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Abstract

In hypotheses testing, such as other statistical problems, we may
confront imprecise concepts. One case is a situation in which both
hypotheses and observations are imprecise.

In this paper, we redefine some concepts about fuzzy hypotheses
testing, and then we give the Neyman-Pearson lemma for fuzzy hy-
potheses testing with fuzzy observations. Finally, we give some applied
examples.
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1 Introduction

Fuzzy set theory is a powerful and known tool for formulation and analysis of
imprecise and subjective situations where exact analysis is either difficult or
impossible.

Decision making in classical statistical inference is based on crispness of
data, random variables, exact hypotheses, decision rules and so on. As there
are many different situations in which the above assumptions are rather irre-
alistic, there have been some attempts to analyze these situations with fuzzy
set theory proposed by Zadeh [38].

Some methods in descriptive statistics with vague data and some aspects
of statistical inference is proposed in [17]. Fuzzy random variables were intro-
duced by Kwakernaak [18], Puri and Ralescu [24] as a generalization of compact
random sets, Kruse and Mayer[17] and were developed by others such as Jun-
ing and wang [12], Ralescu [25], López-Dı́az and Gil [22], [23], and Liu [21].
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In this paper, because of our main purpose (statistical inference about a para-
metric population with fuzzy data), we only consider and discuss Fuzzy-valued
random variables which associate with an ordinary random variable.

One of the primary purpose of statistical inference is to test hypotheses. In
the traditional approach to hypotheses testing all the concepts are precise and
well defined(see e.g. [19], [8], and [30]). However, if we introduce vagueness into
hypotheses, we face quite new and interesting problems. Arnold [2] considered
statistical tests under fuzzy constraints on the type I and II errors. Testing
fuzzy hypotheses was discussed by Arnold [1] and [3], Delgado et al [10], Saade
and Schwarzlader [29], Saade [28], Watanabe and Imaizumi [37], Taheri and
Behboodian [33], [34], and [35], and Grzegorzewski [15] and [16]. Kruse and
Meyer [17], Taheri and Behboodian [35] considered problem of testing vague
hypotheses in the presence of vague hypothesis. Up to the present testing
hypotheses with fuzzy data was considered by Casals et al [7], and Son et al
[31], see for more references about fuzzy testing problem, Taheri [36].Also, for
more details about ordinary sequential probability ratio test, see e.g. [14], [26].

This paper is organized in the following way:
In Section 2, we provide some definitions and preliminaries. Fuzzy hypotheses
testing is defined and reviewed in Section 3. The Neyman-Pearson lemma for
fuzzy hypotheses testing with vague data is introduced in Section 4 and finally,
some applied examples are given in Section 5.

2 preliminaries

Let (Ω,F , P ) be a probability space. A random variable (henceforth RV) X is
a measurable function from (Ω,F , P ) to (R,B, PX), where PX is a probability
measure induced by X and is called the distribution of the RV X, i.e.,

PX(A) = P (X ∈ A) =

∫
X∈A

dP, A ∈ B.

Using “the change of variable rule”, (see for example [5], pp. 215 and 216 or
[30], P. 13), we have

PX(A) =

∫
A

dPoX−1(x) =

∫
A

dPX(x), A ∈ B.

If PX is dominated by a σ-finite measure ν, i.e., PX << ν, then using the
Radon-Nikodym theorem, (see for example [5] pp. 422 and 423 or [30], P. 14),
we have

PX(A) =

∫
A

f(x)dν(x),
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where f(x) is the Radon-Nikodym derivative of PX with respect to ν and is
called the probability density function (henceforth PDF) of X with respect to
ν.

In the statistical texts, the measure ν usually is “counting measure” or
“Lebesgue measure”; hence PX(A) is calculated by

∑
x∈A f(x) or

∫
A

f(x)dx,
respectively.

Let X = {x ∈ R|f(x) > 0}. The set X is usually called “support” or
“sample space” of X. A random vector X = (X1, ..., Xn) is said a random
sample of size n from a population with PDF f(x), if Xi’s are independent and
whose PDF’s are f(x), i.e., Xi’s are independent and identically distributed
(IID). In this case, we have

fX(x) = f(x1)...f(xn), ∀xi ∈ R,

where x = (x1, ..., xn) is an observed value of X.

In the following, we present two definitions from introduction of Casals et
al. [7], but in a slightly different way.

