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Abstract

In this paper, by using the concept of p-convergency we obtain two
fixed point theorems for (q1, q2)-contraction of (ε, λ)-type and general-
ized C-contraction.
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1 Introduction

Menger introduced a probabilistic metric space (briefly, PM-space) as a gen-
eralization of metric space [8]. In fact, he replaced the metric function d :
R × R → R

+ with a distribution function Fpq : R → [0, 1] and then for any
number x the value Fpq(x) was interpreted the probability that the distance
between p and q is less than x.
The first fixed point theorem in probabilistic metric space was proved by Se-
hgal and Bharucha-Reid for t-norm TM [14]. A very interesting approach to
the fixed point theory in probabilistic metric space is given in Tradiff

′
s paper

[15]. Radu introduced a stronger growth condition.
The class of probabilistic C-contractions which intensively studied in the fixed
point theory in probabilistic metric spaces has been introduced by Hicks [6].
There are too many fixed point theorems which are in some sense generaliza-
tions of B-contraction and C-contraction classes. In [10], Mihet introduced
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the notion of a q-contraction of (ε, λ)-type. In [11] generalization, a notion
of C-contraction is given. In [9], Mihet proved the existence of fixed point
for fuzzy contractive by using p-convergency. In [1], we proved alike theo-
rems for B-contractions and C-contractions. Now, we extend these theorems
to q-contractions of (ε, λ)-type and generalized C-contractions under weaker
condition of p-convergency.
The structure of this paper is as follows: Section 2 recalls some notions and
known results in fuzzy metric spaces and probabilistic contractions. In sec-
tion 3, we will show two theorems for (q, q1)-contraction of (ε, λ)-type and
generalized C-contraction.

2 Preliminary Notes

We recall some concepts from probabilistic metric space, fuzzy metric space
and contraction. For more details, we refer the reader to [5,13].
The class of generalized distribution functions (denoted by Δ+) is the class of
functions F : [0,∞] → [0, 1] with the following properties:
1) F (0) = 0,
2) F is nondecreasing ,
3) F is left continuous on (0,∞).

If X is a nonempty set , a mapping F from X × X → Δ+ is called a
probabilistic distance on X, and F (x, y) is denoted by Fxy.
A triangular norm (shorter t-norm) is a binary operation on the unit interval
[0, 1] which the following conditions are satisfied:

1) T (a, 1) = a for every a ∈ [0, 1],
2) T (a, b) = T (b, a) for every a, b ∈ [0, 1],
3) a ≥ b, c ≥ d ⇒ T (a, c) ≥ T (b, d) a, b, c ∈ [0, 1].
4) T (T (a, b), c) = T (a, T (b, c)),
Basic examples are t-norms TL (Lukasiewicz t-norm), TP and TM , defined by
TL(a, b) = max{a + b − 1, 0}, TP (a, b) = ab and TM (a, b) = min{a, b}.

The triple (X, F, T ), where X is a nonempty set, F is a probabilistic dis-
tance on X, and T is a t-norm, is called a generalized Menger space if it
satisfies:

1) Fxx(t) = 0 for all t > 0,
2) Fxy(t) = 1 for all t > 0,
2) Fxy = Fyx ∀ x, y ∈ X,
3) Fxz(s + t) ≥ T (Fxy(s), Fyz(t)) ∀ x, y, z ∈ X, ∀ s, t ≥ 0.

The (ε, λ)-topology on X is introduced by the family of neighborhoods
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{Ux(ε, λ)}x∈X, ε>0,λ∈(0,1), where Ux(ε, λ) = {y ∈ X |Fx,y(ε) > 1−λ}. If (X, F, T )
is a generalized Menger space with sup 0≤ t <1T (t, t) = 1, then in the (ε, λ)-
topology, X is a metrizable topological space.

