Applied Mathematical Sciences, Vol. 3, 2009, no. 26, 1265 - 1273

Fixed Point Theorems for the Generalized C-Contractions

P. Azhdari

Department of Statistics, Islamic Azad University North Tehran Branch Iran par_azhdari@yahoo.com

R. Farnoosh

Faculty of Mathematics, Iran University of Science and Technology Tehran, Iran

Abstract

In this paper, by using the concept of *p*-convergency we obtain two fixed point theorems for (q_1, q_2) -contraction of (ϵ, λ) -type and generalized *C*-contraction.

Keywords: Probabilistic metric space, Fuzzy metric space, *p*-convergent, generalized *C*-contraction, (q_1, q_2) -contraction of (ϵ, λ) -type, fixed point

1 Introduction

Menger introduced a probabilistic metric space (briefly, PM-space) as a generalization of metric space [8]. In fact, he replaced the metric function d: $\mathbb{R} \times \mathbb{R} \to \mathbb{R}^+$ with a distribution function $F_{pq} : \mathbb{R} \to [0, 1]$ and then for any number x the value $F_{pq}(x)$ was interpreted the probability that the distance between p and q is less than x.

The first fixed point theorem in probabilistic metric space was proved by Sehgal and Bharucha-Reid for t-norm T_M [14]. A very interesting approach to the fixed point theory in probabilistic metric space is given in Tradiff's paper [15]. Radu introduced a stronger growth condition.

The class of probabilistic C-contractions which intensively studied in the fixed point theory in probabilistic metric spaces has been introduced by Hicks [6]. There are too many fixed point theorems which are in some sense generalizations of B-contraction and C-contraction classes. In [10], Mihet introduced the notion of a q-contraction of (ϵ, λ) -type. In [11] generalization, a notion of C-contraction is given. In [9], Mihet proved the existence of fixed point for fuzzy contractive by using p-convergency. In [1], we proved alike theorems for B-contractions and C-contractions. Now, we extend these theorems to q-contractions of (ϵ, λ) -type and generalized C-contractions under weaker condition of p-convergency.

The structure of this paper is as follows: Section 2 recalls some notions and known results in fuzzy metric spaces and probabilistic contractions. In section 3, we will show two theorems for (q, q_1) -contraction of (ϵ, λ) -type and generalized *C*-contraction.

2 Preliminary Notes

We recall some concepts from probabilistic metric space, fuzzy metric space and contraction. For more details, we refer the reader to [5,13].

The class of generalized distribution functions (denoted by Δ_+) is the class of functions $F: [0, \infty] \to [0, 1]$ with the following properties:

1)
$$F(0) = 0$$
,

2) F is nondecreasing ,

3) F is left continuous on $(0, \infty)$.

If X is a nonempty set, a mapping F from $X \times X \to \Delta_+$ is called a probabilistic distance on X, and F(x, y) is denoted by F_{xy} .

A triangular norm (shorter t-norm) is a binary operation on the unit interval [0, 1] which the following conditions are satisfied:

1) T(a, 1) = a for every $a \in [0, 1]$, 2) T(a, b) = T(b, a) for every $a, b \in [0, 1]$, 3) $a \ge b, c \ge d \Rightarrow T(a, c) \ge T(b, d) \ a, b, c \in [0, 1]$. 4) T(T(a, b), c) = T(a, T(b, c)), Basic examples are *t*-norms T_L (Lukasiewicz *t*-norm), T_P and T_M , defined by

 $T_L(a,b) = \max\{a+b-1,0\}, \ T_P(a,b) = ab \text{ and } T_M(a,b) = \min\{a,b\}.$

The triple (X, F, T), where X is a nonempty set, F is a probabilistic distance on X, and T is a t-norm, is called a generalized Menger space if it satisfies:

The (ϵ, λ) -topology on X is introduced by the family of neighborhoods

 $\{U_x(\epsilon,\lambda)\}_{x\in X, \epsilon>0,\lambda\in(0,1)}$, where $U_x(\epsilon,\lambda) = \{y\in X | F_{x,y}(\epsilon) > 1-\lambda\}$. If (X, F, T) is a generalized Menger space with $\sup_{0\leq t < 1} T(t,t) = 1$, then in the (ϵ,λ) -topology, X is a metrizable topological space.