Definition 2.1. A fuzzy sample space X̃ is defined as a fuzzy partition
(Ruspini partition) of X , i.e., a set of fuzzy subsets of X whose member-
ship functions are Borel measurable and satisfy the orthogonality constraint:∑

x̃∈X̃ μx̃(x) = 1, for each x ∈ X .

Definition 2.3. A Fuzzy-valued random sample (henceforth FVRS) of size
n, say X̃ = (X̃1, ..., X̃n), associated with PDF f(x) is a measurable function
from Ω to X̃ n (the support of X̃), such that its PDF is given by

f̃(x̃1, ..., x̃n) = P̃ (X̃ = x̃) =

∫
Xn

n∏
i=1

μx̃i
(xi)f(xi)dν(xi),

Where X n is the support of random sample X.

The above definition is according to Zadeh [39]. Note that using Fubini’s
theorem (see [5] pp. 233-234), we obtain independency of X̃i’s, i.e.,

f̃(x̃1, ..., x̃n) = f̃(x̃1)...f̃(x̃n), ∀x̃i ∈ X̃

where

f̃(x̃i) =

∫
X

μx̃i
(xi)f(xi)dν(xi),

and f̃(x̃i) is the PDF of Fuzzy-valued random variable (henceforth FVRV)
X̃i, for each i = 1, · · · , n. The f̃(x̃i) really is a PDF on X̃ , because by the
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orthogonality property of μx̃i
’s, we have∑

x̃i∈X̃ f̃(x̃i) =
∑

x̃i∈X̃
∫
X μx̃i

(xi)f(xi)dν(xi)
=

∫
X f(xi)(

∑
x̃i∈X̃ μx̃i

(xi))dν(xi)
=

∫
X f(xi)dν(xi) = 1.

Theorem 2.1 . If g is a measurable function from X̃ n to R, then Y = g(X̃)
is an ordinary random variable.

Proof. X̃ is a measurable function from Ω to X̃ n and g is a measurable func-
tion from X̃ n to R. Hence g(X̃(ω)) = goX̃(ω) is a composition of two measur-
able functions, therefore is measurable from Ω to R. (see [5], P. 182.) �

Note that using Theorem 2.1, we can define and use all related concepts of
the ordinary random variables, such as expectation, variance, etc.

Theorem 2.2 . Let X̃ be a Fuzzy-valued random sample with fuzzy sample
space X̃ n, and g be a measurable function from X̃ n to R. The expectation of
g(X̃) is calculated by

E
[
g(X̃)

]
=

∑
x̃∈X̃n

g(x̃)f̃(x̃).

Proof. Using the change of variable rule and the Radon-Nikodym theorem,
we have

E
[
g(X̃)

]
=

∫
Ω

g(X̃(ω))dP (ω)

=
∫
X̃n g(x̃)dPoX̃−1(x̃)

=
∑

x̃∈X̃n g(x̃)f̃(x̃). �

For more details about the properties of the ordinary RV’s and their mo-
ments, see for e.g. [4], [5], [9], [11], and [27].

In this paper, we suppose that the PDF of the population is known but it
has an unknown parameter θ ∈ Θ. In this case, we index f̃ by θ and we write
f̃(x̃; θ).

Example 2.1. Let X be distributed according to the Bernoulli distribution
with parameter θ, i.e.,

f(x; θ) = θx(1 − θ)1−x, x = 0, 1, 0 < θ < 1.

We have X = {0, 1}. Let x̃1 and x̃2 be two fuzzy subsets of X with membership
functions μx̃1(x) and μx̃2(x) as follows

μx̃1(x) =

{
0.9, x = 0
0.1, x = 1
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and

μx̃2(x) =

{
0.1, x = 0
0.9, x = 1

,

respectively. Note that x̃1 and x̃2 are stated “approximately zero” and “ap-
proximately one” values, respectively. In this example, the support of X̃ is
X̃ = {x̃1, x̃2}. Therefore the PDF of X̃ is

f̃(x̃; θ) =
∑

X μx̃1(x)f(x; θ)

=

{
0.9(1 − θ) + 0.1θ, x̃ = x̃1

0.1(1θ) + 0.9θ, x̃ = x̃2

=

{
0.9 − 0.8θ, x̃ = x̃1

0.1 + 0.8θ, x̃ = x̃2
.

Let Y =

{
0.1, x̃ = x̃1

0.9, x̃ = x̃2
. Note that Y is a measurable function from X̃ to

R and therefore is a classical random variable. In the following, we calculate
the mean and the variance of Y. The PDF of Y is

fY (y) =

{
0.9 − 0.8θ, y = 0.1
0.1 + 0.8θ, y = 0.9

.

