(x)dx, respectively.
In the following, we briefly state some results from classical SPRT without

proofs, see for more details Mood et al. [15] or Hogg and Craig [9].
Let k0 and k1 be defined so that the SPRT has the fixed probability of type

I and II errors α and β. Then k0 and k1 can be approximated by k′
0 = α/(1−β)

and k′
1 = (1 − α)/β, respectively. If α′ and β ′ are the error sizes of the SPRT

defined by k0 and k1, then α′ + β ′ ≤ α + β.
If Zi = Ln(f0(Xi)/f1(Xi)) with observed value zi = Ln(f0(xi)/f1(xi)), then

an equivalent test to the SPRT is given by the following: continue sampling as
long as Ln(k0) <

∑m
i=1 zi < Ln(k1), and stop sampling as soon as

∑m
i=1 zi ≤

Ln(k0) (and then reject H0) or
∑m

i=1 zi ≥ Ln(k1) (and then accept H0).
Let N be the r.v. denoting the sample size of the SPRT. The SPRT with er-

ror sizes α and β minimizes both E[N |H0 is true ] and E[N |H1 is true ] among
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all tests (sequential or not) which satisfy the following:

P (H0 is rejected |H0 is true) ≤ α, and P (H0 is accepted |H0 is false) ≤ β.

Using Wald’s equation, it is obtained that E[N ] = E[Z1+· · ·+ZN ]/E[Z1]. But
E[Z1 + · · · + ZN ] ≈ ρLn(k0) + (1 − ρ)Ln(k1), where ρ = P ( rejection of H0).
Hence

E[N |H0 is true ] ≈
αLn[α/(1 − β)] + (1 − α)Ln[(1 − α)/β]

E[Z1|H0 is true ]
,

and

E[N |H1 is true ] ≈
(1 − β)Ln[α/(1 − β)] + βLn[(1 − α)/β]

E[Z1|H1 is true ]
.

Now, we are ready to state the SPRT for fuzzy hypotheses testing.

Definition 3.2. Let X1, X2, · · · be a sequence of r.v.’s from a population with
PDF f(.; θ). We propose to consider testing{

H ′
0 : X ∼ f0

H ′
1 : X ∼ f1

,

as a SPRT for fuzzy hypotheses testing (2.1), in which fj(x) is the WPDF of
f(x; θ) under the hypothesis Hj(θ), j = 0, 1 (see Definition 2.4), i.e. the critical
region of the described SPRT for fuzzy hypotheses testing (2.1) is defined as
C =

⋃∞
n=1 Cn, where

Cn = {(x1, · · · , xn)|k0 < Rj(x1, · · · , xj) < k1, j = 1, · · · , n − 1,
Rn(x1, · · · , xn) ≤ k0}.

Similarly, the acceptance region can be defined as A =
⋃∞

n=1 An, where

An = {(x1, · · · , xn)|k0 < Rj(x1, · · · , xj) < k1, j = 1, · · · , n − 1,
Rn(x1, · · · , xn) ≥ k1}.,

in which

Rm(x1, · · · , xm) = L0(x)/L1(x)
=

∏m
i=1[f0(xi)/f1(xi)]

=
∏m

i=1[
∫

Θ
H∗

0 (θ)f(xi; θ)dθ/
∫
Θ

H∗
1 (θ)f(xi; θ)dθ].

Regarding to the definition of WPDF, α, β and other related concepts, all
results of the ordinary SPRT are satisfied for this case, of course with some
modifications. For instance, Zi = Ln[

∫
Θ

H∗
0 (θ)f(Xi; θ)dθ/

∫
Θ

H∗
1 (θ)f(Xi; θ)dθ],

and

E[Zi|Hj is true ]
=

∫
Ln[

∫
Θ

H∗
0 (θ)f(xi; θ)dθ/

∫
Θ

H∗
1 (θ)f(xi; θ)dθ]fj(xi)dxi, j = 0, 1.
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4 Numerical examples

In this section, we present two important examples to clarify the theoretical
discussions so far.

