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Abstract

Analytical solutions to the equations of motion of inclined unsagged
cables have been obtained by using the Lie group theory. The infinites-
imal generators corresponding to the problem are calculated and then
used to construct some invariant solutions. Invariant solutions can be
found as solutions of a reduced system of differential equations that has
fewer independent variables. Consequently, the system of second - order
partial differential equations is reduced to a system of ordinary differ-
ential equations and some of these systems can be solved analytically.
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1 Introduction

Lie group theory was originally designed for constructing exact solutions of
differential equations. This theory was originated by a great mathematician
of 19th century, Sophus Lie (Norway, 1842-1899). Group analysis provides
two basic ways for constructing exact solutions of differential equations, group
transformation of known solutions and construction of invariant solutions. The
symmetry Lie groups and invariant solutions for the wave propagation in gas
and the transonic equation were obtained by Ames et al. [10]. After their work,
Torissi and Valenti [5] applied the infinitesimal group analysis to a second - or-
der nonlinear wave equation describing a non - homogeneous process. Bluman
and Kumei [2] studied the wave equations with two and four-parameter sym-
metry groups and the corresponding invariant (similarity) solutions. Peters
and Ames [4] applied Lie group method to the nonlinear dynamic equations of
elastic string. Group invariant solutions for a second - order hyperbolic wave
equation involving an axially transported speed and nonlinear terms were con-
structed by Fung et al. [9]. Ozkaya and Pakdemirli [1] investigated exact
solutions of transverse vibrations of a string moving with time-dependent ve-
locity. In this paper, the Lie group theory is applied to the nonlinear equations
of motion of inclined unsagged cables. In section 3, a method for seeking the
infinitesimal generators admitted by the equations is demonstrated and the
construction of some invariant solutions is presented in section 4.

2 Physical Model and Equations of Motion

2.1 Cable Model

The configuration (x̃, ỹ) in the global coordinates (X, Y ) describes the position
of the inclined unsagged cable as shown in Figure 1. The angle θ shows the
inclination of the cable with respect to X axis. After the disturbance of an
external excitation, the cable configuration is changed into the dynamic con-
figuration which is displaced from the initial configuration. The displacement
vectors in X and Y directions are represented by ũ(x̃, t̃) and ṽ(x̃, t̃) respec-
tively. The horizontal span XH is fixed and the cable’s vertical span YH is
varied to attain specified values of θ.

2.2 Equation of Motion

In deriving the equation of motion by the virtual work - energy principle the
cable is considered to be perfectly flexible, homogeneous, linearly elastic with
negligible torsional, bending, and shear rigidities. Therefore, the strain energy
is due only to the stretching of the cable axis. The total strain of the cable at
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Figure 1: Configurations of an inclined unsagged cable.

the displaced state, with assumption of moderately large vibration amplitudes,
can be expressed as follows

ē = e+ (1 + ỹ′2)−1[ũ′ + ỹ′ṽ′ +
1

2
(ũ′2 + ṽ′2)]. (1)

In this study, the initial strain e is assumed to have a small value and is
neglected. The prime (′) is used to denote differentiation with respect to x̃.
From [6] and [3], the governing equations of motion are

ρü = {u′ + Ē

ρ3
(u′ + y′v′) +

Ē

ρ3
(u′2 + y′u′v′ +

1

2
(1 + u′)(u′2 + v′2))}′, (2)

ρv̈ = {v′ + Ē

ρ3
(y′u′ + y′2v′) +

Ē

ρ3
(u′v′ + y′v′2 +

1

2
(y′ + v′)(u′2 + v′2))}′, (3)

where the dot denotes differentiation with respect to t ,

x = x̃
XH
, y = ỹ

XH
, u = ũ

XH
, v = ṽ

XH
, t = t̃

XH

√
gH
wc
,

ρ =
√

1 + ỹ′2,

ỹ = x̃ tan θ, ỹ′ = tan θ,

E = EA
H
, EA is the cable axial stiffness,

H = Ts

ρ
is the horizontal component of the cable static tension Ts,
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wc is the cable weight per unit length,

g is the gravity constant.

A method for solving the nonlinear equations of motion for horizontal and
inclined elastic sagged cables by using a numerical technique is demonstrated in
Srinil [7]. Here, the unsagged suspended cables are studied. Because the cable
is unsagged we can neglect the second derivative of y , and so the simplified
non-linear equations of motion of inclined unsagged cables take the form

ρutt − {uxx +
E

ρ3
(uxx + ψvxx + 3uxuxx + ψuxvxx + ψuxxvx + vxvxx)} = 0, (4)

ρvtt −{vxx +
E

ρ3
(ψuxx +ψ2vxx +uxvxx +uxxvx +3ψvxvxx +ψuxuxx)} = 0, (5)

where ψ = y′ = constant.