Therefore, the expectation and the variance of Y are calculated as the following

E[Y ] = 0.1(0.9 − 0.8θ) + 0.9(0.1 + 0.8θ) = 0.18 + 0.64θ

and
E[Y 2] = 0.01(0.9 − 0.8θ) + 0.81(0.1 + 0.8θ)

= 0.09 + 0.64θ ⇒
V ar[Y ] = 0.09 + 0.64θ − (0.18 + 0.64θ)2

= 0.0576 + 0.4096θ − 0.4096θ2.

3 Fuzzy hypotheses testing

In this section, we introduce some concepts about fuzzy hypotheses testing
(henceforth FHT).

Definition 3.1. Any hypothesis of the form “H : θ is H(θ)” is called a fuzzy
hypothesis, where “H : θ is H(θ)” implies that θ is in a fuzzy set of Θ (the
parameter space) with membership function H(θ) i.e. a function from Θ to
[0, 1].

Note that the ordinary hypothesis H : θ ∈ Θ is a fuzzy hypothesis with
membership function H(θ) = 1 at θ ∈ Θ, and zero otherwise, i.e., the indicator
function of the crisp set Θ.
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Example 3.1. Let θ be the parameter of a Bernoulli distribution. Consider
the following function:

H(θ) =

{
2θ, 0 < θ < 1/2
2 − 2θ, 1/2 ≤ θ < 1

The hypothesis “H : θ is H(θ)” is a fuzzy hypothesis and it means that “θ is
approximately 1/2”.

In FHT with fuzzy data, the main problem is testing{
H0 : θ is H0(θ)
H1 : θ is H1(θ)

, (3.1)

according to a FVRS X̃ = (X̃1, · · · , X̃n) from a parametric fuzzy population
with the PDF f̃(x̃; θ).

In the following, we give some definitions in FHT theory with fuzzy data.

Definition 3.2. The normalized membership function of Hj(θ) is defined by

H∗
j (θ) = Hj(θ)/

∫
Θ

Hj(θ)dθ, j = 0, 1.

providing to
∫

Θ
Hj(θ)dθ < ∞. Substitute

∫
by

∑
in discrete cases.

Note that the normalized membership function is not necessarily a mem-
bership function, i.e., it may be greater than 1 for some values of θ.

In FTH with fuzzy data, like the traditional hypotheses testing, we must
give a test function Φ̃(X̃). In the following, we define fuzzy test function.

Definition 3.3. Let X̃ be a FVRS with the PDF f̃(x̃; θ). Φ̃(X̃) is called a
fuzzy test function if it is the probability of rejecting H0 providing to X̃ = x̃
is observed.

Definition 3.4. Let FVRV X̃ have the PDF f̃(x̃; θ). Under the hypothesis
Hj(θ), j = 0, 1, the weighted probability density function (henceforth WPDF)
of X̃ is defined by

f̃j(x) =

∫
Θ

H∗
j (θ)f̃(x̃; θ)dθ,

i.e., the expected value of f̃(x̃; θ) over H∗
j (θ), j = 0, 1. If X̃ is a FVRS from

the PDF f̃(.; θ), then the joint WPDF of X̃ is defined by

f̃j(x̃) =
n∏

i=1

f̃j(x̃i).
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Remark 3.1. f̃j(x̃) is a PDF, since f̃j(x̃) is nonnegative and

∑
X̃ f̃j(x̃) =

∑
X̃

∫
Θ

H∗
j (θ)f̃(x̃; θ)dθ

=
∫

Θ
H∗

j (θ)[
∑

X̃ f̃(x̃; θ)]dθ
=

∫
Θ

H∗
j (θ)dθ

= 1

.

Hence f̃j(x̃1, · · · , x̃n) is also a joint PDF.

Remark 3.2. If Hj is the crisp hypothesis Hj : θ = θj , then f̃j(x) = f̃(x̃; θj)
and then f̃j(x̃1, · · · , x̃n) = f̃(x̃1, · · · , x̃n; θj), j = 0, 1.

Definition 3.5. Let Φ̃(X̃) be a fuzzy test function. The probability of type
I and II errors of Φ̃(X̃) for the fuzzy testing problem (3.1) is defined by αΦ̃ =
E0[Φ̃(X̃)], and βΦ̃ = 1−E1[Φ̃(X̃)], respectively, in which Ej[Φ̃(X̃)] means the
expected value of Φ̃(X̃) over the joint WPDF f̃j(x̃), j = 0, 1.