A triple (X, M, T ), where X is nonempty set, T is a continuous t-norm and
M is a fuzzy set on X2 × [0,∞), is called a fuzzy metric space in the sense of
Kramosil and Michalek, when the following properties are satisfied [7]:

1) M(x, y, 0) = 0 ∀x, y ∈ X,
2) M(x, y, t) = 1 ∀t > 0 ⇒ x = y,
3) M(x, y, t) = M(y, x, t),
4) M(x, y, .) : [0,∞] → [0, 1] is leftcontinuous, ∀x, y ∈ X,
5) M(x, z, t + s) ≥ T (M(x, y, t) , M(y, z, s)), ∀ x, y, z ∈ X and ∀t, s > 0.

In [2] George and Veeramani defined, M is a fuzzy set on X2 × (0,∞) and
(1), (4) are replaced, respectively, with (1)

′
,(4)

′
below:

1)
′

M(x, y, t) > 0,
4)

′
M(x, y, .) : [0,∞] → [0, 1] is continuous, ∀x, y ∈ X,

A sequence (xn)n∈ N in a fuzzy metric space (X, M, T ) is a M-cauchy se-
quence in the sense of George and Veeramani if for every ε > 0 and δ ∈ (0, 1)
there exists n0 ∈ N such that M(xn, xm, ε) > 1 − δ, ∀n ≥ m ≥ n0 and a G-
cauchy sequence if limn→∞ M(xn, xn+m, t) = 1 for each m ∈ N, t > 0 [2,3,16]

Definition 2.1 [14]: A B-contraction on a probabilistic space (X, F ) is a
self-mapping f of X for which

Ff(p)f(q)(kt) ≥ Fpq(t) ∀p, q ∈ X , ∀t > 0,

where k is a fixed constant in (0, 1).

Definition 2.2 [6]: Let X be a nonempty set and F be a probabilistic
distance on X. A mapping f : X → X is called a C-contraction if there exists
k ∈ (0, 1) such that for all x, y ∈ X, t > 0

Fxy(t) > 1 − t ⇒ Ff(x)f(y)(kt) > 1 − kt.

There are some definitions for other types of contractions. For more details
we refer the readers to [5].
Radu [12] showed that every C-contraction in a Menger space (X, F, T ) with
T ≥ TL is actually a Banach contraction in the metric space (X, K), where
K(x, y) = sup{t ≥ 0 | t ≤ 1 − Fxy(t)} and proved a more general result.
There are some other types of contraction which are beyond the scope of this
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paper but now we bring some generalization of these contractions.
In [10], Mihet introduced the following definition.

Definition 2.3: Let (X, F ) be a probabilistic metric space. A mapping
f : X → X is said to be a (q, q1)-contraction of (ε, λ)-type, where q, q1 ∈ (0, 1)
if the following implication holds for every p1, p2 :

∀ε > 0, ∀λ ∈ (0, 1) Fp1, p2(ε) > 1 − λ ⇒ Ff(p1),f(p2)(qε) > 1 − q1λ.

Now for presenting generalized C-contraction, let M be the family of all the
mappings m : R → R such that the following conditions are satisfied:
1) ∀ t, s ≥ 0 : m(t + s) ≥ m(t) + m(s);
2) m(t) = 0 ⇔ t = 0;
3) m is continuous.

Definition 2.4 [11]: Let (X, F ) be a probabilistic metric space and f :
X → X. The mapping f is a generalized C-contraction if there exist a contin-
uous, decreasing function h : [0, 1] → [0,∞] such that h(1) = 0 , m1, m2 ∈ M ,
and k ∈ (0, 1) such that the following implication holds for every p, q ∈ X
and for every t > 0:

hoFp,q(m2(t)) < m1(t) ⇒ hoFf(p),f(q)(m2(kt)) < m1(kt).

If m1(s) = m2(s) = s, and h(s) = 1 − s for every s ∈ [0, 1], we obtain the
Hicks definition.

3 Main Results

The notion of point convergence introduced by Gregori and Romaguera in [4].
We recall this in definition 3.1.

Definition 3.1 [4]: Let (X, M, T ) be a fuzzy metric space. A sequence

{xn} in X is said to be point convergent to x ∈ X (shown as xn
p−→ x) if there

exists t > 0 such that

lim
n→∞

M(xn, x, t) = 1.