This non-linear system describes the coupled longitudinal and vertical dis-
placement’s dynamics, and is valid also for slightly sagged horizontal cables if
one assumes Ts ≈ H , rendering ρ = 1. It contains quadratic and cubic nonlin-
ear terms due to the cable’s axial stretching even in the absence of initial sag
(taut string case).

3 Calculation of Infinitesimal Generators

An infinitesimal generator X for the problem is written in the following form

X = α(x, t, u, v)
∂

∂x
+ β(x, t, u, v)

∂

∂t
+ γ(x, t, u, v)

∂

∂u
+ η(x, t, u, v)

∂

∂v
. (6)

The main aim is to determine all functions α, β, γ, and η that correspond to the
one-parameter symmetry groups of Equations (4) and (5). Since the governing
equations form a system of second order PDE, the second prolongation of the
infinitesimal generator is needed.
The second prolongation of X is given by

pr(2)X = X + γx ∂

∂ux

+ γt ∂

∂ut

+ γxx ∂

∂uxx

+ γxt ∂

∂uxt

+ γtt ∂

∂utt

+ ηx ∂

∂vx

+ηt ∂

∂vt

+ ηxx ∂

∂vxx

+ ηxt ∂

∂vxt

+ ηtt ∂

∂vtt

, (7)
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where

γx = Dx(γ − αux − βut) + αuxx + βuxt

ηx = Dx(η − αvx − βvt) + αvxx + βvxt

γxx = D2
x(γ − αux − βut) + αuxxx + βuxxt

ηxx = D2
x(η − αvx − βvt) + αvxxx + βvxxt

γt = Dt(γ − αux − βut) + αuxt + βutt

ηt = Dt(η − αvx − βvt) + αvxt + βvtt

γtt = D2
t (γ − αux − βut) + αuxtt + βuttt

ηtt = D2
t (η−αvx−βvt)+αvxtt+βvttt (7′)

and

Dx = ∂
∂x

+ ux
∂
∂u

+ uxx
∂

∂ux
+ uxt

∂
∂ut

+ uxxx
∂

∂uxx
+ uxxt

∂
∂uxt

+ uxtt
∂

∂utt
+ ...

+vx
∂
∂v

+ vxx
∂

∂vx
+ vxt

∂
∂vt

+ vxxx
∂

∂vxx
+ vxxt

∂
∂vxt

+ vxtt
∂

∂vtt
+ ...

Dt = ∂
∂t

+ ut
∂
∂u

+ uxt
∂

∂ux
+ utt

∂
∂ut

+ ...+ vt
∂
∂v

+ vxt
∂

∂vx
+ vtt

∂
∂vt

+ ...

D2
x = Dx(Dx)

D2
t = Dt(Dt)

According to Theorem 2.31 [8],

pr(2)X[ρutt−{uxx+
E

ρ3
(uxx+ψvxx+3uxuxx+ψuxvxx+ψuxxvx+vxvxx)}]|F=0 = 0,

(8)

pr(2)X[ρvtt−{vxx+
E

ρ3
(ψuxx+ψ

2vxx+uxvxx+uxxvx+3ψvxvxx+ψuxuxx)}]|F=0 = 0.

(9)

where the notation |F=0 means that the second prolongation of X is applied
to the solutions of Equations (4) and (5). This implies

ργtt − {γxx +
E

ρ3
(γxx + ψηxx + γxuxx + γxxux + γxψvxx + ηxxψux + γxxψvx
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+ηxψuxx + ηxvxx + ηxxvx)} = 0, (10)

ρηtt − {ηxx +
E

ρ3
(y2

xη
xx + ψγxx + γxvxx + ηxxux + γxxvx + ηxuxx + 2ηxψvxx

+2ηxxψvx + γxψuxx + γxxψux + ηxψvxx + ηxxψvx)} = 0. (11)

Substituting expressions (7, 7′) and (4) - (5) into Equations (10) and (11)
and then equating the coefficients of all independent monomials to zero, we
obtain the determining equations. After solving the determining equations,
the functions α, β, γ, and η can be expressed as follows

α(x, t, u, v) = k1x+ k2, (12)

β(x, t, u, v) = k1t+ k3, (13)

γ(x, t, u, v) = k1u+ k4t+ k5, (14)

η(x, t, u, v) = k1v + k6t+ k7. (15)

where k1, ..., k7 are arbitrary constants.