Note that in the case of simple crisp hypothesis against simple crisp alter-
native, i.e., {

H0 : θ = θ0

H1 : θ = θ1
,

and crisp observations, the above definition of αΦ̃ and βΦ̃ gives the classical
probability of errors.

Regarding to definitions of error sizes, it is concluded that fuzzy hypotheses
testing (3.1) is equivalent to the following ordinary hypotheses testing

{
H ′

0 : X̃ ∼ f̃0

H ′
1 : X̃ ∼ f̃1

(2.2)

Definition 3.6. A fuzzy testing problem with a fuzzy test function Φ̃ is said
to be a test of (significance) level α if αΦ̃ ≤ α, where α ∈ [0, 1]. We call αΦ̃ as
the size of Φ̃.

Definition 3.7. A fuzzy test Φ̃ of level α is said to be the most powerful test
of level α if βΦ̃ ≤ β∗

Φ̃
, for all test Φ̃∗ of level α.

4 Neyman-Pearson lemma for FHT with vague data

In this section, we state and prove the Neyman-Pearson lemma for FHT with
vague data.
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Theorem 4.1 . Let X̃ = (X̃1, ..., X̃n) be a FVRS with the observed value
x̃ = (x̃1, ..., x̃n), and the PDF f(x̃; θ), where θ ∈ Θ is a parameter. For testing{

H0 : θ is H0(θ)
H1 : θ is H1(θ)

,

(a). any test with fuzzy test function

Φ̃(x̃) =

⎧⎨
⎩

1, if f̃0(x̃)/f̃1(x̃) < k

δ(x̃), if f̃0(x̃)/f̃1(x̃) = k

0, if f̃0(x̃)/f̃1(x̃) > k

, (4.1)

for some k ≥ 0 and 0 ≤ δ(x̃) ≤ 1, is the MP test of level α, where α = αΦ and
f̃j(x̃) is the joint WPDF of f̃(x̃; θ) over H∗

j (θ), i.e., f̃j(x̃) =
∏n

i=1 f̃j(x̃i) =∏n
i=1

∫
Θ

H∗
j (θ)f(x̃i; θ)dθ, j = 0, 1.

If k = 0, then the test

Φ̃(x̃) =

{
1, if f̃0(x̃) = 0

0, if f̃0(x̃) > 0
, (4.2)

is the MP test of size zero.
(b). for 0 ≤ α ≤ 1, there is a test of the form (4.1) or (4.2) with δ(x̃) = δ (a
constant), for which αΦ̃ = α.

Proof. (a). We have αΦ̃ = α, hence E0[Φ̃(X̃)] =
∑

x̃∈X̃n f0(x̃) = α. Let

Φ̃∗(x̃) be another fuzzy test of level α, i.e., E0[Φ̃
∗(X̃)] ≤ α; we must prove that

βΦ̃∗ ≥ βΦ̃.
Let Ã = {x̃|f̃0(x̃)/f̃1(x̃) < k}. If x̃ ∈ Ã or x̃ ∈ Ã, then

[Φ̃(x̃) − Φ̃∗(x̃)][f̃0(x̃) − kf̃1(x̃)] ≤ 0,

Hence ∑
X̃n

[
[Φ̃(x̃) − Φ̃∗(x̃)][f̃0(x̃) − kf̃1(x̃)]

]
≤ 0.

Thus ∑
X̃n

[Φ̃(x̃) − Φ̃∗(x̃)]f̃0(x̃) ≤ k
∑
X̃n

[Φ̃(x̃) − Φ̃∗(x̃)]f̃1(x̃),

Therefore using Theorem 2.2, we have

αΦ̃ − αΦ̃∗ ≤ k[(1 − βΦ̃) − (1 − βΦ̃∗)].

But both the left side of the above inequality and k are non-negative, hence
βΦ̃∗ ≥ βΦ̃.
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Now consider the case k = 0. In this case, using Theorem 2.2, we have

αΦ̃ = E0[Φ̃(X̃)]

=
∑

{x̃|f̃0(x̃)=0} f̃0(x̃)

= 0.

Now consider a test Φ∗ with size zero. we define Ã = {x̃|f̃0(x̃) = 0}. If
x̃ ∈ Ã or x̃ 	∈ Ã, It can been easily proved that Φ̃(x̃) − Φ̃∗(x̃) ≥ 0; therefore

βΦ∗ − βΦ =
∑
X̃n

[Φ̃(x̃) − Φ̃∗(x̃)]f̃1(θ) ≥ 0.

