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  Environmental legislation and customer expectations force manufactures to take back 
their products after use. In this paper a recovery system for a single item is studied, in 
which the random returns depend on the demand stream. The model is different from 
other works in this field by considering the effect of disposal cost at the end of the 
planning horizon, on the total inventory cost. The proposed model of this paper 
explains how to change the reorder point to maintain the optimal policy. The paper is 
also supported with some numerical example to demonstrate the implementation of 
the optimal reordering policy.  
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1. Introduction 
 

Reverse Logistics deals with activities associated with handling and management of equipment, products, 
components, materials or even entire technical systems which are supposed to be recovered. Global warming 
has been one of the most important issues and the recovery of used products and materials is believed to reduce 
the green gas effects. Each year, auto makers sell over sixty million cars and there is a growing concern to find 
suitable ways on recycling car parts remanufacturing. Electronic devices are other mass produced items where 
one may be more interested in reusing electronic scrap recycling. Inderfurth (1997) is believed to be the first to 
present a simple optimal replenishment and disposal policies for a product recovery system with lead times. 
Fleischman and Kuik (1998) studied an optimal inventory control with stochastic item returns. Kiesmuller and 
van der laan (2001) introduced an inventory model with dependent product demands and returns. Fleischman 
et al. (2002) introduced a basic model to control inventories with stochastic item returns. There is also a good 
overview on quantitative models for recovery production planning and inventory control is given in 
Fleischmann et al. (1997). Different papers have studied inventory policies under consideration of random 
returns, but most of these assume that the return process is independent of the demand process (See for 
example Fleischmann and Kuik (2003)). In all previous works, there is no dependency between demand and 
returns but there are situations where it is better to consider the probabilities of dependency between demands 
and returns. For example, we can think about the situations in the case of rented or leased products, or if 
delivered items are returned to the original manufacturer only. Cohen and Pierskalla (1980) developed an 
inventory model for a single, reusable product where random returns depend on the demand stream and no 
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backorders and leadtime for purchasing are considered. Also, Yuan and Cheung (1998) considered a model 
with dependent returns with the consideration of backorders and no purchasing lead time. De Brito and Van 
der laan (2009) proposed an inventory model with the uncertain time and quantity of returns. They investigated 
the impact of imperfect information with respect to the return process on inventory management performance. 
Parlikad and McFarlane (2010) proposed a model to show the value of information in product recovery 
decisions. Guide Jr. and Wassenhove (2009) introduced a new model for managing remanufactured products. 
Kiesmuller and Van der laan (2001) relaxed this assumption and allowed a positive purchasing lead time. 
Lieckens and Vandaele (2007) designed the reverse logistics network with stochastic lead times. The long-term 
behaviour of the inventory was already investigated by Van der Laan and Salomon (1998) and, in this paper 
we consider a finite planning horizon. The reason for this assumption is that, nowadays the life-cycle of 
products is getting shorter and shorter, because of fast changing trends and new developments. In this paper, 
we investigate an inventory model for a single, reusable product in which the random returns depend on the 
demand stream. We consider backorders and positive lead time for purchasing; especially we note the effect of 
disposal cost at the end of the planning horizon. Van der laan, Dekker and Salomon (1996, 1997) investigated 
the different inventory control systems with disposal. There are also situations that quality of recovered items 
is not suitable for remanufacturing process. Therefore, the rate of disposal in such situations would be 
increased. For example we can see this condition in car part factories. We also consider the remanufactured 
item as a new one. Corbacioglu and Van der laan (2007) studied the inventory model when the quality of 
remanufactured items was different with that of new ones. The paper is organized as follows. In section 2 we 
describe our model and its assumptions. In section 3 we determine the objective function and this followed by 
a numerical study to show importance of model in section 4. Finally, we summarize our results and give an 
outlook for further research. 

2. Model description 

The proposed model of this paper considers a single stage product recovery system.   