A triple (X, M, T), where X is nonempty set, T is a continuous t-norm and M is a fuzzy set on $X^2 \times [0, \infty)$, is called a fuzzy metric space in the sense of Kramosil and Michalek, when the following properties are satisfied [7]:

1) $M(x, y, 0) = 0 \quad \forall x, y \in X,$ 2) $M(x, y, t) = 1 \quad \forall t > 0 \implies x = y,$ 3) M(x, y, t) = M(y, x, t),4) $M(x, y, .) : [0, \infty] \rightarrow [0, 1]$ is leftcontinuous, $\forall x, y \in X,$ 5) $M(x, z, t + s) \ge T(M(x, y, t), M(y, z, s)), \quad \forall x, y, z \in X \text{ and } \forall t, s > 0.$ In [2] George and Veeramani defined, M is a fuzzy set on $X^2 \times (0, \infty)$ and (1), (4) are replaced, respectively, with (1)', (4)' below: 1)' M(x, y, t) > 0,4)' $M(x, y, .) : [0, \infty] \rightarrow [0, 1]$ is continuous, $\forall x, y \in X,$

A sequence $(x_n)_{n \in N}$ in a fuzzy metric space (X, M, T) is a *M*-cauchy sequence in the sense of George and Veeramani if for every $\epsilon > 0$ and $\delta \in (0, 1)$ there exists $n_0 \in N$ such that $M(x_n, x_m, \epsilon) > 1 - \delta, \forall n \ge m \ge n_0$ and a *G*cauchy sequence if $\lim_{n\to\infty} M(x_n, x_{n+m}, t) = 1$ for each $m \in \mathbb{N}, t > 0$ [2,3,16]

Definition 2.1 [14]: A B-contraction on a probabilistic space (X, F) is a self-mapping f of X for which

$$F_{f(p)f(q)}(kt) \ge F_{pq}(t) \quad \forall p, q \in X , \forall t > 0,$$

where k is a fixed constant in (0, 1).

Definition 2.2 [6]: Let X be a nonempty set and F be a probabilistic distance on X. A mapping $f: X \to X$ is called a C-contraction if there exists $k \in (0, 1)$ such that for all $x, y \in X$, t > 0

$$F_{xy}(t) > 1 - t \implies F_{f(x)f(y)}(kt) > 1 - kt.$$

There are some definitions for other types of contractions. For more details we refer the readers to [5].

Radu [12] showed that every C-contraction in a Menger space (X, F, T) with $T \ge T_L$ is actually a Banach contraction in the metric space (X, K), where $K(x, y) = \sup\{t \ge 0 \mid t \le 1 - F_{xy}(t)\}$ and proved a more general result.

There are some other types of contraction which are beyond the scope of this

paper but now we bring some generalization of these contractions. In [10], Mihet introduced the following definition.

Definition 2.3: Let (X, F) be a probabilistic metric space. A mapping $f: X \to X$ is said to be a (q, q_1) -contraction of (ϵ, λ) -type, where $q, q_1 \in (0, 1)$ if the following implication holds for every p_1, p_2 :

$$\forall \epsilon > 0, \ \forall \lambda \in (0,1) \ Fp_1, p_2(\epsilon) > 1 - \lambda \ \Rightarrow \ F_{f(p_1), f(p_2)}(q\epsilon) > 1 - q_1\lambda.$$

Now for presenting generalized *C*-contraction, let *M* be the family of all the mappings $m : \overline{R} \to \overline{R}$ such that the following conditions are satisfied: 1) $\forall t, s \geq 0 : m(t+s) \geq m(t) + m(s);$ 2) $m(t) = 0 \Leftrightarrow t = 0;$ 3) *m* is continuous.

Definition 2.4 [11]: Let (X, F) be a probabilistic metric space and $f : X \to X$. The mapping f is a generalized C-contraction if there exist a continuous, decreasing function $h : [0,1] \to [0,\infty]$ such that h(1) = 0, $m_1, m_2 \in M$, and $k \in (0,1)$ such that the following implication holds for every $p, q \in X$ and for every t > 0:

$$hoF_{p,q}(m_2(t)) < m_1(t) \Rightarrow hoF_{f(p),f(q)}(m_2(kt)) < m_1(kt)$$

If $m_1(s) = m_2(s) = s$, and h(s) = 1 - s for every $s \in [0, 1]$, we obtain the Hicks definition.

3 Main Results

The notion of point convergence introduced by Gregori and Romaguera in [4]. We recall this in definition 3.1.

