Strong Convergence Theorem for Solving Equilibrium Problems by Hybrid Method of Asymptotically k-Strictly Pseudo-Contractive Mappings in Hilbert Spaces

Chanan Sudsukh¹

Department of Mathematics, Faculty of Liberal Arts and Science Kasetsart University, Kamphaeng Saen Campus Nakhonpathom 73140, Thailand faaschs@ku.ac.th

Issara Inchan

Department of Mathematics and Computer Uttaradit Rajabhat University Uttaradit 53000, Thailand peissara@uru.ac.th

Abstract

In this paper, we introduce the iterative schemes by using hybrid methods for finding a common element of the set of an equilibrium problem and the set of fixed points of asymptotically k-strictly pseudocontractive mapping in a Hilbert space. We show that the iterative sequence converges strongly to a common element of two sets. Our result combine the ideas of Inchan [Strong convergence theorems of modified Mann iteration methods for asymptotically nonexpansive mappings in Hilbert spaces, Int. Journal of Math. Analysis, Vol 2, 2008, no. 23, 1135-1145], Kim and Xu [T. H. Kim, H. K. Xu, Convergence of the modified Mann's iteration method for asymptotically strict pseudo-contractions, Nonlinear Analysis 68 (2008) 2828-2836] and connected with Ceng et al's result [L.C. Ceng, S. Al-Homidan, Q.H. Ansari and J.C. Yao, An iterative scheme for equilibrium problems and xed point problems of strict pseudo-contraction mappings, J. comput. Appl. Math. (2008), doi:10.1016/j.cam.2008.03.032.] and other authors.

¹Corresponding author: faaschs@ku.ac.th

Mathematics Subject Classification: 46C05, 47H09, 47H10, 47H20

Keywords: asymptotically k-strictly pseudo-contractive, equilibrium problems, Opial's condition

1 Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let F be a bifunction of $C \times C$ into \mathbf{R} , where \mathbf{R} is the real numbers. The equilibrium problem for $F: C \times C \to \mathbf{R}$ is to find $x \in C$ such that

$$F(x,y) \ge 0 \text{ for all } y \in C.$$
 (1)

The set of solutions of (1) is denoted by EP(F). Given a mapping $T: C \to H$, let $F(x,y) = \langle Tx,y-x \rangle$ for all $x,y \in C$. Then, $z \in EP(F)$ if and only if $\langle Tz,y-z \rangle \geq 0$ for all $y \in C$. Numerous problems in physics, optimization, and economics reduce to find a solution of (1). In 1997, Combettes and Hirstoaga [3] introduced an iterative scheme of finding the best approximation to the innitial data when EP(F) is nonempty and proved a strong convergence theorem.

We know that a Hilbert space H satisfies Opial's condition [13], that is, for any sequence $\{x_n\} \subset H$ with $x_n \to x$, the inequality

$$\liminf_{n\to\infty} ||x_n - x|| < \liminf_{n\to\infty} ||x_n - y||$$

holds for every $y \in H$ with $y \neq x$.

Recall that a mapping $T: C \to C$ is said to be a strict pseudo-contractive mapping [1] if there exists a constant $0 \le k < 1$ such that

$$||Tx - Ty||^2 \le ||x - y||^2 + k||(I - T)x - (I - T)y||^2, \tag{2}$$

for all $x, y \in C$. (If (2) holds, we also say that T is a k-strict pseudo-contraction.)

It is know that if T is 0-strict pseudo-contractive mapping, T is nonexpansive mapping.

In this paper we will consider an iteration method of modified Mann for asymptotically k-strict pseudo-contractive mapping. We say that $T:C\to C$ is an asymptotically k-strict pseudo-contractive mapping if there exists a constant $0\le k<1$ satisfying

$$||T^n x - T^n y||^2 \le (1 + \gamma_n) ||x - y||^2 + k ||(I - T^n) x - (I - T^n) y||^2,$$
 (3)

for all $x, y \in C$ and for all $n \in \mathbb{N}$ where $\gamma_n \geq 0$ for all n such that $\lim_{n \to \infty} \gamma_n = 0$. We see that if k = 0, then T is asymptotically nonexpansive mapping. By

Goebel and Kirk [6], T is asymptotically nonexpansive mapping if there exists a sequence $\{\gamma_n\}$ of nonnegative numbers with $\lim_{n\to\infty} \gamma_n = 0$ and such that

$$||T^n x - T^n y||^2 \le (1 + \gamma_n) ||x - y||^2, \tag{4}$$

for all $x, y \in C$ and all integers $n \ge 1$.

In 1967, Browder and Petryshyn [1] established the first convergence result for -strict pseudo-contraction in real Hilbert spaces. They proved weak and strong convergence theorem by using iteration (1.4) with a constant control sequence $\{\alpha_n\} = \alpha$ for all n. Many authors have appeared in the literature on the existence of solution equilibrium, see also, for example [4, 17, 18] and references therein. To find an element of $EP(F) \cap F(T)$, Tada and Takahashi [16] introduced the iterative scheme for nonexpansive mappings by the hybrid method in a Hilbert space.