A George and Veeramani fuzzy metric space (X, M, T ) with the point conver-
gence is a space with convergence in sense of Frechet [1,9].
Mihet in [9] showed the existence of fixed point for fuzzy contractive mapping
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in the case of p-convergency subsequence. Now, we will prove two alike theo-
rems for these kinds of contractions.

Theorem 3.1: Let (X, M, T ) be a George and Veeramani fuzzy metric
space and sup 0 ≤ a <1 T (a, a) = 1 and A : X → X be a (q, q1)-contraction
(ε, λ)-type, where q, q1 ∈ (0, 1). If T is q1-convergent ,i.e.,

lim
n→∞

T∞
i=n(1 − qi

1) = 1, (1)

and for some x ∈ X the sequence An(x) has a p-convergent subsequence, then
A has a fixed point.

Proof: A is (q, q1)-contraction of (ε, λ)-type, where q, q1 ∈ (0, 1), so for
every ε > 0 and λ ∈ (0, 1) .

M(u, v, ε) > 1 − λ ⇒ M(Au, Av, qε) > 1 − q1λ, forall u, v ∈ X. (2)

Let xn = An(x) = A(xn−1)for every n ∈ N and (x = A0(x)). Also x ∈ X and
δ > 0 be such that M(x,A(x), δ) > 0. Since M(x,A(x), .) ∈ D+ such a δ
exists. Now let λ1 ∈ (0, 1) be such that M(x,A(x), δ) > 1 − λ1. From (2) we
have M(A(x), A2(x), qδ) > 1 − q1λ1, and generally for every n ∈ N

M(An(x), An+1(x), qnδ) > 1 − qn
1 λ1. (3)

We prove that {An(x)} is a cauchy sequence; i.e. that for every ε > 0 and
λ ∈ (0, 1) there exist n0(ε, λ) ∈ N such that

M(An(x), An+m(x), ε) > 1 − λ ∀n ≥ n0(ε, λ) and ∀m ∈ N.

Let ε > 0 and λ ∈ (0, 1) be given. Since the series
∑∞

n=1 qnδ converges, there
exists n0(ε) such that

∑∞
n=n0

qnδ < ε. Then for every n ≥ n0:

M(An(x), An+m(x), ε) ≥ M(An(x), An+m(x),
∞∑

n=n0

qnδ)

≥ M(An(x), An+m(x),
n+m−1∑

i=n

qnδ)

≥ T (. . . (T (M(An(x), An+1(x), qnδ), M(An+1(x), An+2(x), qn+1δ),

. . . , M(An+m−1(x), An+m(x), qn+m−1δ)))
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Let n1 = n1(λ) ∈ N be such that T∞
i=n1

(1 − qi
1) = 1 − λ. Since (1) holds, such

a number n1 exists. By using (3), we obtain for every n ≥ max(n0, n1) and
every m ∈ N:

M(An(x), An+m(x), ε) ≥ T n+m−1
i=n (1 − qi

1λ1)

≥ T n+m−1
i=1 (1 − qi

1)

≥ T∞
i=n(1 − qi

1λ1)

> 1 − λ.

Suppose {xn} has a p-convergent subsequence {xnj
} which point converges to

y0. Then, there is a t0 > 0 which limn→∞ M(xnj
, y0, t0) = 1. Let λ > 0 be given

since sup 0 ≤ a <1 T (a, a) = 1, there is a λ1 > 0 such that T ((1−λ1), (1−λ1)) >
1 − λ. Since {xn} and then {xnj

} are Cauchy sequences we can take n0 large
enough such that M(xnj

, xnj+1, t0) > 1 − λ1, ∀j ≥ n0 and M(xnj
, y0, t0) >

1− λ1, ∀j ≥ n0 , then M(xnj+1, y0, 2t0) ≥ T ((1− λ1), (1− λ1)) > 1− λ which
implies that:

xnj+1
p−→ y0,

and by (q, q1)-contraction (ε, λ)-type condition

M(xnj
, y0, 2t0) > 1 − λ ⇒ M(A(xnj

), A(y0), 2qt0) > 1 − 2q1λ.