  

Fig 1: The reuse network 

Fig. 1 demonstrates the details of the product recycling system where demand has a poison distribution over a 
finite planning horizon of length T [ ]( )Tt ,0∈ . Practically, there are some limitations on the number of periods 
where inventory are reviewed. Also, for the sake of simplicity, we consider a fixed period of review to be 
equal to one with Tt ,...,2,1= where t denotes the number of periods.  Let tD  be the demand in period t with 
Poisson distribution and parameter tλ . Therefore, we have, 
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We assume that all demands which cannot be fulfilled immediately are backordered and the rest of outstanding 
demands at the end of the planning horizon are lost.  The parameters in Fig. 1 are described as follow: 

lP :  Probability that customer has not returned the used product to the manufacturer. 

dP : Probability that returned item because of its poor quality has to be disposed. 

dP−1 : Probability that returned item is remanufactured. 

After remanufacturing, the item is as good as new. Therefore, there is a common serviceable inventory for both 
new and remanufactured items, since we do not need to distinguish between them. We assume that the lead 

times are constant. Let 1L be the time where item is in use by the customer, 2L be the transportation and the 
inspection time, 3L and L be the remanufacturing time and the purchasing lead time, respectively. For 
simplifying and computational reasons we assume that the following holds, 

321 LLLL ++=  (2)

 

Fig 2: The time phase 

Since the returns in period t depends on demands for L previous periods, the returns in period t can be defined 
as the number of remanufactured items after they are used and entered to serviceable items in period t based on 
a periodic order-up-to strategy. At the beginning of the planning horizon, the inventory is assumed to be filled 
up with A items and an order is placed up to a limit of S  if the inventory position is smaller than S. As we can 
observe, two parameters of S and A determine our strategy. To distinguish four different time phases we 
assume LT 3≥ . The details of our assumptions are depicted in Fig. 2. 

Phase 1 ( )Lt ≤≤1 : During the periods in this phase there are no remanufactured or new items which are 
delivered to the serviceable items and the on hand stock decreases over this time period and the reorder point 
for new orders is defined by S.  

Phase 2 )21( LTtL −≤≤+ : In the periods of this phase both remanufactured and new items enter to the 
serviceable items. The stock on hand can be decreased or increased during each period in this phase. In this 
phase, like the phase 1, the reorder point for new orders is defined by S . 

Phase 3 )12( LTtLT −≤≤+− : Because at the end of the planning horizon (last L  periods), all the return 
items have to be disposed and on the other hand, the returns depend on the demands in L  periods before, so in 
this phase, the reorder point must be changed to decrease the cost of disposal at the end of the planning horizon 
and the reorder point is defined by K . 

Phase 4 )1( TtLT ≤≤+− : In this phase, no procurement orders take place. In other words, all returned 
items are disposed and no used items can enter to the serviceable inventory. In this model the set of all possible 
order-up-to policies is given by: 
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{ }NKSAKSA ∈= ,,),,(ξ  (3)

In order to compare deferent parameter sets ξ∈),,( KSA , we use the average total relevant cost as an 
objective function. So we define the average total cost by: 

ξ∈∀++= ∑
=

),,(),,,(),,()(),,(
1

0 KSAKSACKSACACKSAC E
T

t
tR  (4)

They are defined as: 

0C : The starting cost for filling up the inventory before the first period. 

tC : The sum of the average relevant cost in period t . 

EC : The average cost at the end of the planning horizon for the disposal of the remaining items. 

The optimal policy ξ∈),,( optoptopt KSA  is defined as the parameter set that minimizes expression (4). The 
starting expenditures solely depend on the number of items in the inventory at the beginning of the planning 
horizon and on some fixed ordering cost AC as follows, 

ACCAC PA .)(0 +=  (5)

In expression (5), AC is the fixed ordering cost to order A  items and pC is the procurement cost for each item. 
The average relevant cost in one period is composed of the average costs for procurement, backorders and 
stock keeping and they are proportion to the number of items and the holding and the backorder costs which 
are charged at the end of each period. Therefore we have, 

][.][.][.),,( +− ++= tHtBtpt XECXECOECKSAC  (6)

Where the random variables are defined as follows, 

tO : Number of procured items at the beginning of period t, 

−
tX : Number of backorders at the end of period t, 

+
tX : Stock on hand at the end of period t. 