In 2007, Kim and Xu [8], introduced the sequence generated by CQ algorithm for k-strict pseudo-contractions T is constructed as follows:

$$\begin{cases} x_{0} \in C \text{ chosen arbitrary,} \\ y_{n} = \alpha_{n}x_{n} + (1 - \alpha_{n})Tx_{n}, \\ C_{n} = \{z \in C_{n} : ||y_{n} - z||^{2} \leq ||x_{n} - z||^{2} + (1 - \alpha_{n})(k - \alpha_{n})||x_{n} - Tx_{n}||^{2} \}, \\ Q_{n} = \{z \in C : \langle x_{n} - z, x_{0} - x_{n} \rangle \geq 0 \}, \\ u_{n+1} = P_{C_{n} \cap Q_{n}}x_{0}, \ n \in \mathbb{N}, \end{cases}$$
(5)

where $\{\alpha_n\}$ with $\alpha_n < 1$, then $\{x_n\}$ is generated in (6) converge strongly to $P_{F(T)}x_0$.

In 2008, I. Inchan [7], introduce the modified Mann iteration processes for an asymptotically nonexpansive mapping. Let C be a closed bounded convex subset of a Hilbert space H, T be an asymptotically nonexpansive mapping of C into itself and let $x_0 \in C$. For $C_1 = C$ and $x_1 = P_{C_1}(x_0)$, define $\{x_n\}$ as follows way:

$$\begin{cases} y_n = \alpha_n x_n + (1 - \alpha_n) T^n x_n, \\ C_{n+1} = \{ z \in C_n : ||y_n - z||^2 \le ||x_n - z||^2 + \theta_n \}, \\ x_{n+1} = P_{C_{n+1}} x_0, \ n \in \mathbf{N}, \end{cases}$$

$$(6)$$

where $\theta_n = (1 - \alpha_n)(k_n^2 - 1)(diamC)^2 \to 0$ as $n \to \infty$ and $0 \le \alpha_n \le a < 1$ for all $n \in \mathbb{N}$. Then him prove that $\{x_n\}$ converges strongly to $z_0 = P_{F(T)}x_0$.

Recently, Ceng et al. [5] established an iterative scheme for finding a common element of the set of solution of an equilibrium problem (1.1) and the set of fixed point of a k-strict pseudo-contraction mapping in the setting of real Hilbert space. They also studied some weak and strong convergence theorem for k-strict pseudo-contraction mapping of the sequence generated by their algorithm.

Our iteration method for finding a fixed point of an asymptotically k-strict pseudo-contractive mapping T is the modified Mann's iteration method studied in [9, 8, 14, 15, 19] which generates a sequence $\{x_n\}$ via

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) T^n x_n, \quad n \ge 0, \tag{7}$$

where the initial guess $x_0 \in C$ is arbitrary and the sequence $\{\alpha_n\}_{n=0}^{\infty}$ line in the interval (0,1).

Motivated and inspired by the above results, in this paper, we consider the mixed iterative scheme (5), (6) and [5] from nonexpansive mappings to more general asymptotically k-strict pseudo-contraction mappings for finding a common element of the set of solutions of an equilibrium problem and the set of solutions of fixed points of a asymptotically k-strict pseudo-contraction mappings in Hilbert spaces. Moreover, we show that $\{x_n\}$ and $\{u_n\}$ converge strongly to $F(S) \cap EP(F)$ by the hybrid methods under mild assumption on parameters.

2 Preliminary Notes

Let C be a closed convex subset of H. For every point $x \in H$, there exists a unique nearest point in C, denoted by $P_{C}x$ such that

$$||x - P_C x|| \le ||x - y||$$
 for all $x, y \in C$.

 P_C is called the metric projection of H onto C. It well known that P_C is a nonexpansive. Next, we collect some lemmas which will be used in the proof for the main result in next section.

Lemma 2.1 [12] There holds the identity in a Hilbert space H:

- (i) $||x+y||^2 = ||x||^2 + ||y||^2 + 2\langle x,y\rangle, \forall x,y \in H.$
- (ii) $\|\lambda x + (1 \lambda)y\|^2 = \lambda \|x\|^2 + (1 \lambda)\|y\|^2 \lambda (1 \lambda)\|x y\|^2$ for all $x, y \in H$ and $\lambda \in [0, 1]$.

Lemma 2.2 [12] Let C be a closed convex subset of a real Hilbert space H. Given $x \in H$ and $y \in C$. Then $y = P_C x$ if and only if there holds the inequality

$$\langle x - y, y - z \rangle \ge 0, \quad \forall z \in C.$$

Lemma 2.3 [10] Let C be a closed convex subset of H. Let $\{x_n\}$ be a sequence in H and $u \in H$. Let $z = P_C u$. If $\omega_w(x_n) \subset C$ and satisfies the condition $||x_n - u|| \le ||u - z||$ for all n. Then $x_n \to p$.

For solving the equilibrium problem for a bifunction $F: C \times C \to \mathbf{R}$, let us assume that F satisfies the following condition:

- (A1) F(x,x) = 0 for all $x \in C$;
- (A2) F is monotone, i.e., $F(x,y) + F(y,x) \le 0$ for all $x,y \in C$;
- (A3) for each $x, y \in C$,

$$\lim_{t \to 0} F(tz + (1 - t)x, y) \le F(x, y);$$

(A4) for each $x \in C, y \mapsto F(x, y)$ is convex and lower semicontinuous. The following lemma appears implicitly in [2].