Example 4.1. Let X1, X2, · · · be a sequence of iid r.v.’s from a Normal
population with mean μ and variance σ2, i.e.,

f(x; θ) =
1

σ
√

2π
e−

(x−μ)2

2σ2 , x ∈ R, μ ∈ R, σ > 0.

We want to test {
H0 : μ 	 μ0

H1 : μ 	 μ1
(4.1)

with membership functions

Hj(μ) = e−(μ−μj )2/(2σ2
0), j = 0, 1, μ ∈ R, σ0 > 0,

in two cases μ1 > μ0 and μ1 < μ0, using SPRT.
The pseudo-membership function of Hj(θ) is

H∗
j (μ) = 1/(σ

√
2π)e−(μ−μj)

2/(2σ2
0 ), j = 0, 1, μ ∈ R, σ0 > 0,

It is easy to show that

fj(x) =
∫ ∞
−∞ H∗

0 (μ)f(x; μ)dμ

=
√

(σ2 + σ2
0)(2π) exp{−(x − μj)

2/(2(σ2 + σ2
0))}.

Hence the FHT (4.1) is equivalent to

{
H ′

0 : X ∼ N(μ0, σ
2 + σ2

0)
H ′

1 : X ∼ N(μ1, σ
2 + σ2

0)

But Zi = Ln[f0(Xi)/f1(Xi)] = Xi
μ0−μ1

σ2+σ2
0
− μ2

0−μ2
1

2(σ2+σ2
0)

, hence the critical re-

gion in the cases μ1 > μ0 and μ1 < μ0 are
∑n

i=1 Xi > c and
∑n

i=1 Xi < c,
respectively. Let α = 0.01, β = 0.05, μ0 = 0, μ1 = 1, σ2 = 4, and σ2

0 = 1,
we obtain Ln(k′

0) = −4.5539, Ln(k′
1) = 2.98568, E[Zi|H0 is true ] = 0.1,

E[Zi|H1 is true ] = −0.1. Hence E[N |H0 is true ] = 29.103 and E[N |H1

is true ] = 41.769.

Example 4.2. Let X1, X2, · · · be a sequence of iid r.v.’s from Ber(θ) (Bernoulli
distribution), 0 < θ < 1.
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We want to test{
H0 : θ ≈ θ0

H1 : θ ≈ θ1
, (4.2)

where

Hj(θ) = θαj−1(1 − θ)βj−1, ∀θ ∈ (0, 1), θj = αj/(αj + βj), j = 0, 1.

The pseudo-membership function of Hj(θ) is

H∗
j (θ) =

Γ(αj + βj)

Γ(αj)Γ(βj)
θαj−1(1 − θ)βj−1

It is easy to show that

fj(x) =
∫ 1

0
H∗

0 (θ)f(x; θ)dθ

=

{
βj/(αj + βj), x = 0
αj/(αj + βj), x = 1

Hence the FHT (4.2) is equivalent to
{

H ′
0 : X ∼ Ber(α0/(α0 + β0))

H ′
1 : X ∼ Ber(α1/(α1 + β1))

But we obtain Zi = XiLn(α0β1/(α1β0) + Ln(β0(α1 + β1)/[β1(α0 + β0)],
hence the critical region in the cases α0β1/(α1β0) > 1 and < 0α0β1/(α1β0) < 1
are

∑n
i=1 Xi > c and

∑n
i=1 Xi < c, respectively. Let α = 0.05, β = 0.1, α0 = 7,

α1 = 1, β0 = 1, β1 = 7, i.e., θ0 = 7/8 and θ1 = 1/8, we obtain Ln(k′
0) =

−5.28827, Ln(k′
1) = 4.60016, E[Zi|H0 is true ] = 1.45943, E[Zi|H1 is true ] =

−1.45943. Hence E[N |H0 is true ] = 3.118 and E[N |H1

is true ] = 3.556.
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