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Abstract
In this article, we first state some relations about the number of

partitions of a set under some particular conditions and then we give
a new relation about the number of partitions of an n-set, i.e., Bell
number B(n). Finally, we give some formulas to count partitions of a
natural number n, i.e., partition function P (n).
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1 Introduction

Partitions of sets and natural numbers have been a very attractive subject dur-
ing the recent decades. Partitions play important roles in such diverse areas of
mathematics as combinatorics, Lie theory, representation theory, mathemati-
cal physics, and the theory of special functions. Because of some applications
of this subject, mathematicians have given some formulas in this regard. Up
to now, the number of partitioning of sets and natural numbers was considered
by some authors; for more details about partitions of sets and other related
subjects, see for example [8], [10], [15], [17], [18], [19], [20], [21], and [22], and
for partitions of natural numbers and other related concepts, see for example
[1], [2], [3], [4], [5], [9], [12], [13], and [14].

In this article, using some elementary tools of combinatorial analysis- see
[6], [7], [11], [16], and [23]- we give some alternative formulas for theses prob-
lems, considering also some special cases.

2 Partitions of sets

Definition 2.1 . A partition of a set A is any sequence of subsets A1, ..., Am
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of A, such that
⋃m

i=1 Ai = A and Ai ∩ Aj = φ, ∀i �= j.

The number of partitions of a set of size n ( n-set) is called the Bell num-
ber, in honor of famous mathematician “Eric Temple Bell” (1883-1960), and
denoted by B(n). By convention we agree that B(0)=1. Using Definition 2.1,
for n=1,2,3, we have B(1) = 1, B(2) = 2, B(3)=5 and so on.

In the following lemma, we state a relation for the number of partitions
of an n-set such that in every partition we have at least a subset with n − j
elements, j = 1, 2, ..., [n

2
], n ≥ 2.

Lemma 2.1 . Let B(n|n − j) be the number of partitions of a set with
n elements in which there exists at least a subset with n − j elements, j =
1, 2, ..., [n

2
]. Then for n ≥ 2, we have

B(n|n − j) =

⎧⎪⎪⎨
⎪⎪⎩

(
n
j

)
B(j), j = 1, . . . , [n

2
] − 1(

n
[n
2
]

)
(B([n

2
]) − 1

2
δ([n

2
], n

2
)), j = [n

2
]

where

δ(x, y) =

{
1, x = y
0, x �= y

Proof. Let j ∈ {1, 2, ..., [n
2
] − 1}. Because n − j > n

2
, the statement

“at least a subset with n − j elements” is equivalent to “exactly a subset
with n − j elements”. n − j elements from n elements can be selected in(

n
j

)
=

(
n

n − j

)
ways. But the remaining j elements can be partitioned

in B(j) ways. Hence

B(n|n − j) =

(
n
j

)
B(j), j = 1, 2, . . . , [

n

2
] − 1.

But,

n − [
n

2
] =

{
n
2
, if n is even

n+1
2

, if n is odd

Therefore, if n is odd, we have n − [n
2
] > n

2
, hence

B(n|n − [
n

2
]) =

(
n
[n
2
]

)
B([

n

2
]).

If n is even, we cannot partition the remaining n
2

elements unconditionally,

because when the set is partitioned in two subsets with n
2

elements, 1
2

(
n
[n
2
]

)
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partitions are counted twice and therefore in this case, we have

B(n|n − [
n

2
]) =

(
n
[n
2
]

)
B([

n

2
]) − 1

2

(
n
[n
2
]

)
.

�

Example 2.1 . Find the number of partitions of a set with 5 elements in
which there exists exactly a subset with
(a) 4 elements;
(b) 3 elements.

Solution.