Definition 3.1 [4]: Let (X, M, T) be a fuzzy metric space. A sequence $\{x_n\}$ in X is said to be point convergent to $x \in X$ (shown as $x_n \xrightarrow{p} x$) if there exists t > 0 such that

$$\lim_{n \to \infty} M(x_n, x, t) = 1.$$

A George and Veeramani fuzzy metric space (X, M, T) with the point convergence is a space with convergence in sense of Frechet [1,9].

Mihet in [9] showed the existence of fixed point for fuzzy contractive mapping

in the case of p-convergency subsequence. Now, we will prove two alike theorems for these kinds of contractions.

Theorem 3.1: Let (X, M, T) be a George and Veeramani fuzzy metric space and $\sup_{0 \leq a < 1} T(a, a) = 1$ and $A : X \to X$ be a (q, q_1) -contraction (ϵ, λ) -type, where $q, q_1 \in (0, 1)$. If T is q_1 -convergent , i.e.,

$$\lim_{n \to \infty} T_{i=n}^{\infty} (1 - q_1^i) = 1, \qquad (1)$$

and for some $x \in X$ the sequence $A^n(x)$ has a p-convergent subsequence, then A has a fixed point.

Proof: A is (q, q_1) -contraction of (ϵ, λ) -type, where $q, q_1 \in (0, 1)$, so for every $\epsilon > 0$ and $\lambda \in (0, 1)$.

$$M(u, v, \epsilon) > 1 - \lambda \implies M(Au, Av, q\epsilon) > 1 - q_1\lambda, \text{ for all } u, v \in X.$$
 (2)

Let $x_n = A^n(x) = A(x_{n-1})$ for every $n \in \mathbb{N}$ and $(x = A^0(x))$. Also $x \in X$ and $\delta > 0$ be such that $M(x, A(x), \delta) > 0$. Since $M(x, A(x), .) \in D_+$ such a δ exists. Now let $\lambda_1 \in (0, 1)$ be such that $M(x, A(x), \delta) > 1 - \lambda_1$. From (2) we have $M(A(x), A^2(x), q\delta) > 1 - q_1\lambda_1$, and generally for every $n \in \mathbb{N}$

$$M(A^{n}(x), A^{n+1}(x), q^{n}\delta) > 1 - q_{1}^{n}\lambda_{1}.$$
 (3)

We prove that $\{A^n(x)\}$ is a cauchy sequence; i.e. that for every $\epsilon > 0$ and $\lambda \in (0, 1)$ there exist $n_0(\epsilon, \lambda) \in \mathbb{N}$ such that

$$M(A^n(x), A^{n+m}(x), \epsilon) > 1 - \lambda \quad \forall n \ge n_0(\epsilon, \lambda) \text{ and } \forall m \in \mathbb{N}.$$

Let $\epsilon > 0$ and $\lambda \in (0, 1)$ be given. Since the series $\sum_{n=1}^{\infty} q^n \delta$ converges, there exists $n_0(\epsilon)$ such that $\sum_{n=n_0}^{\infty} q^n \delta < \epsilon$. Then for every $n \ge n_0$:

$$\begin{split} M(A^{n}(x), A^{n+m}(x), \epsilon) &\geq M(A^{n}(x), A^{n+m}(x), \sum_{n=n_{0}}^{\infty} q^{n}\delta) \\ &\geq M(A^{n}(x), A^{n+m}(x), \sum_{i=n}^{n+m-1} q^{n}\delta) \\ &\geq T(\dots(T(M(A^{n}(x), A^{n+1}(x), q^{n}\delta), M(A^{n+1}(x), A^{n+2}(x), q^{n+1}\delta), \\ &\dots, M(A^{n+m-1}(x), A^{n+m}(x), q^{n+m-1}\delta))) \end{split}$$