The cost parameters are defined as: 

HC : Holding cost per item per period, 

BC : Backorder cost per item per period. 

For the description of the inventory process it is necessary to introduce some additional random variables: 

tX : Net stock at the end of period t; ).( −+ −= ttt XXX  

tI : Inventory position at the beginning of period t before a procurement order, 

tR : Number of remanufactured items which are entered to the serviceable items in period t. 

Additionally, we define rP  as the probability that an item is recovered, which means that it is returned to the 
manufacturer and then it can be remanufactured: 
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)1).(1( dlr PPP −−=  (7)

3. Determination of objective function 

The objective function of the proposed model is partly formulated based on what Kiesmuller and Van der laan 
(2006) originally suggested. However, there are some changes on the structure of the cost items to make it 
compliant to our proposed method in each phase. The first step of our method is to introduce the inventory 
position tI which is explained in the next section. 

3.1. The inventory position tI  

In the model described in Section 2, a strong relation is given between the demands in period t  and the returns 
in period Lt + . If all the demands are fulfilled in period t, the distribution function of the random variable LtR +  
is only determined by the distribution function of the random variable tD  and the recovery probability rP . Let 

tR̂  be a random variable, defined as the number of returns in period Lt + ¸ under the condition that all the 
demands in period t  are fulfilled. Then we can use tR̂  as an approximation for LtR +  in situations with a high 
service level. Practically, there is also a strong relationship between the demands in period t  and the returns in 
period Lt + . If the demands in period t  are known, we have some information about the returns at L  later 
periods and the information could be used for the procurement decision in period Lt +  and this assumption 
holds when we define the inventory position tI , at the beginning of period t before ordering, as the stock on 
hand minus backorders plus the outstanding orders plus the outstanding returns. Since we normally face a high 
service level, we use the following as an approximation for the inventory position for 11 −≤≤ Tt , 
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1 +−+=+  (9)

This means that the inventory position in period 1+t is given by the inventory position of the previous 
period, the procurements and the number of demands in period t , and the number of fulfilled demands that will 
return to the inventory¸ periods later. Therefore, tI  describes a non-homogeneous Markov-chain, because the 
inventory position in period t+1 depends only on the period before. If we consider the dependency of the 
demands and the returns, tt RD ˆ−  is always non-negative, since it is not possible to have more returns in period 

Lt + . It follows from (9) that the inventory position never exceeds S, so that we have 
{ } { }TtLTKiiLTtSiiIt ≤≤+−≤−≤≤≤∈ 12,21, U . As a contrast, if the dependency of demands and returns 

is not considered, then tt RD ˆ−  can also be negative, so that ZIt ∈ . For a description of the system, we need the 
state probabilities )(tv j , which are the probabilities that the inventory position in period t  is equal to j : 

ZjTtjIPtv tj ∈≤≤== ,1),()(  (10)

At the beginning of period 1, both the inventory position and the stock on hand have the value A , which leads 
to: 

Ajvandv jA ≠∀== ,0)1(1)1(  (11)

All the other state probabilities are given by the recursive formula, 

∑
∞

−∞=
=+

i
ijij tvtPtv )().()1( ,  (12)
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where )(, tP ji  denotes the transition probability to go from state i  in period to state j  in period 1+t , 

ZjiTtiIjIPtP ttji ∈−≤≤=== + ,,11),()( 1,  (13)

For the transition probabilities see Appendix A. 

3.2. The objective function 

To define the objective function we have to determine the average shortage and holding costs in period t  
which are given for all TTt ,1...,,3,2,1 −= . For average shortage cost we have, 

.)(..][.
1
∑
∞

=

+ ==
i

tHtH iXPiCXEC  (14)

For average holding cost we have, 

∑
∞
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− −==
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)(..][.
i

tBtB iXPiCXEC  (15)

The probability distribution of the net stock )( iXP t =  is given in Appendix A.4. Now, we have to consider the 
average procurement cost in the objective function. We have different procurement sizes in different periods. 
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With (14), (15) and (16) the average costs in period t , ),,( KSACt  can be computed for Tt ...,,2,1= . At the end 
of the planning horizon all the items in the reuse network and the items which are remained in the serviceable 
items must be disposed. Therefore we have, 
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Now with (4) we can calculate the objective function ),,( KSACR  for parameter sets ξ∈),,( KSA . The optimal 
policy can be found using the optimal solution of the following problem,  

ξ∈),,(
),,(

KSA
KSACMin R  (18)

Since the structure of objective function is nonlinear, a closed form solution cannot be found easily and use 
numerical techniques, instead. 

