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Abstract
In this paper we propose a direct study of the Riccati equation sat-

isfied by the Dirichlet-Neumann operator defined on a moving section
for an elliptic boundary value problem set in a cylindrical domain [3].
Similar equations are studied in control theory. The additional difficulty
of this problem is due to the unboundedness of the right-hand side and
of the solution of the equation. The Yosida regularization is used to
overcome it.
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1 Introduction

Operator Riccati differential equations are used in the theory of linear-quadratic
optimal control of infinite dimensional systems. The operator is the adjoint
state to state operator and it allows to compute the optimal feedback control.
It is derived by using the invariant embeding technique of R. Bellman. These
equations were studied by J. L. Lions [7] using a Galerkin method and also by
A. Bensoussan [1] in the context of Kalman filtering. In [9] a direct study of
Riccati equations was made in a Hilbert-Schmidt operator framework. Also
Tartar [8], at the same time, studied these equations by a fixed point argu-
ment. The same argument is used in the book [2]. In [6] a nonlinear semigroup
approach is used.

In this paper we present a study of a similar Riccati equation arising in the
theory of elliptic boundary value problems factorization. Here the operator
satisfying the Riccati equation represents a Dirichlet to Neumann operator
on a section of the domain. This kind of Riccati operator equation is not
usually found in the litterature of control of infinite dimensional systems as
here the right hand side, as well as the solution of the equation, are unbounded
operators. In [3] its well-posedness

was proved by adapting the Galerkin method used by J.L. Lions in [7]. In [4]
a direct study of the operator equation was made in a Hilbert-Schmidt operator
framework inspired from [9]. Due to the unboundedness of the operator, the
fixed point argument used in [2] and [8] does not work any more. In [2](p. 405)
the case of the unbounded observation is studied, but the assumptions relates
this unboundedness to the one of the generator of the evolution semi-group
(which is here 0) and are not satisfied in our case. Here we present a direct
study of the particular operator Riccati equation arising from the factorization
of the Poisson equation in a cylindrical domain using a Yosida regularization.

In section 2 we recall the formal derivation of the factorization of a bound-
ary value problem. In section 3 we introduce the Yosida regularization and in
section 4 we derive the main result by passing to the limit in the regularization.

studying the mixed

2 Method of factorization by space invariant

embeding

In this section we recall from [3] the factorization of boundary value problems
for elliptic equation by space invariant embeding (in this paper the Neumann-
Dirichlet operator was studied, but the approach is quite similar). The method
is most easily explained in the case of a cylinder. Let Ω be the cylinder
Ω =]0, a[×O, x′ = (x, y) ∈ R

n, where x is the coordinate along the axis of the
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cylinder and O bounded open set in R
n−1 is the section of the cylinder. Let

Σ =]0, a[×∂O be the lateral boundary and Γ0 = {0} × O, Γa = {a} × O be
the faces of the cylinder.

We consider the following Poisson equation with mixed boundary condi-
tions

(P0)

⎧⎪⎨
⎪⎩

−Δu = −∂2u
∂x2 − Δyu = f in Ω,

u|Σ = 0,

−∂u

∂x
|Γ0 = −u0, u|Γa = u1.

We embed this problem in the family of similar problems defined over
subcylinders limited by the “moving boundary” Γs

(Ps,h)

⎧⎪⎨
⎪⎩

−Δu = f in Ωs =]0, s[×O
u|Σ = 0,

−∂u

∂x
|Γ0 = −u0, u|Γs = h.

The Dirichlet-Neumann map on Γs : h �→ ∂u
∂x
|Γs, is affine, so there exist an

operator P (s) and a residual w(s) such that

∂u

∂x
|Γs = P (s)h + w(s). (1)

Let us denote by u(s) = u|Γs and us,h the solution of (Ps,h). Then considering
the problem restricted to Ωx for 0 < x ≤ s ≤ a it is clear that us,h(x) is
ux,us,h(x)(x). Then one has the relation

∂us,h

∂x
(x) = P (x)us,h(x) + w(x). (2)

Now to derive the equation satisfied by P and w one has to take the derivative
with respect to x. This computation is formal as one does not know if these
functions are derivable. Skipping the indices for the sake of clarity, one has

∂2u

∂x2
= −Δyu − f =

dP

dx
u + P

∂u

∂x
+

∂w

∂x
,

substituting
∂u

∂x
from (2)

0 =

(
dP

dx
+ P 2 + Δy

)
u +

∂w

∂x
+ Pw + f.