Lemma 2.4 [2] Let C be a nonempty closed convex subset of H and let F be a bifunction of $C \times C$ into $\mathbf R$ satisfying (A1)-(A4). Let r > 0 and $x \in H$. Then, there exists $z \in C$ such that

$$F(z,y) + \frac{1}{r}\langle y - z, z - x \rangle \ge 0$$
 for all $y \in C$.

The following lemma was also given in [3].

Lemma 2.5 [3] Assume that $F: C \times C \to \mathbf{R}$ satisfying (A1)-(A4). For r > 0 and $x \in H$, define a mapping

$$T_r(x) = \left\{ z \in C : F(z, y) + \frac{1}{r} \langle y - z, z - x \rangle \ge 0, \ \forall y \in C \right\}$$

for all $z \in H$. Then, the following hold:

- 1. T_r is single-valued;
- 2. T_r is firmly nonexpansive, i. e., $||T_rx T_ry||^2 \le \langle T_rx T_ry, x y \rangle$ for all $x, y \in H$;
 - 3. $F(T_r) = EP(F)$;
 - 4. EP(F) is closed and convex.

3 Main Results

In this section, we prove the iterative sequence convergence strongly to element of the set of an equilibrium problem and the set of fixed points of asymptotically k-strictly pseudo-contractive mapping in a Hilbert space.

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ into \mathbf{R} satisfying (A1) - (A4) and let S be an asymptoticall k-strictly pseudo-contractive mapping for some

 $0 \le k < 1$ such that $F(S) \cap EP(F) \ne \emptyset$. Let $\{x_n\}$ and $\{u_n\}$ be sequence generated by $C_1 = C \subset H, x_1 = x \in C$ and let

$$\begin{cases} u_n \in C \text{ such that } F(u_n, y) + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \ge 0, \ \forall y \in C \\ y_n = \alpha_n u_n + (1 - \alpha_n) S^n u_n, \\ c_{n+1} = \{ z \in C : \|y_n - z\|^2 \le \|z - x_n\|^2 + [(k - \alpha_n)(1 - \alpha_n)] \|u_n - S^n u_n\|^2 + \theta_n \}, \\ x_{n+1} = P_{Cn+1} x_0, \end{cases}$$

for all $n \in \mathbb{N}$, $\theta_n = (1 - \alpha_n)\gamma_n(diamC)^2 \to 0$ as $n \to \infty$, where $\{\alpha_n\} \subset [\alpha, \beta]$ for some $\alpha, \beta \in [k, 1)$, and $\{r_n\} \subset (0, \infty)$ satisfying $\liminf_{n \to \infty} r_n > 0$ and $\sum_{n=1}^{\infty} |r_{n+1} - r_n| < \infty$. Then $\{x_n\}$ converges strongly to $z_0 = P_{F(S) \cap EP(F)}x_0$.

Proof. We first show that $F(S) \cap EP(F) \subset C_n$ for all $n \in \mathbb{N}$, by induction. For any $z \in F(S) \cap EP(F)$ we have $z \in C = C_1$ hence $F(S) \cap EP(F) \subset C_1$. Let $F(S) \cap EP(F) \subset C_m$ for some $m \in \mathbb{N}$. Then we have, for $p \in F(S) \cap EP(F) \subset C_m$ and from $u_n = T_{r_n} x_n$, we note that

$$||u_n - p|| = ||T_{r_n} x_n - T_{r_n} p|| \le ||x_n - p||, \tag{9}$$

for all $n \in \mathbb{N}$. Thus we have

$$||y_{m} - p||^{2} = ||\alpha_{m}u_{m} + (1 - \alpha_{m})S^{m}u_{m} - p||^{2}$$

$$= ||\alpha_{m}(u_{m} - p) + (1 - \alpha_{m})(S^{m}u_{m} - p)||^{2}$$

$$= \alpha_{m}||u_{m} - p||^{2} + (1 - \alpha_{m})||S^{m}u_{m} - p||^{2} - \alpha_{m}(1 - \alpha_{m})||u_{m} - S^{m}u_{m}||^{2}$$

$$\leq \alpha_{m}||x_{m} - p||^{2} + (1 - \alpha_{m})[(1 + \gamma_{m})||u_{m} - p||^{2} + k||u_{m} - S^{m}u_{m}||^{2}]$$

$$-\alpha_{m}(1 - \alpha_{m})||u_{m} - S^{m}u_{m}||^{2}$$

$$\leq (1 + (1 - \alpha_{m})\gamma_{m})||x_{m} - p||^{2} + [(k - \alpha_{m})(1 - \alpha_{m})]||u_{m} - S^{m}u_{m}||^{2}$$

$$\leq ||x_{m} - p||^{2} + [(k - \alpha_{m})(1 - \alpha_{m})]||u_{m} - S^{m}u_{m}||^{2} + (1 - \alpha_{m})\gamma_{m}||x_{m} - p||^{2}$$

$$\leq ||x_{m} - p||^{2} + [(k - \alpha_{m})(1 - \alpha_{m})]||u_{m} - S^{m}u_{m}||^{2} + \theta_{m}.$$