Thus, the infinitesimal generators have the form

X = (k1x+k2)
∂

∂x
+(k1t+k3)

∂

∂t
+(k1u+k4t+k5)

∂

∂u
+(k1v+k6t+k7)

∂

∂v
, (16)

The infinitesimal generator contains seven arbitrary constants. Conse-
quently, the Lie algebra derived from the governing equations is spanned by
the following seven linearly independent generators:

X1 = x ∂
∂x

+ t ∂
∂t

+ u ∂
∂u

+ v ∂
∂v
, X2 = ∂

∂x
, X3 = ∂

∂t
,

X4 = t ∂
∂u
, X5 = ∂

∂u
, X6 = t ∂

∂v
, X7 = ∂

∂v
.

From the commutator table (Table 1.), we get by considering the ad-
joint representation that the following system of one- dimensional subalgebras
spanned by the following vectors is optimal:

X1 + a4X4 + a6X6, (a4 and a6 are arbitrary constants)

X2 + a4X4 + a6X6, (a2
4 + a2

6 > 0)
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Table 1: Commutator table
X1 X2 X3 X4 X5 X6 X7

X1 0 −X2 −X3 0 −X5 0 −X7

X2 X2 0 0 0 0 0 0
X3 X3 0 0 X5 0 X7 0
X4 0 0 −X5 0 0 0 0
X5 X5 0 0 0 0 0 0
X6 0 0 −X7 0 0 0 0
X7 X7 0 0 0 0 0 0

a2X2 + a5X5 + a7X7, (a2
2 + a2

5 + a2
7 = 1)

a2X2 + a3X3, (a2
2 + a2

3 = 1)

X2 + a5X5 + a6X6, (a6 �= 0)

X3 + a4X4 + a6X6. (a4 and a6 are arbitrary constants)

4 Invariant Solutions

Given the infinitesimal generators X = α ∂
∂x

+ β ∂
∂t

+ γ ∂
∂u

+ η ∂
∂v

of the one
- parameter symmetry groups of Equations (4) and (5), the invariant solu-
tions with respect to the one-parameter group generated by X can be found.
Invariants I(x, t, u, v) are calculated by solving the characteristic system

dx

α
=
dt

β
=
du

γ
=
dv

η
. (17)

After expressing independent variables as functions of invariants and sub-
stituting them into dependent variables, a system of ordinary differential equa-
tion will result. Some cases of generator X which reduce the system of partial
differential equations to a system of ordinary differential equations will be con-
sidered here:

Case1 For X = X2 + a4X4 + a6X6 = ∂
∂x

+ a4t
∂
∂u

+ a6t
∂
∂v
,

there are three independent invariants which are obtained by solving the equa-
tion

XI =
∂I

∂x
+ a4t

∂I

∂u
+ a6t

∂I

∂v
= 0.



2266 W. Chatanin, A. Loutsiouk and S. Chucheepsakul

One of them is I1 = t , while other invariants are found from the characteristic
system

dx

1
=
du

a4t
=
dv

a6t
.

By integrating the equation dx
1

= du
a4t

, we get a4tx + C1 = u . This gives the
invariant I2 = u− a4tx . Likewise, we get I3 = v − a6tx. Let u− a4tx = φ1(t)
and v − a6tx = φ2(t). It follows that

u = φ1(t) + a4tx, (18)

v = φ2(t) + a6tx. (19)

Their derivatives are ux = a4t, ut = φ′
1 + a4x, uxx = 0, utt = φ′′

1, vx =
a6t, vt = φ′

2 + a6x, vxx = 0, vtt = φ′′
2. After substituting these derivatives into

Equations (4) and (5), the system of partial differential equations reduces to
the system of ordinary differential equations

ρφ′′
1 = 0, (20)

ρφ′′
2 = 0. (21)

The functions φ1 = at+ b and φ2 = ct+ d are solutions to this system, where
a, b, c and d are arbitrary constants. By substituting φ1 and φ2 into Equation
(18) and Equation (19), we get the exact solutions

u = at+ b+ a4tx, (22)

v = ct + d+ a6tx. (23)

Case2 For X = a2X2 + a3X3 = a2
∂
∂x

+ a3
∂
∂t
,

the three independent invariants are I1 = u, I2 = v and I3 = a3x − a2t. Let
u = φ1(z) and v = φ2(z), where z = a3x− a2t. This yields the reduced system
of ordinary differential equations

a2
2ρφ

′′
1 − a2

3{φ′′
1 +

E

ρ3
(φ′′

1 +ψφ′′
2 + 3a3φ

′
1φ

′′
1 + a3ψφ

′
1φ

′′
2 + a3ψφ

′′
1φ

′
2 + a3φ

′
2φ

′′
2)} = 0,

(24)

a2
2ρφ

′′
2−a2

3{φ′′
2 +

E

ρ3
(ψφ′′

1 +ψ2φ′′
2 +a3φ

′
1φ

′′
2 +a3φ

′′
1φ

′
2 +3a3ψφ

′
2φ

′′
2 +a3ψφ

′
1φ

′′
1)} = 0.