(a) we have B(5|4) =

(
5
1

)
B(1) = 5 × 1 = 5 :

{1, 2, 3, 4}, {5} {1, 2, 3, 5}, {4} {1, 2, 4, 5}, {3} {1, 3, 4, 5}, {2} {2, 3, 4, 5}, {1}

(b) we have B(5|3) =

(
5
2

)
B(2) = 10 × 2 = 20 :

{1, 2, 3}, {4, 5} {1, 2, 3}, {4}, {5} {1, 2, 4}, {3, 5} {1, 2, 4}, {3}, {5}
{1, 3, 4}, {2, 5} {1, 3, 4}, {2}, {5} {2, 3, 4}, {1, 5} {2, 3, 4}, {1}, {5}
{1, 2, 5}, {3, 4} {1, 2, 5}, {3}, {4} {1, 3, 5}, {2, 4} {1, 3, 5}, {2}, {4}
{2, 3, 5}, {1, 4} {2, 3, 5}, {1}, {4} {1, 4, 5}, {2, 3} {1, 4, 5}, {2}, {3}
{2, 4, 5}, {1, 3} {2, 4, 5}, {1}, {3} {3, 4, 5}, {1, 2} {3, 4, 5}, {1}, {2}.

�
Example 2.2 . Find the number of partitions of a 4-set with at least a subset
with 2 elements( B(4|2)).

Solution. Using Lemma2.1, we have

B(4|2) =

(
4
2

)
(B(2) − 1

2
) = 9.

These 9 partitions are as follows:

{1, 2}, {3, 4} {1, 3}, {2, 4} {1, 4}, {2, 3}
{1, 2}, {3}, {4} {1, 3}, {2}, {4} {1, 4}, {2}, {3}
{2, 3}, {1}, {4} {2, 4}, {1}, {3} {3, 4}, {1}, {2}.

�
Now, we state two other lemmas about the number of partitions of a set

with n elements in which all subsets have m elements. We indicate this number
by Pm(n).
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Lemma 2.2 . If m|n(i.e. there exist a natural number k such that n=km),
then

Pm(n) =
1

( n
m

)!

(
n

m,m, . . . , m

)
=

n!

( n
m

)!m!(
n
m

)
.

Proof. The number of ways that we can distribute n elements to n
m

subsets,
such that in every subset we have m elements, is

1

( n
m

)!

(
n

m,m, . . . , m

)
.

Hence, by using definition of multinomial coefficients, this lemma is proved. �

Lemma 2.3 . Let P ′
m(n) indicate the number of partitions of an n-set to

maximal number of subsets with m elements. We have

P ′
m(n) =

(
n

m[ n
m

]

)
(m[ n

m
])!

[ n
m

]!m![
n
m

]
× B(n − m[

n

m
]).1

Proof. m[ n
m

] is the greatest multiple of m that is less than or equal to

n. These m[ n
m

] elements are selected in

(
n

m[ n
m

]

)
ways. But the remaining

(n − m[ n
m

]) elements must be partitioned arbitrarily. Thus, the relation is
proved. �

Lemma 2.4 . Let m|n and Pm|n1,...nj
(n) indicate the number of partitions of

an n-set into subsets of size m, such that in j subsets from m special elements of
the set, there exist in numbers n1, n2, ..., nj elements , j = 1, 2, ..., n

m
,
∑j

i=1 ni =
m. We have

Pm|n1,...,nj
(n) =

1

j!

(
m

n1, n2, . . . , nj

)
×

(
n − m

m − n1, m − n2, . . . , m − nj, n − jm

)
(n − jm)!

(n−jm
m

)!m!(
n−jm

m
)
.

Proof. The number of ways in which m elements can be distributed to j
subsets, with numbers n1, n2, ..., nj is

1

j!

(
m

n1, n2, . . . , nj

)
.