It follows that $p \in C_{m+1}$ and $F(S) \cap EP(F) \subset C_{m+1}$, hence $F(S) \cap EP(F) \subset C_n$ for all $n \in \mathbb{N}$. Next, we show that C_n is closed and convex for all $n \in \mathbb{N}$. It follows obvious that $C_1 = C$ is closed and convex. Suppose that C_m is closed and convex for each $m \in \mathbb{N}$. Let $z_j \in C_{m+1} \subset C_m$ with $z_j \to z$. Since C_m is closed, $z \in C_m$ and $||y_m - z_j||^2 \le ||z_j - x_m||^2 + [(k - \alpha_m)(1 - \alpha_m)]||u_m - S^m u_m||^2 + \theta_m$. Then

$$||y_m - z||^2 = ||y_m - z_j + z_j - z||^2$$

$$= ||y_m - z_j||^2 + ||z_j - z||^2 + 2\langle y_m - z_j, z_j - z \rangle$$

$$\leq ||z_j - x_m||^2 + [(k - \alpha_m)(1 - \alpha_m)]||u_m - S^m u_m||^2 + \theta_m + ||z_j - z||^2$$

$$+2||y_m - z_j||||z_j - z||.$$

Taking $j \to \infty$,

$$||y_m - z||^2 \le ||z - x_m||^2 + [(k - \alpha_m)(1 - \alpha_m)]||u_m - S^m u_m||^2 + \theta_m.$$

Hence $z \in C_{m+1}$. Let $x, y \in C_{m+1} \subset C_m$ with $z = \alpha x + (1-\alpha)y$ where $\alpha \in [0, 1]$. Since C_m is convex, $z \in C_m$ and $||y_m - x||^2 \le ||x - x_m||^2 + [(k - \alpha_m)(1 - \alpha_m)]||u_m - x||^2 \le ||x - x_m||^2 + [(k - \alpha_m)(1 - \alpha_m)]||u_m - x||^2 \le ||x - x_m||^2 + ||x$

 $S^m u_m \|^2 + \theta_m, \|y_m - y\|^2 \le \|y - x_m\|^2 + [(k - \alpha_m)(1 - \alpha_m)] \|u_m - S^m u_m\|^2 + \theta_m,$ we have

$$\begin{split} \|y_m - z\|^2 &= \|y_m - (\alpha x + (1 - \alpha)y)\|^2 \\ &= \|\alpha(y_m - x) + (1 - \alpha)(y_m - y)\|^2 \\ &= \alpha \|y_m - x\|^2 + (1 - \alpha)\|y_m - y\|^2 - \alpha(1 - \alpha)\|(y_m - x) - (y_m - y)\|^2 \\ &\leq \alpha (\|x - x_m\|^2 + [(k - \alpha_m)(1 - \alpha_m)]\|u_m - S^m u_m\|^2 + \theta_m) \\ &\quad + (1 - \alpha)(\|y - x_m\|^2 + [(k - \alpha_m)(1 - \alpha_m)]\|u_m - S^m u_m\|^2 + \theta_m) \\ &\quad - \alpha(1 - \alpha)\|y - x\|^2 \\ &= \alpha \|x - x_m\|^2 + (1 - \alpha)\|y - x_m\|^2 - \alpha(1 - \alpha)\|(x_m - x) - (x_m - y)\|^2 \\ &\quad + [(k - \alpha_m)(1 - \alpha_m)]\|u_m - S^m u_m\|^2 + \theta_m \\ &= \|\alpha(x_m - x) + (1 - \alpha)(x_m - y)\|^2 + [(k - \alpha_m)(1 - \alpha_m)]\|u_m - S^m u_m\|^2 + \theta_m. \end{split}$$

Then $z \in C_{m+1}$, it follows that C_{m+1} is closed and convex. Hence C_n is closed and convex for all $n \in \mathbb{N}$. This implies that $\{x_n\}$ is well-defined. From $x_n = P_{C_n}x_0$, we have

$$\langle x_0 - x_n, x_n - y \rangle \ge 0$$
, for all $y \in C_n$.

Since $F(S) \cap EP(F) \subset C_n$, we have

$$\langle x_0 - x_n, x_n - u \rangle \ge 0 \text{ for all } u \in F(S) \cap EP(F) \text{ and } n \in \mathbf{N}.$$
 (10)

So, for $u \in F(S) \cap EP(F)$, we have

$$0 \le \langle x_0 - x_n, x_n - u \rangle = \langle x_0 - x_n, x_n - x_0 + x_0 - u \rangle$$

= $-\langle x_n - x_0, x_n - x_0 \rangle + \langle x_0 - x_n, x_0 - u \rangle$
 $< -\|x_n - x_0\|^2 + \|x_0 - x_n\| \|x_0 - u\|.$

This implies that

$$||x_0 - x_n||^2 \le ||x_0 - x_n|| ||x_0 - u||,$$

hence

$$||x_0 - x_n|| \le ||x_0 - u|| \text{ for all } u \in F(S) \cap EP(F) \text{ and } n \in \mathbf{N}.$$
 (11)