Then, A(xnj
) = xnj+1

p−→ A(y0), since the p-convergence is Frechet in a
Goerge and Veeramani fuzzy metric space we get A(y0) = y0 which means y0

is a fixed point.

Theorem 3.2: Let (X, M, T ) be a George and Veermani fuzzy metric
space and A : X → X be a generalized C-contraction and sup 0≤ a<1T (a, a) =
1. Suppose that for some x ∈ X the sequence An(x) has a p-convergent
subsequence. Then, A has a fixed point.

Proof: A satisfies the following condition:

hoM(u, v, m2(t)) < m1(t) ⇒ hoM(A(u), A(v), m2(kt)) < m1(kt),

for all u, v ∈ X and for all t > 0, where k ∈ (0, 1) and h, m1, m2 are given as
in definition 2.4. Let xn = An(x) = A(xn−1) for every n ∈ N and (A0(x) = x).
First we show that the sequence An(x) is a Caushy sequence. We prove that
for every ε > 0 and λ ∈ (0, 1) there exists an integer N = N(ε, λ) ∈ N such
that for every x, y ∈ X and n ≥ N , M(An(x), An(y), ε) > 1 − λ.
Since h(0) ∈ R and lims→∞ m1(s) = ∞, from M(x, y, m2(s)) ≥ 0 it follows
that there exists s ∈ R such that h(0) < m1(s), also from M(p, q, m2(s)) ≥ 0
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it follows that

hoM(x, y, m2(s)) ≤ h(0) < m1(s),

which implies that hoM(A(x), A(y), m2(ks)) < m1(ks), and then for every
n ∈ N by induction

hoM(An(x), An(y), m2(k
ns)) < m1(k

ns).

Suppose N = N(ε, λ) be such that m2(k
ns) < ε , m1(k

ns) < h(1−λ) for every
n > N . Then n > N implies that:

M(An(x), An(y), ε) > M(An(x), An(y), m2(k
ns)) > 1 − λ.

Now let y = Am(x), then we obtain:

M(An(x), An+m(x), ε) > 1 − λ ∀ n, m > N,

which means that An(x) is a Cauchy sequence.
Suppose {xn} has a p-convergent subsequence {xnj

} which point converges to
y0. Then, there is a t0 > 0, such that:

lim
j→∞

M(xnj
, y0, t0) = 1.

Let ε > 0 be given since sup 0≤ a<1T (a, a) = 1, there is a δ > 0 such that
T ((1 − δ), (1 − δ)) > 1 − ε. Since {xn} and then {xnj

} are Cauchy sequences
we can take n0 large enough such that M(xnj

, xnj+1, t0) > 1 − δ, ∀j ≥
n0 and M(xnj

, y0, t0) > 1 − δ, ∀j ≥ n0 , then M(xnj+1, y0, 2t0) ≥ T ((1 −
δ), (1 − δ)) > 1 − ε which implies that:

xnj+1
p−→ y0

.
Since {xn} and then {xnj

} are Cauchy sequences we can take n0 large enough
such that M(xnj

, xnj+1, t0) > 1−δ , ∀ j ≥ n0 and M(xnj
, y0, t0) > 1−δ , ∀ j ≥

n0 , then M(xnj+1, y0, 2t0) ≥ T ((1 − δ), (1 − δ)) > 1 − ε which implies that

xnj+1
p−→ y0.

Now by generalized C-contraction condition

hoM(xnj
, y0, m2(2t0)) < m1(2t0) ⇒ hoM(A(xnj

), A(t0), m2(2kt0)) < m1(2kt0),

then, A(xnj
) = xnj+1

p−→ A(y0) and since the p-convergence is Frechet in a
Goerge and Veeramani fuzzy metric space, then A(y0) = y0 which means y0 is
a fixed point.
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