4. Numerical study 

In this section, we use a numerical example to demonstrate the implementation of the proposed method of this 
paper. We consider three cases: For the first case, we study the model when we have only one reorder point for 
all periods ....,,2,1 Tt =  In the second case, we have two reorder points of LTt 21 −≤≤  and TtLT ≤≤+− 12 . 
Also, demand and return sales are assumed to be constant. The other parameters are as follows,  
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In Table 1 the optimal policies and the average minimal relevant costs are given for different values of dP  and
rP . Also the Relative difference between two systems is given, which shows the difference between the 

average minimal costs of each system. 

Table 1  
Optimal policy and the minimal average relevant costs to compare two different systems 

rP  dP  
Ordering system with S  Ordering system with KS ,  Relative 

difference 
(%) optA  optS  ),( optoptR SAC  optA  optS  optK  ),,( optoptoptR KSAC  

0 0 16 16 1489 16 16 13 1355 9.9 

0.25 0.25 17 17 2294 17 17 13 2117 8.3 

0.5 0.5 18 18 3102 18 18 14 2890 7.3 

0.75 0.75 19 19 3916 19 19 14 3655 6.8 

 

5. Conclusion and future research 

In this paper, we have developed an inventory system with periodic ordering policy which the return stream is 
depended on the demand stream. We consider the finite planning horizon and the backorders are allowed. We 
have studied the effect of recovery probability on determining the optimal policy and the average total cost. 
We show that with considering the cost of disposal at the end of the planning horizon, the reorder point should 
be changed to achieve the optimal policy. There are some limitations on the assumptions of the proposed 
model. For instance, we have considered only one inventory for the serviceable items. It is worth to be 
discussed, that a remanufactured item does not necessarily have the same quality as the new one. In this case, 
the recovery probability for an item is not constant but decreasing. Therefore, one can define two inventories 
for serviceable items, one inventory for new items and another for the remanufactured items. Moreover, it 
would be interesting to extent the model with the stochastic lead time structure.  
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Appendix A 

A.1 The distribution of the returns tR̂  and of RDt
ˆ−  

If rP denote the probability that an item is recovered ))1).(1(( dlr PPP −−= , then we get the following formula 
for the distribution of the returns, tR̂  for all 1...,,2,1 −++= TLLt : 

( ) ( )

!
)(

!
)(

)!(
))1((

!
).(

!
)1(

)!(
!

!

!
..)1(.|ˆ)ˆ(

)1(
i

P
ee

i
P

e

ij
P

i
P

e
j

P
ij

j
i

Pe

j
ePP

i
j

jDPjDiRPiRP

i
LtrPP

i
Ltr

ij

ij
rLt

i
Ltr

ij

j
Ltij

r

i
r

ij

j
Ltij

r
i
r

ij
LtLttt

LtrLtrLt

LtLt

Lt

−−−−−

∞

=

−
−−−

∞

=

−−−

∞

=

−−−
∞

=
−−

−−−

−−

−

==

−
−

=−
−

=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
======

∑∑

∑∑

λλ

λλλ

λ

λλλ

λλ

λ

 

(A.1)
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Therefore, the number of returns in period t  is distributed with Poison distribution and parameter LtrP −λ . 