From $x_n = P_{C_n} x_0$ and $x_{n+1} = P_{C_{n+1}} x_0 \in C_{n+1} \subset C_n$, we also have

$$\langle x_0 - x_n, x_n - x_{n+1} \rangle \ge 0 \text{ for all } n \in \mathbf{N}.$$
 (12)

So, for $x_{n+1} \in C_n$, we have, for $n \in \mathbf{N}$

$$0 \le \langle x_0 - x_n, x_n - x_{n+1} \rangle = \langle x_0 - x_n, x_n - x_0 + x_0 - x_{n+1} \rangle$$

$$= -\langle x_n - x_0, x_n - x_0 \rangle + \langle x_0 - x_n, x_0 - x_{n+1} \rangle$$

$$\le -\|x_n - x_0\|^2 + \|x_0 - x_n\| \|x_0 - x_{n+1}\|.$$

This implies that

$$||x_0 - x_n||^2 \le ||x_0 - x_n|| ||x_0 - x_{n+1}||,$$

hence

$$||x_0 - x_n|| \le ||x_0 - x_{n+1}|| \text{ for all } n \in \mathbf{N}.$$
 (13)

From (11) we have $\{x_n\}$ is bounded, $\lim_{n\to\infty} ||x_n-x_0||$ exists. Next, we show that $||x_n - x_{n+1}|| \to 0$. In fact, from (12) we have

$$||x_{n} - x_{n+1}||^{2} = ||(x_{n} - x_{0}) + (x_{0} - x_{n+1})||^{2}$$

$$= ||x_{n} - x_{0}||^{2} + 2\langle x_{n} - x_{0}, x_{0} - x_{n+1}\rangle + ||x_{0} - x_{n+1}||^{2}$$

$$= ||x_{n} - x_{0}||^{2} + 2\langle x_{n} - x_{0}, x_{0} - x_{n} + x_{n} - x_{n+1}\rangle + ||x_{0} - x_{n+1}||^{2}$$

$$= ||x_{n} - x_{0}||^{2} + 2\langle x_{0} - x_{n}, x_{0} - x_{n}\rangle - 2\langle x_{0} - x_{n}, x_{n} - x_{n+1}\rangle + ||x_{0} - x_{n+1}||^{2}$$

$$\leq ||x_{n} - x_{0}||^{2} - 2||x_{n} - x_{0}||^{2} + ||x_{0} - x_{n+1}||^{2}$$

$$= -||x_{n} - x_{0}||^{2} + ||x_{0} - x_{n+1}||^{2}.$$

Since $\lim_{n\to\infty} ||x_n - x_0||$ exists, we have that

$$\lim_{n \to \infty} ||x_n - x_{n+1}|| = 0.$$
 (14)

On the other hand, we note that

$$F(u_n, y) + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \ge 0, \ \forall y \in H, \tag{15}$$

and

$$F(u_{n+1}, y) + \frac{1}{r_{n+1}} \langle y - u_{n+1}, u_{n+1} - x_{n+1} \rangle \ge 0, \ \forall y \in H.$$
 (16)

Putting $y = u_{n+1}$ in (15) and $y = u_n$ in (17), we have

$$F(u_n, u_{n+1}) + \frac{1}{r_n} \langle u_{n+1} - u_n, u_n - x_n \rangle \ge 0 \text{ and } F(u_{n+1}, u_n) + \frac{1}{r_{n+1}} \langle u_n - u_{n+1}, u_{n+1} - x_{n+1} \rangle \ge 0$$

and hence

$$\langle u_{n+1} - u_n, u_n - u_{n+1} + u_{n+1} - x_n - \frac{r_n}{r_{n+1}} (u_{n+1} - x_{n+1}) \ge 0.$$

 $\langle u_{n+1}-u_n,u_n-u_{n+1}+u_{n+1}-x_n-\frac{r_n}{r_{n+1}}(u_{n+1}-x_{n+1})\geq 0.$ Since $\liminf_{n\to\infty}r_n>0$, we assume that there exists a real number b such that $r_n > b > 0$ for all $n \in \mathbb{N}$. Thus, we have

$$||u_{n+1} - u_n||^2 \le \langle u_{n+1} - u_n, x_{n+1} - x_n + (1 - \frac{r_n}{r_{n+1}})(u_{n+1} - x_{n+1}) \rangle$$

$$\le ||u_{n+1} - u_n|| \{ ||x_{n+1} - x_n|| + |1 - \frac{r_n}{r_{n+1}}| ||u_{n+1} - x_{n+1}|| \}$$

and hence

$$||u_{n+1} - u_n|| \le ||x_{n+1} - x_n|| + |1 - \frac{r_n}{r_{n+1}}|||u_{n+1} - x_{n+1}||$$

$$\leq ||x_{n+1} - x_n|| + \frac{1}{b}|r_{n+1} - r_n|L$$
(17)

where $L = \sup\{\|u_{n+1} - x_{n+1}\| : n \in \mathbb{N}\}$. From (14), we obtain

$$\lim_{n \to \infty} \|u_n - u_{n+1}\| = 0. \tag{18}$$

Since $x_{n+1} \in C_{n+1} \subset C_n$ implies that

$$||y_n - x_{n+1}||^2 \le ||x_n - x_{n+1}||^2 + [(k - \alpha_n)(1 - \alpha_n)]||u_n - S^n u_n||^2 + \theta_n.$$
 (19)