(b). We discuss only the case 0 < α ≤ 1, since the MP test of size zero is
given by (4.2); (δ = 1). The size of the test of form (4.1) must be α; hence we
must have E0[Φ̃(X̃)] = α. Let δ(x̃) = δ (be a constat). We prove that there
exists δ, such that αΦ̃ = α. Using Theorem 2.2, we have

αΦ = E0[Φ̃(X̃)]

= P0(f̃0(X̃)/f̃1(X̃) < k) + δP0(f̃0(X̃)/f̃1(X̃) = k)
= α

(4.3)

If there exist a k0 such that

Pθ(f̃0(X̃)/f̃0(X̃) < k0) = α,

then we take δ = 0 and k = k0; otherwise, we define a RV R by
R = f̃0(X̃)/f̃0(X̃). Note that R is a real-valued RV defined from X̃ n to R. We
know that P0(R < k) is a non-decreasing and right continuous function of k.
Therefore there exists a k0, such that

P0(R < k0) < α < P0(R ≤ k0).

Therefore, in this case we take

δ =
α − P0(R < k0)

P0(R = k0)
,

which satisfies (4.3). �

Note that using Theorem 4.1, the MP critical region is

C =

{
X̃|

n∑
i=1

Yi < k

}
,

where Yi = Ln(f̃o(X̃i)/f̃1(X̃i)). It is clear that the Yi’s are IID, since X̃i’s are
IID. Therefore for finding k and then αΦ̃ we can obtain the exact distribution
of the RV

∑n
i=1 Yi for small n, see Example 5.1, or use the central limit theorem

for large n, n ≥ 30, under H ′
0 : X̃i ∼ f̃0(x̃i). For βΦ̃, we can obtain the exact

or asymptotically distribution of the RV
∑n

i=1 under H1 : X̃i ∼ f̃1(x̃i).
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5 Some Examples

In this section, we present some important examples to clarify the theoretical
discussions so far.

Example 5.1. Let X1, X2, · · · , Xn be a random sample from Ber(θ), Bernoulli
distribution, 0 < θ < 1.

We want to test {
H0 : θ ≈ θ0

H1 : θ ≈ θ1
,

where
H0(θ) = θθ0/(1−θ0)(1 − θ), θ ∈ (0, 1),

and
H1(θ) = θ(1 − θ)(1−θ1)/θ1 , θ ∈ (0, 1),

according to two fuzzy data (fuzzy subsets of X = {0, 1}) x̃I and x̃II where
their membership functions are defined by

μx̃I
(x) =

{
0.9 , x = 0
0.1 , x = 1

and μx̃II
(x) =

{
0.1 , x = 0
0.9 , x = 1

.

The normalized membership function of H0(θ) and H1(θ) is

H∗
0 (θ) = [(2 − θ0)/(1 − θ0)

2]θθ0/(1−θ0)(1 − θ),

and
H∗

1 (θ) = [(θ1 + 1)/θ2
1]θ(1 − θ)(1−θ1)/θ1 ,

respectively.
If we denote this FVRV, its fuzzy observation and its PDF by X̃, x̃, and

f(x̃; θ), respectively, then using Example 2.1, we have

f(x̃; θ) =

{
0.9 − 0.8θ , x̃ = x̃I

0.1 + 0.8θ , x̃ = x̃II
.

It is easy to show that

f̃0(x̃) =

{
0.26 , x̃ = x̃I

0.74 , x̃ = x̃II
and f̃1(x̃) =

{
0.74 , x̃ = x̃I

0.26 , x̃ = x̃II
.

Hence for i = 1, 2, · · · , n, we obtain

yi = Ln(f̃0(x̃i)/f̃1(x̃i)) =

{ −1.04597 , x̃i = x̃I

1.04597 , x̃i = x̃II
.

But using Theorem 4.1, the MP critical region is

C =

{
x̃|

n∑
i=1

yi < k

}
.
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The PDF of Yi under H0 and H1 is

f0(yi) =

{
0.26 , yi = −1.04597
0.74 , yi = 1.04597

and f1(yi) =

{
0.74 , yi = −1.04597
0.26 , yi = 1.04597

,

respectively.
Let zi = (1/2.09194)(yi + 1.04597). Hence the MP critical region is C =

{x̃|∑n
i=1 zi < c}. Under H0, Zi ∼ Ber(0.74) and under H1, Zi ∼ Ber(0.26).