But the number of elements of these j subsets isn’t still m. Therefore n−m of
the remaining elements must be partitioned to j + 1 subsets, in numbers m−
n1, ..., m−nj , and finally n−jm. This number is

∏j
k=1

(
n − km +

∑k−1
l=0 nl

m − nk

)
,

1If m|n, then P ′
m(n) = Pm(n).
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n0 = 0 or

(
n − m

m − n1, m − n2, . . . , m − nj , n − jm

)
. Now the n−jm elements

are remained that must be partitioned. Using Lemma 2.2 and the product
axiom in combinatorial analysis, the relation is obtained. �

Theorem 2.1 . If m|n, then

Pm(n) =

n
m∑

j=1

∑
{(n1,n2,...,nj)|

�j
i=1 ni=m;ni≥1,i=1,2,...,j}

1

j!

(
m

n1, n2, . . . , nj

)
×

(
n − m

m − n1, m − n2, . . . , m − nj, n − jm

)
(n − jm)!

(n−jm
m

)!m!(
n−jm

m
)
.

Proof. Consider m special elements of the set {1, 2, ..., n}, for instance
1,2,...,m. These m elements can be distributed in n

m
arbitrary subsets. Con-

sider a case that m elements in j subsets are distributed in numbers n1, n2, ..., nj,
j = 1, 2, ..., n

m
,
∑j

i=1 ni = m. But the number of these cases is Pm|n1,n2,...,nj
(n).

Now by using Lemma 2.4 and summing over j, j = 1, 2, ..., n
m

, the proof is
completed. �

Example 2.3 . Find the number of partitions of set {1, 2, ..., 9} in subsets
with 3 elements,
(a) without any condition;
(b) 3 elements 1, 2, 3 are in 3 different subsets.

Solution. (a) Using Lemma 2.2, we have

P3(9) =
9!

3!3!3
= 280.

(b) The number is P3|1,1,1(9). Now, Using Lemma 2.4, we have

P3|1,1,1(9) =
1

3!

(
3

1, 1, 1

) (
6

2, 2, 2, 0

)
× 0!

0! 3!0
= 90.

�

Theorem 2.2 . If n ≥ 1, then

B(n) =

n∑
j=1

∑
{(n1,...,nj)|

�n
i=1 ni=n,ni≥1,i=1,...,j}

1

j!

(
n

n1, ..., nj

)
.

Proof. By above lemmas, the proof is obvious. �
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3 Partition function

Definition 3.1 . A partition of a natural number n is any non-increasing
sequence of natural numbers whose sum is n.

In this section, we state some lemmas and theorems about P (n), the num-
ber of partitions of natural number n. By convention, we agree that P (0) = 1.
It can be shown that P (1) = 1, P (2) = 2, P (3) = 3, P (4) = 5 and so on.

Lemma 3.1 . Let P (n|1, 2, ..., m) be the number of partitions of a natural
number n, such that each summand is at most m. Then

P (n|1, 2, . . . , m) =

{
P (n); m ≥ n∑m

j=1 P (n − j|1, 2, . . . , j); m < n

Proof. It is obvious that if m ≥ n, then condition “at most m” has
not any restriction. Therefore in this case, we have P (n|1, 2, ..., m) = P (n).
Now, let m < n. In this case the greatest summand is m. Because we can
arrange summands from left to right, non-increasingly, if in a partition we have
summand m, the remaining number (n − m), must be partitioned; but not
arbitrarily. This number must be partitioned such that the greatest summand
of this partition is m. These numbers are P (n − m|1, 2, ..., m). If we have
summand m − 1, the number n − (m − 1) must be partitioned such that any
summand is not greater than m−1. This number is P (n−(m−1)|1, 2, ..., m−1).
Continuing this method until the first summand in left partition is 1, and
summing on the number of all cases, the relation will be obtained. �

Theorem 3.1 . We have

P (n) =

⎧⎪⎨
⎪⎩

1, n = 0∑[ n
2
]

i=0 P (i), n = 1, 2∑[ n
2
]

i=0 P (i) +
∑n−1

i=[ n
2
]+1 P (i|1, 2, . . . , n − i), n ≥ 3

Proof. It is stated that P (0) = P (1) = 1 and P (2) = 2. Now, let n ≥ 3.
If the first summand is n − 1, then there is one case. Hence in general, if
the first summand is n − i, i = 0, 1, ..., n − 1, the remaining number i must
be partitioned. Of course any summand can not be greater than n − i. But
these numbers are P (i|1, 2, ..., n − i). By summing on all cases, the proof is
completed. �

Lemma 3.2 . Let P1(i; n) be the number of partitions of a natural number
n such that in every partition we have i summands 1, exactly. Now

P1(i; n) = P1(0; n − i), i = 0, 1, ..., n.
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Proof. P1(i; n) has i summands 1, but the remaining number (n − i) must
be partitioned such that we have not any summand 1. �

Lemma 3.3 . Let P1(0; n|2, 3, . . . , m) indicate the number of partitions of
number i without summand 1, such that summands can be 2, 3, . . . , m. Now,

P1(0; n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, n = 0
0, n = 1∑n−2

i=0 P1(0; i), n = 2, 3, 4∑[ n
2
]

i=0 P1(0; i) +
∑n−2

i=[ n
2
]+1 P1(0; i|2, 3, . . . , n − i), n ≥ 5

and also,

P1(0; i|2, 3, . . . , m) =

{ ∑m
j=2 P1(0; i − j|2, 3, . . . , j), m < i and i ≥ 2

P1(0; i), m ≥ i or i ≤ 1

Proof. It is obvious that P1(0; 0) = 1 and P1(0; 1) = 0. But

P1(0; 2) = P1(0; 0) = 1 , P1(0; 3) = P1(0; 0) + P1(0; 1) = 1 + 0 = 1,

P1(0; 4) = P1(0; 0) + P1(0; 1) + P1(0; 2) = 1 + 0 + 1 = 2 2

Acting similar to Lemma 3.1, the proof is completed. �

Theorem 3.2 . We have

P (n) =

n∑
i=0

P1(i; n).

Proof. In each partition of natural number n, for the number of summands
1, there exist n + 1 cases: 0, 1, ..., n. By definition of P1(i; n), the proof is
completed. �

Example 3.1 . Find the number of partitions of 9, by using
(a) Theorem 3.1;
(b) Theorem 3.2.

Solution. (a)Using Theorem 3.1, we have

P (9) =

4∑
i=0

P (i) +

8∑
i=5

P (i|1, 2, . . . , 9 − i),

but
P (0) = P (1) = 1 , P (2) = 2 , P (3) = 3 ,

2Two partitions of number 4 are: 4 = 4 , 4 = 2 + 2.
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P (4) =
∑2

i=0 P (i) +
∑3

i=3 P (i|1, . . . , 4 − i)
= 4 + P (3|1) = 4 + 1 = 5,

P (5|1, 2, 3, 4) =
∑4

j=1 P (5 − j|1, 2, ..., j)
= P (4|1) + P (3|1, 2) + P (2|1, 2, 3) + P (1|1, 2, 3, 4)
= 1 + 2 + 2 + 1
= 6,

P (6|1, 2, 3) = P (5|1) + P (4|1, 2) + P (3|1, 2, 3)
= 1 + 3 + 3
= 7,

P (7|1, 2) = P (6|1) + P (5|1, 2)
= 1 + 3
= 4,

P (8|1) = 1.

Hence P (9) = 30.
b) Using Theorem 3.2, we have

P (9) = P1(0; 9) + P1(1; 9) + . . . + P1(9; 9),

and by Lemma 3.2,

P (9) = P1(0; 9) + P1(0; 8) + . . . + P1(0; 0).

But by Lemma 3.3, we have

P1(0; 0) = 1 , P1(0; 1) = 0 , P1(0; 3) = 1 , P1(0; 4) = 2,

P1(0; 5) = P1(0; 0) + P1(0; 1) + P1(0; 2) + P1(0; 3|2) = 1 + 0 + 1 + 0 = 2,

P1(0; 6) = 1 + 0 + 1 + 1 + P1(0; 4|2)
= 3 + 1
= 4,

P1(0; 7) = 1 + 0 + 1 + 1 + P1(0; 4|2, 3) + P1(0; 5|2)
= 3 + 1 + 0
= 4,

P1(0; 8) = 1 + 0 + 1 + 1 + 2 + P1(0; 5|2, 3, 4) + P1(0; 6|2)
= 5 + 1 + 1
= 7,
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P1(0; 9) = 1 + 0 + 1 + 1 + 2 + P1(0; 5|2, 3, 4) + P1(0; 6|2, 3) + P1(0; 7|2)
= 5 + 1 + 2 + 0
= 8.