By the definition of y_n and $k < \alpha \le \alpha_n \le \beta < 1$, we have

$$||y_{n} - x_{n}||^{2} = ||(y_{n} - x_{n+1}) + (x_{n+1} - x_{n})||^{2}$$

$$\leq ||y_{n} - x_{n+1}||^{2} + 2||y_{n} - x_{n+1}|| ||x_{n+1} - x_{n}|| + ||x_{n+1} - x_{n}||^{2}$$

$$\leq ||x_{n} - x_{n+1}||^{2} + [(k - \alpha_{n})(1 - \alpha_{n})]||u_{n} - S^{n}u_{n}||^{2} + \theta_{n}$$

$$+2||y_{n} - x_{n+1}|| ||x_{n+1} - x_{n}|| + ||x_{n+1} - x_{n}||^{2}$$

$$= 2||x_{n+1} - x_{n}||(||y_{n} - x_{n+1}|| + ||x_{n+1} - x_{n}||)$$

$$-[(\alpha_{n} - k)(1 - \alpha_{n})]||u_{n} - S^{n}u_{n}||^{2} + \theta_{n}$$

$$\leq 2||x_{n+1} - x_{n}||(||y_{n} - x_{n+1}|| + ||x_{n+1} - x_{n}||) + \theta_{n}.$$

From (14), we have

$$\lim_{n \to \infty} ||y_n - x_n|| = 0. (20)$$

From Lemma 2.1 (ii), we have

$$||y_{n} - p||^{2} \le \alpha_{n} ||u_{n} - p||^{2} + (1 - \alpha_{n}) ||S^{n}u_{n} - p|| - \alpha_{n}(1 - \alpha_{n}) ||S^{n}u_{n} - u_{n}||^{2}$$

$$\le \alpha_{n} ||x_{n} - p||^{2} + (1 - \alpha_{n}) [(1 + \gamma_{n}) ||u_{n} - p||^{2} + k ||S^{n}u_{n} - u_{n}||^{2}]$$

$$-\alpha_{n}(1 - \alpha_{n}) ||S^{n}u_{n} - u_{n}||^{2}$$

$$= (1 + (1 - \alpha_{n})\gamma_{n}) ||x_{n} - p||^{2} + [(k - \alpha_{n})(1 - \alpha_{n}))] ||S^{n}u_{n} - u_{n}||^{2}$$

$$= ||x_{n} - p||^{2} - [(\alpha_{n} - k)(1 - \alpha_{n}))] ||S^{n}u_{n} - u_{n}||^{2} + (1 - \alpha_{n})\gamma_{n} ||x_{n} - p||^{2}, (21)$$

it follows that

$$(\alpha_n - k)(1 - \alpha_n) \|S^n u_n - u_n\|^2 \le \|x_n - p\|^2 - \|y_n - p\|^2 + \theta_n.$$
 (22)

From (22) and $k < \alpha \le \alpha_n \le \beta < 1$, we also have $(\alpha - k)(1 - \beta)||S^n y|| = y||^2 \le (\alpha - k)(1 - \alpha)||S^n y|| = y||S^n y||$

$$(\alpha - k)(1 - \beta) \|S^n u_n - u_n\|^2 \le (\alpha_n - k)(1 - \alpha_n) \|S^n u_n - u_n\|^2$$

$$\le \|x_n - p\|^2 - \|y_n - p\|^2 + \theta_n$$

$$\le \|x_n - y_n\| (\|x_n - p\| + \|y_n - p\|) + \theta_n.$$

By (20), we obtain that

$$\lim_{n \to \infty} ||S^n u_n - u_n|| = 0. \tag{23}$$

Next, we show that $\lim_{n\to\infty} ||Su_n - u_n|| = 0$. From (18) and (23), we have

$$||Su_n - u_n|| \le ||Su_n - S^{n+1}u_n|| + ||S^{n+1}u_n - S^{n+1}u_{n+1}|| + ||S^{n+1}u_{n+1} - u_{n+1}|| + ||u_{n+1} - u_n||$$

$$\leq L_1 \|u_n - S^n u_n\| + \|S^{n+1} u_{n+1} - u_{n+1}\| + (1 + L_{n+1}) \|u_n - u_{n+1}\| \to 0 \text{ as } n \to \infty.$$
(24)

Next, we show that $\lim_{n\to\infty} ||x_n - u_n|| = 0$. For $p \in F(S) \cap EP(F)$ and from $u_n = T_{r_n}x_n$, we have

$$||u_n - p||^2 \le \langle T_{r_n} x_n - T_{r_n} p, x_n - p \rangle = \langle u_n - p, x_n - p \rangle$$

= $\frac{1}{2} (||u_n - p||^2 + ||x_n - p||^2 - ||x_n - u_n||^2)$

and hence

$$||u_n - p||^2 \le ||x_n - p||^2 - ||x_n - u_n||^2.$$
(25)