Let $n_1 = n_1(\lambda) \in \mathbb{N}$ be such that $T_{i=n_1}^{\infty}(1-q_1^i) = 1-\lambda$. Since (1) holds, such a number n_1 exists. By using (3), we obtain for every $n \geq \max(n_0, n_1)$ and every $m \in \mathbb{N}$:

$$M(A^{n}(x), A^{n+m}(x), \epsilon) \geq T_{i=n}^{n+m-1}(1 - q_{1}^{i}\lambda_{1})$$

$$\geq T_{i=1}^{n+m-1}(1 - q_{1}^{i})$$

$$\geq T_{i=n}^{\infty}(1 - q_{1}^{i}\lambda_{1})$$

$$> 1 - \lambda.$$

Suppose $\{x_n\}$ has a *p*-convergent subsequence $\{x_{n_j}\}$ which point converges to y_0 . Then, there is a $t_0 > 0$ which $\lim_{n\to\infty} M(x_{n_j}, y_0, t_0) = 1$. Let $\lambda > 0$ be given since $\sup_{0 \leq a < 1} T(a, a) = 1$, there is a $\lambda_1 > 0$ such that $T((1-\lambda_1), (1-\lambda_1)) > 1 - \lambda$. Since $\{x_n\}$ and then $\{x_{n_j}\}$ are Cauchy sequences we can take n_0 large enough such that $M(x_{n_j}, x_{n_j+1}, t_0) > 1 - \lambda_1$, $\forall j \geq n_0$ and $M(x_{n_j}, y_0, t_0) > 1 - \lambda_1$, $\forall j \geq n_0$, then $M(x_{n_j+1}, y_0, 2t_0) \geq T((1-\lambda_1), (1-\lambda_1)) > 1 - \lambda$ which implies that:

$$x_{n_i+1} \xrightarrow{p} y_0$$

and by (q, q_1) -contraction (ϵ, λ) -type condition

 $M(x_{n_i}, y_0, 2t_0) > 1 - \lambda \implies M(A(x_{n_i}), A(y_0), 2qt_0) > 1 - 2q_1\lambda.$

Then, $A(x_{n_j}) = x_{n_j+1} \xrightarrow{p} A(y_0)$, since the p-convergence is Frechet in a Goerge and Veeramani fuzzy metric space we get $A(y_0) = y_0$ which means y_0 is a fixed point.

Theorem 3.2: Let (X, M, T) be a George and Veermani fuzzy metric space and $A: X \to X$ be a generalized *C*-contraction and $\sup_{0 \le a < 1} T(a, a) =$ 1. Suppose that for some $x \in X$ the sequence $A^n(x)$ has a p-convergent subsequence. Then, A has a fixed point.

Proof: A satisfies the following condition:

$$hoM(u, v, m_2(t)) < m_1(t) \Rightarrow hoM(A(u), A(v), m_2(kt)) < m_1(kt),$$

for all $u, v \in X$ and for all t > 0, where $k \in (0, 1)$ and h, m_1, m_2 are given as in definition 2.4. Let $x_n = A^n(x) = A(x_{n-1})$ for every $n \in \mathbb{N}$ and $(A^0(x) = x)$. First we show that the sequence $A^n(x)$ is a Caushy sequence. We prove that for every $\epsilon > 0$ and $\lambda \in (0, 1)$ there exists an integer $N = N(\epsilon, \lambda) \in N$ such that for every $x, y \in X$ and $n \ge N$, $M(A^n(x), A^n(y), \epsilon) > 1 - \lambda$.

Since $h(0) \in R$ and $\lim_{s\to\infty} m_1(s) = \infty$, from $M(x, y, m_2(s)) \ge 0$ it follows that there exists $s \in R$ such that $h(0) < m_1(s)$, also from $M(p, q, m_2(s)) \ge 0$

it follows that

$$hoM(x, y, m_2(s)) \le h(0) < m_1(s),$$

which implies that $hoM(A(x), A(y), m_2(ks)) < m_1(ks)$, and then for every $n \in N$ by induction

$$hoM(A^{n}(x), A^{n}(y), m_{2}(k^{n}s)) < m_{1}(k^{n}s).$$

Suppose $N = N(\epsilon, \lambda)$ be such that $m_2(k^n s) < \epsilon$, $m_1(k^n s) < h(1-\lambda)$ for every n > N. Then n > N implies that:

$$M(A^{n}(x), A^{n}(y), \epsilon) > M(A^{n}(x), A^{n}(y), m_{2}(k^{n}s)) > 1 - \lambda.$$

Now let $y = A^m(x)$, then we obtain:

$$M(A^n(x), A^{n+m}(x), \epsilon) > 1 - \lambda \quad \forall \ n, m > N,$$

which means that $A^n(x)$ is a Cauchy sequence.