Now setting x = s and h being arbitrary, we can identify to zero the term
depending linearly on h and the term independent. One gets the decoupled
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system

dP

dx
+ P 2 + Δy = 0; P (0) = 0, (3)

dw

dx
+ Pw = −f ; w(0) = u0, (4)

−du

dx
+ Pu = −w; u(a) = u1, (5)

where P and w are to be integrated from 0 to a then u backwards from a
to 0. We stress that P is an operator on functions defined on O satisfying a
Riccati equation. The initial conditions for P and w are obtained from (1)
written at x = 0. The notation Δy in equation (3) has to be understood as the
abstract isomorphism from H1

0 (O) to H−1(O) corresponding to the laplacian
with homogeneous Dirichlet boundary condition.

We obtain the factorization of the elliptic boundary value problem (P0) in
the product of two Cauchy problems of parabolic type in opposite directions

“ −Δ” = −
(

d

dx
+ P

) (
d

dx
− P

)

We insist that this factorization should be understood not only in terms of
differential operator but also in terms of boundary conditions.

Remark 1 Once the Riccati equation for P is integrated, for a new set of
data u0, u1, f it suffices to integrate two uncoupled first order equations for
w and u. This recalls a similar property for the Gauss LU factorization of
matrices. In fact it can be shown that this factoriation can be viewed as the
infinite dimensional limit of a block LU factorization of a discretization of the
problem (P0).

3 Yosida regularization

Let A be the unbounded operator −Δy in the Hilbert space H = L2(O),
with domain D(A) = H2(O) ∩ H1

0 (O), and let An be its Yosida regularized
An = nI − n2R(n,−A) = nI − n2(nI + A)−1. We know that

lim
n→+∞

Anh = Ah, ∀h ∈ D(A).

Each An is a linear, bounded, self adjoint and positive operator in H, and so

we can define A
1
2
n , the positive square root of An, which is a linear, bounded,

self adjoint and positive operator, which also verifies:

∥∥∥A
1
2
n

∥∥∥
L(H)

= ‖An‖
1
2

L(H) , ∀n ∈ N. (6)
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Let Pn be the solution of the corresponding Riccati equation:

dPn

dx
+ P 2

n = An, Pn(0) = 0. (7)

From [2], the equation (7) admits a solution given by:

Pn(x) = A
1
2
n(exp(2xA

1
2
n) − I)(exp(2xA

1
2
n) + I)−1. (8)

First of all, we notice that each operator A
1
2
n is a linear bounded operator in H,

and so it is the infinitesimal generator of an uniformly continuous semigroup
of bounded linear operators in H:

Tn(x) = exp(xA
1
2
n), x ≥ 0, n ∈ N, (9)

and taking into account that A
1
2
n is self adjoint ∀n ∈ N, then we may conclude

that Tn(x) is self adjoint ∀n ∈ N.

Theorem 3.1 For each x ≥ 0, Pn(x) is well defined and Pn(x) ∈ L(H) is
a positive and self adjoint operator in H. Moreover, we have that:

Pn ∈ C1([0, a];L(H)). (10)

Proof. First of all, we notice that for each x ≥ 0, the linear operator

exp(2xA
1
2
n) + I is invertible in H. In fact, we know that Tn(x) = exp(xA

1
2
n) is

self adjoint in H, ∀x ≥ 0, and so we have that:

((exp(2xA
1
2
n) + I)h, h) = (exp(xA

1
2
n) exp(xA

1
2
n)h, h) + (h, h) = (11)

= (exp(xA
1
2
n)h, exp(xA

1
2
n)h) + ‖h‖2 ≥ (12)