Hence P (9) = 30.
�

Result 3.1 .
(a) Let P (n|A), A ⊂ IN , denote the number of partitions of n such that all
summands belong to set A and P (n|∃s ∈ A) denote this number providing to
we have at least a summand s belonging to A3. We have P (n|Ac) = P (n) −
P (n|∃s ∈ A).
(b) The number of partitions such that the greatest summand is a multiple of

m is 1 +
∑ n

m
−1

i=1 P (n − im|1, 2, ..., im) if m|n, and
∑[ n

m
]

i=1 P (n − im|1, 2, ..., im)
if m � |n. 4

Proof. Using the definitions, the proof is obvious. �

Remark 3.1 .
We have

P1(0; n) = P (n|2, 3, ..., n).

Lemma 3.4 . Let P1,2,...,m(n1, n2, ..., nm; n) be the number of partitions of
n such that in every partition, summands j, j=1,2,...,m appear nj times. We
have

P1,2,...,m(n1, n2, ..., nm; n) = P1,2,...,m(0, 0, ..., 0; n−
m∑

j=1

j.nj)

= P (n −
m∑

j=1

j.nj |m + 1, ..., n −
m∑

j=1

j.nj − 1, n −
m∑

j=1

j.nj); n −
m∑

j=1

j.nj ≥ 0

Proof. We discard summands 1, 2, ..., m from partition of n and then
we partition the remaining number, n − ∑m

j=1 j.nj , such that in these recent
partitions the summands 1, 2, ..., m do not appear. �

Theorem 3.3 . We have

P (n) =
∑

{(n1,...,nm):
�m

j=1 j.nj≤n,nj≥0,j=1,2,...,m}
P1,2,...,m(n1, n2, ..., nm; n).

3For instance P (n|i, i + 1, ..., j) is the number of partitions of n such that all summands
are at least i “and” at most j.

4Therefore the number of partitions of n, with the even greatest summand is P (n) −∑n
2 −1
i=1 P (n − 2i|1, 2, ..., 2i) if n is even and

∑n−1
2

i=1 P (n − 2i|1, 2, ..., 2i) if n is odd.
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Proof. For calculating P (n), we sum on P1,2,...,m(n1, n2, ..., nm; n) over all
n′

js,
∑m

j=1 j.nj ≤ n, nj ≥ 0, j = 1, 2, ..., m. �

Example 3.2 . Find the number of partitions of 8 such that,
(a) at least a summand is less than 3;
(b) the greatest summand is even;
(c) summands 1 and 2 appear 2 times and 1 time, respectively.

Solution. (a) Using Result 3.1 part (a), we have

P (8|at least a summand is less than 3) = P (8) − P (8|3, 4, ..., 8).

But by Lemma 3.1, we have

P (8) = 1 + 1 + 2 + 3 + 5 + 5 + 4 + 1 = 22.

(b) By Result 3.1 part (b),

P (8|The greatest summand is even) = 1 +
∑n

2
−1

i=1 P (8 − 2i|1, 2, ..., 2i) = 1 +
P (6|1, 2) + P (4|1, 2, 3, 4) + P (2|1, 2, ..., 6) = 1 + 4 + 5 + 2 = 12.
(c) The desired number is P1,2(2, 1; 8). By Lemma 3.4, We have

P1,2(2, 1; 8) = P1,2(0, 0; 4) = P (4|4) = 1.

This partition is 8 = 4 + 2 + 1 + 1. �
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