Suppose $\{x_n\}$ has a p-convergent subsequence $\{x_{n_j}\}$ which point converges to y_0 . Then, there is a $t_0 > 0$, such that:

$$\lim_{j \to \infty} M(x_{n_j}, y_0, t_0) = 1.$$

Let $\epsilon > 0$ be given since $\sup_{0 \le a < 1} T(a, a) = 1$, there is a $\delta > 0$ such that $T((1 - \delta), (1 - \delta)) > 1 - \epsilon$. Since $\{x_n\}$ and then $\{x_{n_j}\}$ are Cauchy sequences we can take n_0 large enough such that $M(x_{n_j}, x_{n_j+1}, t_0) > 1 - \delta$, $\forall j \ge n_0$ and $M(x_{n_j}, y_0, t_0) > 1 - \delta$, $\forall j \ge n_0$, then $M(x_{n_j+1}, y_0, 2t_0) \ge T((1 - \delta), (1 - \delta)) > 1 - \epsilon$ which implies that:

$$x_{n_j+1} \xrightarrow{p} y_0$$

Since $\{x_n\}$ and then $\{x_{n_j}\}$ are Cauchy sequences we can take n_0 large enough such that $M(x_{n_j}, x_{n_j+1}, t_0) > 1-\delta$, $\forall j \ge n_0$ and $M(x_{n_j}, y_0, t_0) > 1-\delta$, $\forall j \ge n_0$, then $M(x_{n_j+1}, y_0, 2t_0) \ge T((1-\delta), (1-\delta)) > 1-\epsilon$ which implies that $x_{n_j+1} \xrightarrow{p} y_0$.

Now by generalized C-contraction condition

$$hoM(x_{n_j}, y_0, m_2(2t_0)) < m_1(2t_0) \Rightarrow hoM(A(x_{n_j}), A(t_0), m_2(2kt_0)) < m_1(2kt_0),$$

then, $A(x_{n_j}) = x_{n_j+1} \xrightarrow{p} A(y_0)$ and since the p-convergence is Frechet in a Goerge and Veeramani fuzzy metric space, then $A(y_0) = y_0$ which means y_0 is a fixed point.

References

- [1] R. Farnoosh, A. Aghajani and P. Azhdari, Contraction theorems in fuzzy metric space, *Chaos, Solitons & Fractals*, In press (2008).
- [2] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst, 64 (1994), 395-399.
- [3] M. Grabiec, Fixed points in fuzzy metric spaces, *Fuzzy Sets Syst*, 27 (1988), 385-389.
- [4] V. Gregori and S. Romaguera, Characterizing completable fuzzy metric spaces, *Fuzzy Sets Syst*, 144(3) (2004), 411-420.
- [5] O. Hadzic and E. Pap, *Fixed point theory in PM spaces*, Dordrecht: Kluwer Academic Publishers, 2001.
- [6] T.L. Hicks, Fixed point theory in probabilistic metric spaces, Zb.Rad. Prirod. Mat. Fak. Ser. Mat, 13 (1983), 63-72.
- [7] O. Kramosil and J. Michalek, Fuzzy metric and statistical metric space, *Kybernetika*, **11** (1975), 336-344.
- [8] K. Menger, Statistical metric, Proc Nat Acad Sci, USA, 28 (1942), 535-7.
- [9] D. Mihet, On fuzzy contractive mapping in fuzzy metric, *Fuzzy Sets Syst*, 158 (2007), 915-21.
- [10] D. Mihet, Inegalitata triunghiului si puncte fixed in PM-spatii, *Doctoral Thesis West of Timisora, in Engilish,* (2001).
- [11] V. Radu, A family of deterministic metrics on Menger space, Sem. Teor. Prob. Apl. Univ. Timisora, 78(1985).
- [12] V. Radu, Some fixed point theorems in probabilistic metric spaces, Lecture Notes in Mathematics, Springer Berlin, 12333(1987),125-133.
- [13] B. Schiweizer and A. Sklar, Probabilistic metric spaces, North-Holland, Amesterdam, 1983.
- [14] V.M. Sehgal and A.T. Bharuch-Ried, Fixed points of contraction mapping on PM- spaces, *Math .Syst. Theory*, 6 (1972), 97-100.
- [15] R.M. Tardiff, Contraction maps on probabilistic metric spaces, J. Math. Anal. Appl, 165 (1992), 517-523.
- [16] R. Vasuki and P. Veeramani, Fixe point theorems and Cauchy sequences in fuzzy metric spaces, *Fuzzy Sets Syst*, **135(3)** (2003), 409-413.

Received: November, 2008