≥ ‖h‖2 , ∀h ∈ H (13)

and, taking into account that exp(2xA
1
2
n) + I is continuous in H, then, by

Lax-Milgram theorem, we may conclude that it is invertible in H, and we have
also that: ∥∥∥(exp(2xA

1
2
n) + I)−1

∥∥∥
L(H)

≤ 1,∀x ≥ 0. (14)

Next, we remark that, for each x ≥ 0, Pn(x) is the product of self adjoint,
positive and bounded operators in H, that commute with each other, and, con-
sequently, we may conclude that Pn(x) is a self adjoint, positive and bounded

operator in H, ∀x ≥ 0. Taking into account that exp(2xA
1
2
n) is an uniformly
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continuous semigroup of bounded linear operators in H, it can be shown, in a
straightforward way, that Pn ∈ C([0, a];L(H)). From (8) we obtain:

dPn

dx
= 4An(exp(2xA

1
2
n))(exp(2xA

1
2
n) + I)−2. (15)

As before, we may conclude that dPn

dx
∈ C([0, a];L(H)).

Theorem 3.2 For each h ∈ D(A) there exists a constant c(h) ≥ 0, such
that

‖Pn(x)h‖ ≤ c(h), ∀x ∈ [0, a] , ∀n ∈ N.

Proof. By (15) and, being the product of positive operators that commute
with each other, we may conclude that:

dPn

dx
≥ 0, ∀n ∈ N, ∀x ≥ 0.

From the Riccati equation (7) we have:

(
dPn

dx
h, h) + (P 2

n(x)h, h) = (Anh, h),

Pn being self adjoint,

(
dPn

dx
h, h) + ‖Pn(x)h‖2 = (Anh, h), ∀h ∈ H,∀x ≥ 0,

and so we may conclude that:

‖Pn(x)h‖2 ≤ (Anh, h) −→ (Ah, h), ∀h ∈ D(A), ∀x ∈ [0, a] ,

and, consequently, for each h ∈ D(A) there exists a constant c(h) ≥ 0, such
that:

‖Pn(x)h‖ ≤ c(h), ∀x ∈ [0, a] , ∀n ∈ N.

Theorem 3.3 For each h ∈ D(A), the following limit: lim
n→+∞

Pn(x)h exists

strongly in H, uniformly in x ∈ [0, a].

Proof. For each h ∈ H and each x ∈ [0, a], we consider the sequence
{Pn(x)h}n∈�. Now, it can be shown that for each x ≥ 0, Pn(x) and Pm(x)
commute with each other, ∀m, n ∈ N, and so we have that:

d

dx
(Pn(x) − Pm(x))h + (Pn(x) + Pm(x))(Pn(x) − Pm(x))h = (An − Am)h.

(16)
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Multiplying by (Pn(x) − Pm(x))h it results that

( d
dx

(Pn(x) − Pm(x))h, (Pn(x) − Pm(x))h)+

+((Pn(x) + Pm(x))(Pn(x) − Pm(x))h, (Pn(x) − Pm(x))h) =

= ((An −Am)h, (Pn(x) − Pm(x))h) ⇒
⇒ 1

2
d
dx

((Pn(x) − Pm(x))h, (Pn(x) − Pm(x))h) ≤
≤ ((An − Am)h, (Pn(x) − Pm(x))h) ≤
≤ ‖(An − Am)h‖ ‖(Pn(x) − Pm(x))h‖ ⇔
⇔ 1

2
d
dx

‖(Pn(x) − Pm(x))h‖2

= ‖(Pn(x) − Pm(x))h‖ d
dx

‖(Pn(x) − Pm(x))h‖ ≤
≤ ‖(An − Am)h‖ ‖(Pn(x) − Pm(x))h‖
⇒ d

dx
‖(Pn(x) − Pm(x))h‖ ≤ ‖(An − Am)h‖

⇒ ‖(Pn(x) − Pm(x))h‖ ≤ x ‖(An −Am)h‖
≤ a ‖(An − Am)h‖ , ∀x ∈ [0, a] , ∀h ∈ H.