From (9) and (25), we have

$$||y_{n} - p||^{2} \leq \alpha_{n}||u_{n} - p||^{2} + (1 - \alpha_{n})||S^{n}u_{n} - p|| - \alpha_{n}(1 - \alpha_{n})||S^{n}u_{n} - u_{n}||^{2}$$

$$\leq \alpha_{n}||u_{n} - p||^{2} + (1 - \alpha_{n})[(1 + \gamma_{n})||u_{n} - p||^{2} + k||S^{n}u_{n} - u_{n}||^{2}] - \alpha_{n}(1 - \alpha_{n})||S^{n}u_{n} - u_{n}||^{2}$$

$$= ||u_{n} - p||^{2} - [(\alpha_{n} - k)(1 - \alpha_{n}))]||S^{n}u_{n} - u_{n}||^{2} + (1 - \alpha_{n})\gamma_{n}||u_{n} - p||^{2}$$

$$\leq (1 + (1 - \alpha_{n})\gamma_{n})||u_{n} - p||^{2}$$

$$\leq ||u_{n} - p||^{2} + (1 - \alpha_{n})||u_{n} - p||^{2}$$

$$\leq ||u_{n} - p||^{2} + (1 - \alpha_{n})\gamma_{n}||x_{n} - p||^{2}$$

$$\leq ||x_{n} - p||^{2} - ||x_{n} - u_{n}||^{2} + \theta_{n}.$$

It follows that

$$||x_n - u_n||^2 \le ||x_n - p||^2 - ||y_n - p||^2 + \theta_n$$

$$\le ||x_n - y_n||(||x_n - p|| + ||y_n - p||) + \theta_n.$$

From (20), we have

$$\lim_{n \to \infty} ||x_n - u_n|| = 0.$$
 (26)

Since $\{x_n\}$ is bounded, there exists subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} \rightharpoonup w$. From (26), we can assume that $u_{n_i} \rightharpoonup w$. We show that $w \in EP(F)$. It follows by (26) and (A2) that

$$\frac{1}{r_n}\langle y - u_n, u_n - x_n \rangle \ge F(y, u_n)$$

and hence

hence $w \in EP(F)$.

$$\langle y - u_{n_i}, \frac{u_{n_i} - x_{n_i}}{r_{n_i}} \rangle \ge F(y, u_{n_i}).$$

Since $\frac{u_{n_i}-x_{n_i}}{r_{n_i}} \to 0$ and $u_{n_i} \to w$, it follows by (A4) that $0 \geq F(y,w)$ for all $y \in H$. For $t \in (0,1]$ and $y \in H$ let $y_t = ty + (1-t)w$. Since $y, w \in H$, we have $y_t \in H$ and hence $F(y_t, w) \leq 0$. So from (A1) and (A4) we have

 $0 = F(y_t, y_t) \le tF(y_t, y) + (1 - t)F(y_t, w) \le tF(y_t, y)$ and hence $0 \le F(y_t, y)$. From (A3), we have $0 \le F(w, y)$ for all $y \in H$ and

We shall show that $w \in F(S)$. Assume that $w \neq F(S)$. Since $u_{n_i} \rightharpoonup w$ and $w \neq Sw$, it follows by Opial's condition (see [13]) that

$$\begin{aligned} \lim \inf_{i \to \infty} \|u_{n_i} - w\| &< \lim \inf_{i \to \infty} \|u_{n_i} - Sw\| \\ &\leq \lim \inf_{i \to \infty} (\|u_{n_i} - Su_{n_i}\| + \|Su_{n_i} - Sw\|) \\ &\leq \lim \inf_{i \to \infty} \|u_{n_i} - w\|. \end{aligned}$$

A contradiction. So, we get $w \in F(S)$. Therefore $w \in F(T) \cap EP(F)$. If w is arbitrarily element of $\omega_w(x_n)$, by the same argument of the prove, we have $\omega_w(x_n) \subset F(S) \cap EP(F)$. From (11) and Lemma 2.3, we have $\{x_n\}$ strongly convergence to $z_0 = P_{F(S) \cap EP(F)} x_0$. This complete the proof.

Corollary 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ into \mathbf{R} satisfying (A1) - (A4) and let S be a k-strictly pseudo-contractive mapping for some $0 \le k < 1$

such that $F(S) \cap EP(F) \neq \emptyset$. Let $\{x_n\}$ and $\{u_n\}$ be sequence generated by $C_1 = C \subset H, x_1 = x \in C$ and let

$$\begin{cases}
 u_n \in C \text{ such that } F(u_n, y) + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \ge 0, \ \forall y \in C \\
 y_n = \alpha_n u_n + (1 - \alpha_n) S u_n, \\
 c_{n+1} = \{ z \in C : \|y_n - z\|^2 \le \|z - x_n\|^2, \\
 x_{n+1} = P_{Cn+1} x_0,
\end{cases}$$
(27)

for all $n \in \mathbb{N}$, where $\{\alpha_n\} \subset [\alpha, \beta]$ for some $\alpha, \beta \in [k, 1)$, and $\{r_n\} \subset (0, \infty)$ satisfying $\liminf_{n \to \infty} r_n > 0$. Then $\{x_n\}$ converges strongly to $z_0 = P_{F(S) \cap EP(F)}x_0$.