(25)
The functions φ1 = az + b and φ2 = cz + d are solutions to this system, where
a, b, c and d are arbitrary constants. Hence the following are exact solutions
to the initial system



Equations of motion of inclined cables 2267

u = a(a3x− a2t) + b, (26)

v = c(a3x− a2t) + d. (27)

Case3 For X = a2X2 + a5X5 + a7X7 = a2
∂
∂x

+ a5t
∂
∂u

+ a7t
∂
∂v
,

the three independent invariants are I1 = t, I2 = a5

a2
x − u and I3 = a7

a2
x − v.

Let a5

a2
x − u = φ1(t) and a7

a2
x − v = φ2(t). This yields a system of ordinary

differential equations
ρφ′′

1 = 0, (28)

ρφ′′
2 = 0. (29)

The functions φ1 = at+ b and φ2 = ct+ d are solutions to this system, where
a, b, c and d are arbitrary constants. We get the exact solutions

u =
a5

a2
x− (at+ b), (30)

v =
a7

a2
x− (ct+ d). (31)

Case4 For X = X2 + a5X5 + a6X6 = ∂
∂x

+ a5
∂
∂u

+ a6t
∂
∂v
,

the three independent invariants are I1 = t, I2 = u − a5x and I3 = v − a6tx.
Let u − a5x = φ1(t) and v − a6tx = φ2(t). It follows that u = φ1(t) + a5x,
v = φ2(t) + a6tx and we obtain a system of ordinary differential equations

ρφ′′
1 = 0, (32)

ρφ′′
2 = 0. (33)

The functions φ1 = at+ b and φ2 = ct+ d are solutions to this system, where
a, b, c and d are arbitrary constants. Thus, we get the exact solutions

u = at+ b+ a5x, (34)

v = ct + d+ a6tx. (35)

Case5 For X = X3 + a4X4 + a6X6 = ∂
∂t

+ a4t
∂
∂u

+ a6t
∂
∂v
,

the three independent invariants are I1 = x, I2 = u− a4

2
t2 and I3 = v − a6

2
t2.

Let u − a4

2
t2 = φ1(x) and v − a6

2
t2 = φ2(x). It follows that u = φ1(x) + a4

2
t2,

v = φ2(x) + a6

2
t2. This yields a system of ordinary differential equations

a4ρ− {φ′′
1 +

E

ρ3
(φ′′

1 + ψφ′′
2 + 3φ′

1φ
′′
1 + ψφ′

1φ
′′
2 + ψφ′′

1φ
′
2 + φ′

2φ
′′
2)} = 0, (36)
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a6ρ− {φ′′
2 +

E

ρ3
(ψφ′′

1 + ψ2φ′′
2 + φ′

1φ
′′
2 + φ′′

1φ
′
2 + 3ψφ′

2φ
′′
2 + ψφ′

1φ
′′
1)} = 0. (37)

Case6 For X = X1 = x ∂
∂x

+ t ∂
∂t

+ u ∂
∂u

+ v ∂
∂v
,

the three independent invariants are I1 = x
t
, I2 = u

x
and I3 = v

x
. Let u

x
= φ1(z)

and v
x

= φ2(z) where z = x
t
. It follows that u = xφ1(z), v = xφ2(z). This yields

a system of ordinary differential equations

ρ(z2φ′′
1 + zφ′

1) + {z2φ′′
1 + 2zφ′

1 +
E

ρ3
(z2φ′′

1 + 2zφ′
1 + ψ(z2φ′′

2 + 2zφ′
2)

+3(zφ′
1+φ1)(z

2φ′′
1+2zφ′

1)+ψ(zφ′
1+φ1)(z

2φ′′
2+2zφ′

2)+ψ(z2φ′′
1+2zφ′

1)(zφ
′
2+φ2)

+(zφ′
2 + φ2)(z

2φ′′
2 + 2zφ′

2))} = 0, (38)

ρ(z2φ′′
2 + zφ′

2) + {z2φ′′
2 + 2zφ′

2 +
E

ρ3
(ψ(z2φ′′

1 + 2zφ′
1) + ψ2(z2φ′′

2 + 2zφ′
2)

+(zφ′
1 +φ1)(z

2φ′′
2 +2zφ′

2)+(z2φ′′
1 +2zφ′

1)(zφ
′
2 +φ2)+3ψ(zφ′

2 +φ2)(z
2φ′′

2 +2zφ′
2)

+ψ(zφ′
1 + φ1)(z

2φ′′
1 + 2zφ′

1))} = 0. (39)

5 Conclusion

In this paper invariant solutions of the equations of motion of the inclined
unsagged cables are investigated. By using the infinitesimal generators, the
system of partial differential equations can be reduced to a system of ordinary
differential equations. In some cases it is possible to solve these systems ana-
lytically.
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