We obtain the estimate

‖(Pn(x) − Pm(x))h‖ ≤ a ‖(An − Am)h‖ , ∀x ∈ [0, a] , ∀h ∈ H. (17)

Since Anh → Ah, ∀h ∈ D(A), and remarking that ‖(An −Am)h‖ does not
depend on x, we conclude that, for each h ∈ D(A), the sequence {Pn(x)h}n∈�
is a Cauchy sequence, uniformly in x ∈ [0, a], and, consequently, for each
h ∈ D(A), the sequence {Pn(x)h}n∈� is strongly convergent in H, uniformly
in x ∈ [0, a].

4 Passing to the limit

We now define, for each h ∈ D(A) and each x ∈ [0, a]: P (x)h = lim
n→+∞

Pn(x)h,

which, by linearity, defines the operator P (x) from D(A) to H.

Theorem 4.1 The operator P verifies the Riccati equation (3) in the fol-
lowing sense:

d

dx
(P (x)h, h) + (P (x)h, P (x)h) = (−Δyh, h), ∀h, h ∈ H2(O) ∩ H1

0 (O),

(18)

and it verifies also P (0) = 0.
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Proof. We know that each Pnverifies:

(
dPn

dx
h, h) + (Pn(x)h, Pn(x)h) = (Anh, h), ∀h, h ∈ H.

Let ϕ ∈ D(]0, a[). Then:

−
∫ a

0

(Pn(x)h, h)ϕ′(x)dx +

∫ a

0

(Pn(x)h, Pn(x)h) ϕ(x)dx =

∫ a

0

(Anh, h)ϕ(x)dx.

(19)

For each h, h fixed in D(A) = H2(O) ∩ H1
0 (O), we have:

lim
n→+∞

(Pn(x)h, h)ϕ′(x) = (P (x)h, h)ϕ′(x), ∀x ∈ [0, a] (20)

and

∣∣(Pn(x)h, h)ϕ′(x)
∣∣ ≤ c(h).

∥∥h
∥∥ |ϕ′(x)| , ∀x ∈ [0, a] , ∀n ∈ N. (21)

We also have that

lim
n→+∞

(Pn(x)h, Pn(x)h) ϕ(x) = (P (x)h, P (x)h) ϕ(x), ∀x ∈ [0, a] (22)

and

∣∣(Pn(x)h, Pn(x)h) ϕ(x)
∣∣ ≤ c(h).c(h) |ϕ(x)| , ∀x ∈ [0, a] , ∀n ∈ N. (23)

Finally, we notice that:

lim
n→+∞

∫ a

0

(Anh, h)ϕ(x)dx = (Ah, h)

∫ a

0

ϕ(x)dx. (24)

Consequently, we may use the Lebesgue dominated convergence theorem to
pass to the limit for each term of (19). Then (18) is satisfied in the sense of
distributions on ]0, a[ for each h, h ∈ D(A). Furthermore, since Pn(0)h = 0 for
all n ∈ N and h ∈ D(A) then, by Theorem 3.3, P (0) = 0.

Theorem 4.2 The operator P (x) verifies:

(
dP

dx
h, h) ≥ 0,∀h ∈ H2(O) ∩ H1

0 (O). (25)

Proof. From Theorem 4.1, we know that P (x) verifies:

(
dP

dx
h, h) + ‖P (x)h‖2 = (−Δyh, h), ∀h ∈ H2(O) ∩ H1

0 (O). (26)
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We also know that, for each n ∈ N, Pn(x) verifies:

(
dPn

dx
h, h) + ‖Pn(x)h‖2

= (Anh, h), ∀h ∈ L2(O).

Now, taking into account that, for each h ∈ H2(O) ∩ H1
0 (O), Pn(x)h −→

n→+∞
P (x)h, strongly in L2(O), uniformly in x ∈ [0, a], and

(Anh, h) −→
n→+∞

(−Δyh, h), ∀h ∈ H2(O) ∩ H1
0 (O), (27)

we may conclude that:

(
dPn

dx
h, h) −→

n→+∞
(
dP

dx
h, h), ∀h ∈ D(A).