Proof. Let $\gamma_n \equiv 0$ replace S from asymptotically k-strictly pseudo-contractive mapping into k-strictly pseudo-contractive mapping in Theorem 3.1, the conclusion follows. \diamond

Corollary 3.3 Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ into \mathbf{R} satisfying (A1) - (A4) and let S be an asymptotically nonexpansive mapping such that $F(S) \cap EP(F) \neq \emptyset$. Let $\{x_n\}$ and $\{u_n\}$ be sequences generated by $C_1 = C$ and $x_1 = P_{C_1}(x_0)$, define $\{x_n\}$ as follows way:

$$\begin{cases} u_{n} \in C \text{ such that } F(u_{n}, y) + \frac{1}{r_{n}} \langle y - u_{n}, u_{n} - x_{n} \rangle \geq 0, \ \forall y \in C \\ y_{n} = \alpha_{n} x_{n} + (1 - \alpha_{n}) S^{n} x_{n}, \\ C_{n+1} = \{ z \in C_{n} : ||y_{n} - z||^{2} \leq ||x_{n} - z||^{2} + \theta_{n} \}, \\ x_{n+1} = P_{C_{n+1}} x_{0}, \ n \in \mathbb{N}, \end{cases}$$

$$(28)$$

where $\theta_n = (1 - \alpha_n)\gamma_n^2(diamC)^2 \to 0$ as $n \to \infty$ and $\{\alpha_n\} \subset [\alpha, \beta]$ for some $\alpha, \beta \in [k, 1)$, and $\{r_n\} \subset (0, \infty)$ satisfying $\liminf_{n \to \infty} r_n > 0$. Then $\{x_n\}$ converges strongly to $z_0 = P_{F(S) \cap EP(F)}x_0$.

Proof. Putting k=0 in Theorem 3.1, then the class of asymptotically k-strictly pseudo-contractive mapping reduced to asymptotically nonexpansive mapping, Then complete the proof. \diamond

ACKNOWLEDGEMENTS. The authors would like to thank the Faculty of Liberal Arts and Science Kasetsart University, Kamphaeng Saen Campus Research Fund for their financial support.

References

[1] F.E. Browder and W.V. Petryshyn, Construction of fixed point of nonlinear mapping in Hilbert space, J.Math. Anal. Appl. **20**(1967) pp. 197-228.

- [2] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student. **63**(1994) 123-145.
- [3] P. L. Combettes, S. A. Hirstoaga, Equilibrium programing using proximal-like algorithms, Math. Program. **78**(1997) 29-41.
- [4] L.C. Ceng and J.C. Yao, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. comput. Appl. Math.214(2008) pp.186-201.
- [5] L.C. Ceng, S. Al-Homidan, Q.H. Ansari and J.C. Yao, An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings, J. comput. Appl. Math. (2008) doi:10.1016/j.cam.2008.03.032.
- [6] K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. **35**(1972) 171-174.
- [7] I. Inchan, Strong convergence theorems of modified Mann iteration methods for asymptotically nonexpansive mappings in Hilbert spaces, Int. Journal of Math. Analysis. Vol 2, no. 23(2008) 1135-1145.
- [8] T. H. Kim, H. K. Xu, Convergence of the modified Mann's iteration method for asymptotically strict pseudo-contractions, Nonlinear Analysis, 68(2008) 2828-2836.
- [9] T.C. Lim, H.K. Xu, Fixed point theorems for asymptotically nonexpansive mappings, Nonlinear Anal. **22**(1994) 1345-1355.
- [10] C. Matinez-Yanes, H.K. Xu, strong convergence of the CQ method for xed point processes, J. Nonlinear. Anal. 64(2006) pp. 2400-2411.
- [11] G. Marino, H. K. Xu, A general iterative method for nonexpansive mapping in Hilbert sapces, J. Math. Anal. Appl. **318**(2006) 43-52.
- [12] G. Marino, H.K. Xu, Weak and strong convergence theorems for k-strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl. **329**(2007) 336-349.
- [13] Z. Opial, Weak convergence of the sequence of successive approximation for nonexpansive mappings, Bull. Amer. Math. Soc. **73**(1967) 561-597.
- [14] J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl. **158**(1991) 407-413.
- [15] J. Schu, Approximation of fixed points of asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. **112**(1991) 143-151.

- [16] A. Tada and W. Takahashi, Weak and strong convergence theorems for a nonexpansive mappings and an equilibrium problem, J. Optim. Theory Appl. 133(2007) pp. 359-370.
- [17] S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and xed point problems in Hilbert spaces, J. Math. Anal. Appl. 331(2007) pp. 506-515.
- [18] W. Takahashi, K. Zembayashi, Strong Convergence Theorems by Hybrid Methods for Equilibrium Problems and Relatively Nonexpansive Mapping, Fixed Point Theory and Applications, vol. 2008, Article ID 528476, 11 pages doi:10.1155/2008/528476.
- [19] K.K. Tan, H.K. Xu, Fixed point iteration processes for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 122(1994) 733-739.

Received: November, 2008