Therefore we can easily find c for a test of known level or size α. Assume that
n = 10, α = 0.05. We obtain P0(

∑10
i=1 Zi ≤ 4) = 0.0239 and P0(

∑10
i=1 Zi ≤

5) = 0.09035. Thus the critical region
∑

Zi ≤ 4 is of level 0.05. The test
function of the MP test of size α, using Theorem 4.1(b), is

Φ̃(X̃) =

⎧⎨
⎩

1 ,
∑

Zi ≤ 4
0.393 ,

∑
Zi = 5

0 ,
∑

Zi ≥ 6

The probability of type II error for this test is

βΦ̃ = 1 − E1[Φ̃(X̃)] = 1 − 0.90965 − 0.393(0.06644) = 0.0642.

For n ≥ 30, we can use the central limit theorem. we obtain c = 0.74n −√
(0.74 × 0.26)n zα, where zα is the α-right side quantile of the standard nor-

mal distribution. For instance, let n = 40 and α = 0.025. We obtain c = 24.163
and βΦ̃ = 1 − P1(Z < 4.961) ≈ 0, where Z ∼ N(0, 1).

Example 5.2. Let X1, X2, · · · , Xn be a random sample from a Normal
population with mean μ and variance σ2, i.e.,

f(x; θ) =
1

σ
√

2π
e−

(x−μ)2

2σ2 , x ∈ R, μ ∈ R, σ > 0.

We want to test {
H0 : μ ≈ μ0

H1 : μ ≈ μ1

with membership functions

Hj(μ) = e−(μ−μj )2/(2σ2
0), j = 0, 1, μ ∈ R, σ0 > 0,

in two cases μ1 > μ0 and μ1 > μ0, according to three fuzzy data (fuzzy subsets
of X = (−∞, +∞)) x̃I , x̃II , and x̃III whose membership functions are defined
by

μx̃I
(x) =

{
1 − e−x2/2 , x < 0
0 , x ≥ 0

, μx̃II
(x) = e−x2/2, x ∈ R, and

μx̃III
(x) =

{
0 , x < 0

1 − e−x2/2 , x ≥ 0
.
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The fuzzy subsets x̃I , x̃II , and x̃III can be interpreted as the values where
are “very small”, “near to zero”, and “very large”.

Note that μ’s are measurable and satisfy the orthogonality constraint; see
Definitions 2.2 and 2.3.

The normalized membership function of Hj(θ) is

H∗
j (μ) = 1/(σ0

√
2π)e−(μ−μj)

2/(2σ2
0 ), j = 0, 1, μ ∈ R, σ0 > 0,

Denote this FVRV, its fuzzy observation and its PDF by X̃, x̃, and f(x̃; θ),
respectively. Let μ0 = 0, μ1 = 1, σ2 = 4, and σ2

0 = 0.5. It is easy to show that

f̃0(x̃) =

⎧⎨
⎩

0.3796 , x̃ = x̃I

0.2408 , x̃ = x̃II

0.3796 , x̃ = x̃III

,

and

f̃1(x̃) =

⎧⎨
⎩

0.2907 , x̃ = x̃I

0.2339 , x̃ = x̃II

0.4754 , x̃ = x̃III

.

Hence for i = 1, 2, · · · , n, we obtain

yi = Ln(f̃0(x̃i)/f̃1(x̃i)) =

⎧⎨
⎩

0.2668 , x̃i = x̃I

0.0291 , x̃i = x̃II

−0.2250 , x̃i = x̃III

.

Therefore the MP critical region is C = {x̃|∑ yi < k}. But the PDF of Yi

under H0 and H1 is

f0(yi) =

⎧⎨
⎩

0.3796 , yi = 0.2668
0.2408 , yi = 0.0291
0.3796 , yi = −0.2250

and f1(yi) =

⎧⎨
⎩

0.2907 , yi = 0.2668
0.2339 , yi = 0.0291
0.4754 , yi = −0.2250

,

respectively.
Suppose that n = 80 and α = 0.1. It is easy to show that E0[Yi] =

0.022867, V ar0[Yi] = 0.04592, E1[Yi] = −0.022607, and V ar1[Yi] = 0.04444.
Thus using the central limit theorem, we obtain k = 2.1768 and β = 0.2643.
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[22] M. López-Dı́az, M.A. Gil, Constructive Definitions of Fuzzy Random Vari-
ables, Stat. Probab. Lett. 36 (1997) 135-144.
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