On the other hand, we know that dPn

dx
≥ 0 in L2(O), and so we conclude that:

(
dP

dx
h, h) ≥ 0,∀h ∈ D(A).

Theorem 4.3 The operator P (x) verifies

‖P (x)h‖L2(O) ≤ ‖h‖H1
0(O) , ∀h ∈ H2(O) ∩ H1

0 (O), ∀x ∈ [0, a] ,

and, consequently, it also verifies

P ∈ L∞(0, a;L(H2(O) ∩ H1
0 (O), L2(O))). (28)

Proof. We know that P (x) verifies

(dP
dx

h, h) + ‖P (x)h‖2 = (−Δyh, h) = ‖∇yh‖2

= ‖h‖2
H1

0 (O) ≤ ‖h‖2
H2(O) , ∀h ∈ H2(O) ∩ H1

0 (O)

and, taking into account that (dP
dx

h, h) ≥ 0,∀h ∈ H2(O)∩H1
0 (O) the conclusion

is now obvious.

Theorem 4.4 There exists an operator

P ∈ L∞(0, a;L(H1
0 (O), L2(O))) (29)

solution of the Riccati equation

(
dP

dx
h, h) + (P (x)h, P (x)h) = (∇yh,∇yh), ∀h, h ∈ H1

0 (O) (30)

verifying P (0) = 0. This solution is strongly continuous in the sense that
P (x)h ∈ C([0, a]; L2(O)), for all h ∈ H1

0 (O).
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Proof. The operator P , referred in the previous theorems, can be extended
by density, taking Theorem 4.3 into account, to an operator P from H1

0 (O)
to L2(O). This extension is unique and we name P by P. From Theorem 4.3,
we may conclude that:

‖P (x)h‖L2(O) ≤ ‖h‖H1
0 (O) , ∀h ∈ H1

0 (O), ∀x ∈ [0, a] , (31)

and, consequently, P ∈ L∞(0, a;L(H1
0 (O), L2(O))).

Following a similar way to the one we used in the proof of Theorem 4.1, it
can be shown that P (x) verifies the Riccati equation:

(
dP

dx
h, h) + (P (x)h, P (x)h) = (∇yh,∇yh), ∀h, h ∈ H1

0 (O). (32)

By Theorem 3.3, P (x)h ∈ C([0, a]; L2(O)), for all h ∈ H2(O) ∩ H1
0 (O). The

remaining property follows from (31).

Remark 2 The uniqueness of the solution of (3) can be proved. The easiest
way is to use the interpretation of P as a Dirichlet-Neumann operator and to
use the uniqueness of the solution of the boundary value problem.

Remark 3 If instead A = −Δy we consider the operator

A = −
n−1∑
i,j=1

∂

∂yj

(
ai,j(y)

∂

∂yi

)

with ai,j(y) = aj,i(y), ∀i, j and ∀y ∈ O, ai,j being continuously differentiable in
O, and A being H1

0 (O)-elliptic, we can do everything as before with almost no
changes. In fact, A remains self adjoint, positive and an infinitesimal gener-
ator of a strongly continuous semigroup. The explicit formula at the begining
remains. The norm of P in L∞(0, a;L(H1

0 (O), L2(O))) is now bounded by M
for some M, instead of 1. This is the unique little change.

5 Conclusion

We have proved directly the existence of a solution of an operator Riccati equa-
tion having an unbounded solution that arises in the theory of factorization of
elliptic linear boundary value problems. The problem studied is particular as it
concerns the Laplacian in a cylindrical domain. Further work will study more
general operators and more general geometries that give rise to more complex
Riccati equations but with the same kind of unboundedness. For example the
case of invariant embeding in a circular domain was presented in [5].
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[2] A. Bensoussan, G. Da Prato, M. Delfour, and S. Mitter, Representation
and Control of Infinite Dimensional Systems, Birkhäuser, 2007.
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aux Dérivées Partielles. Dunod, 1968.

[8] L. Tartar, Sur l’étude directe d’équations non linéaires intervenant en
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