1...,,2,1),.(~ˆ −++=− TLLtPPoR Ltrt λ  (A.2)

The distribution is independent of t , if λλ =t . For 1...,,2,1 −= Lt  and for Tt = , there are no returns, i.e. .0ˆ =tR  
The distribution of the number of items which are not returned tt RD ˆ−  can be determined similarly. Therefore 
we have,  

))1((~ˆ
rttt PPoRD −− λ  (A.3)

A.2 The distribution of ∑ = − −L
i tit RD0

ˆ  

In order to determine the distribution of ∑ = − −L
i tit RD0

ˆ  we have to consider that the random variables tR̂  and 

LtD −  are dependent, while the other random variables not. We can write: 
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(A.4)

where tLt RD ˆ−−  is Poisson distributed with parameter )1( rLt P−−λ , 

))1((~ˆ
rttLt PPoRD −−− λ  (A.5)

and ∑ −
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1
0

L
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tLt RD ˆ−−  and ∑ −
= −

1
0

L
i itD  itself are independent. Therefore, the sum of these terms is again Poisson distributed, 

which means: 
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A.3 The transition probabilities  

Because of the non-homogeneous Markov-chain the transition probabilities are dependent on time.  

 1=t : The initial distribution (11) and the fact that tt RD ˆ−  is always non-negative lead to 

⎪⎩

⎪
⎨
⎧ =≤−=−

=
elsewhere

AnAjjARDPP ji ,0
,),ˆ( 11

,  (A.8)

and the state probability  

)ˆ()2( 11 jARDPv j −=−=  (A.9)

LTt 22 −≤≤ : In these periods from all the demands a portion will be returned to the inventory L  period 
later, which means 0ˆ ≥tR . Additionally, the inventory position after an order is always S , so that 

SOI tt =+ .Therefore, we have 
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)ˆ(, jSRDPP ttji −=−=  (A.10)

These transition probabilities are independent from i and the state probabilities are given by 

)ˆ()1( jSRDPtv ttj −=−=+  (A.11)

LTtLT −≤≤+− 12 : The transition probabilities of these periods are like above but instead of S  we use K . 
Therefore we have, 

)ˆ(, jKRDPP ttji −=−=  (A.12)

and regard to A.11 we have 

)ˆ()1( jKRDPtv ttj −=−=+  (A.13)

LTt −= : For LTt −= , we still have procurement, but none of the delivered items to the customer will be 
returned to the serviceable inventory )0ˆ( =−LtR . Therefore, we get 

)()(, jKDPLTP LTji −==− −  (A.14)

and 

)()1( jKDPLTv LTj −==+− −  (A.15)

 11 −≤≤+− TtLT : In these periods we have again 0ˆ =tR  but there are no orders )0( =tO , which leads to 

)()(, jKDPtP tji −==  (A.16)

A.4 The distribution of the net stock 

Different formulas are needed for different periods. 

Lt ≤≤1 : Because of no returns in Phase 1, the net stock only depends on the demand and is monotonously 
decreasing. There are also no deliveries of new items. For Ζ∈i  it holds that  

( ) LtiADPiXP t
k kt ...,,2,1,)( 1 =−=== ∑ =  (A.17)

These probabilities can easily be computed, since the sum of independent Poisson distributed random variables 
is again Poisson distributed: 

( )∑∑ =
=

t
k k

t

k
k PoD 1

1
~ λ  (A.18)

11 −≤≤+ TtL : In Phases 2, 3 and 4 the net stock at the end of period t  is dependent on the inventory position 
in period Lt − : 

TtLDROIX L
k kttLtLtt ≤≤+−++= ∑ = −−− 1,ˆ

0  (A.19)

For the probabilities we have to distinguish between 1+= Lt  and 1+≠ Lt . 

1+= Lt : In this case there are no procurements )0( 1 =O  and the inventory position in period 1 is given by
AI =1 . Therefore, we get 
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( )iARDPiXP L
L
k kLL −=−== += −++ ∑ 10 11

ˆ)(  (A.20)

1+≠ Lt : In this case the probabilities for the net stock can be computed as follows: 

( ) 1,21,ˆ)( 0 +≠−≤≤−=−== ∑ = − LtLTtiSRDPiXP L
k tktt (A.21)

and  

( ) 112,ˆ)( 0 −≤≤+−−=−== ∑ = − TtLTiKRDPiXP L
k tktt (A.22)

Tt = : For Tt =  the random variable tR̂  in (A.19) is equal to 0  and we get 

( )∑ = − −=== L
k kTT iKDPiXP 0)(  (A.23)
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