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Abstract

Based on the possibility measure and necessity measure, mλ-measure
is presented and some mathematical properties of mλ-measure are also
obtained, including continuity, monotonicity, subadditivity, and so on.
Critical values of fuzzy variable with respect to mλ-measure are in-
troduced and are employed to construct the fuzzy chance-constrained
programming models. To solve the models, genetic algorithm based on
fuzzy simulation is designed. Finally, two numerical examples are given
to show applications of the models and algorithm.
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1 Introduction

Fuzzy programming is an important branch of the operations research. Up
to now, a lot of models and algorithms have been presented to solve the opti-
mization problem in fuzzy environment. For instance, Jamison and Lodwick[3]
investigated fuzzy linear programming using a penalty method and presented
an algorithm for finding the optimal solution. Stanciulescu et.al[11] investi-
gated multi-objective fuzzy linear programming problems with fuzzy decision
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variables. Inuiguchi et.al[2] investigated interval and fuzzy linear program-
ming and obtained some duality theorems. Liu[4, 5, 6, 8] investigated a class
of fuzzy programming models and presented the frameworks of fuzzy chance-
constrained programming and dependent-chance programming. Also, Liu and
Liu[7] defined the expected value operator for fuzzy variable based on the
credibility measure and presented the expected value model for fuzzy pro-
gramming. Sinha[10] considered a multi-level linear programming problem
and applied fuzzy mathematical programming approach to obtain the solution
of the system. For the duality theory in fuzzy mathematical programming,
interested readers may refer to Wu[12], Zhang et.al[14], and so on.

In this paper, we shall consider fuzzy mathematical programming from
other point of view. This paper is organized as follows. On the basis of possi-
bility measure and necessity measure, we firstly present mλ-measure in Section
2, which is defined as the linear combination of possibility measure and ne-
cessity measure to balance optimism and pessimism. And the parameter λ is
predetermined by the decision-maker according to his character. In Section
3, mathematical properties of mλ-measure are explored, including continuity,
monotonicity, subadditivity, boundary, and so on. In addition, in order to
construct fuzzy programming model, we introduce the notions of the critical
values for fuzzy variable with respect to mλ-measure and then the continu-
ity and monotonicity of critical values are investigated. In Section 4, after
constructing chance-constrained programming(CCP) models, we explore some
crisp equivalents of objective function and constraints. Sensitivity analysis
with respect to parameter is also discussed. Additionally, in order to solve
the models, hybrid genetic algorithm is designed to get the approximate opti-
mal solution. At last, two examples are provided to show applications of the
models and algorithm.

2 Possibility Measure, Necessity Measure and

mλ-Measure

Fuzzy set theory was initialized by Zadeh[13] in 1965. Up to now, it has
been further developed by many researchers such as Nahmias[9], Dubois and
Prade[1]. In fuzzy set theory, possibility measure and necessity measure are
employed to describe the chance of fuzzy event. Also, they are basic tools
to construct mathematical models for fuzzy programming. Let ξ be a fuzzy
variable with membership function μξ(x), and B an arbitrary subset of �.
Then the possibility measure of fuzzy event {ξ ∈ B} is defined as

Pos{ξ ∈ B} = sup
x∈B

μξ(x).
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The necessity of this fuzzy event is defined as the impossibility of the opposite
event. That is,

Nec{ξ ∈ B} = 1 − Pos{ξ ∈ Bc} = 1 − sup
x∈Bc

μξ(x).

Also, we have the relation Pos{ξ ∈ B} ≥ Nec{ξ ∈ B}.
For the possibility measure, it is necessary to point out that a fuzzy event

may fail even though its possibility achieves 1. For instance, Let ξ = (1, 2, 3)
be a triangular fuzzy number. It is easy to see Pos{ξ < 2} = 1. But if the
realization value of ξ lies in the interval [2, 3], then it is clear that the fuzzy
event does not hold. If the necessity achieves 1, the fuzzy event must hold.
For instance, we have Nec{ξ < r} = 1 if and only if r ≥ 3. It is easy to see
that all the realization values of ξ satisfy the fuzzy inequality. In other words,
the fuzzy event {ξ < r} must hold.

In decision-making systems, possibility measure and necessity measure are
always employed in literature. Generally speaking, the possibility measure
is much suitable for the optimistic decision-maker. If the decision-maker is
pessimistic, he may use the necessity measure as a tool to make decision. For
instance, a decision-maker wants to seek the best decision to maximize the
chance of fuzzy event {f(x, ξ) ∈ B}, where x is the decision variables vector
and ξ is the fuzzy parameters vector. When the possibility measure is employed
as a chance measure, a decision x∗ will be recognized as the best decision
if it satisfies Pos{f(x∗, ξ) ∈ B} = 1. In fact, a fuzzy event may fail even
though its possibility achieves 1. This fact implies that for some realization
value ξ̄ with μξ(ξ̄) > 0, the event {f(x∗, ξ̄) ∈ B} may not appear. So if the

decision-maker is optimistic and does not care about the potential risk, he may
select the possibility measure for decision-making. For the pessimistic decision-
maker, he may choose the necessity measure as a chance measure. In fact, the
decision x∗ is not necessarily the best decision for the necessity measure since
the corresponding objective value is less than or equal to 1. Thus the decision-
maker may select a better solution x̄∗ as the optimal decision. Actually, if
the necessity measure of fuzzy event {f(x̄∗, ξ) ∈ B} achieves 1, then for any
realization value ξ̄ of ξ with μξ(ξ̄) > 0, the event {f(x̄∗, ξ̄) ∈ B} must hold.

In practice, most decision-makers are neither absolutely optimistic nor ab-
solutely pessimistic. If the decision-maker is an eclectic, he will be suggested
to use a linear combination of possibility measure and necessity measure to
deal with the problem. By using this way, we may produce a balance between
the optimism and the pessimism. For the convenience of expression, we use
the notation “mλ” for short, that is,

mλ{·} = λPos{·} + (1 − λ)Nec{·},
where the parameter λ ∈ [0, 1] is predetermined by the decision-maker ac-
cording to his character. Generally speaking, the larger the parameter λ is,
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the more optimistic the decision-maker is. We may see that if the parameter
λ = 1, then mλ-measure degenerates to the possibility measure. If the pa-
rameter λ = 0, then mλ-measure degenerates to the necessity measure. If the
parameter λ = 0.5, then mλ-measure degenerates to the credibility measure
presented by Liu and Liu[7].

3 Mathematical Properties of mλ-Measure

Theorem 3.1 Let ξ be a fuzzy variable. Then we have
(a) Nec{ξ ∈ A} ≤ mλ{ξ ∈ A} ≤ Pos{ξ ∈ A} for any set A ⊂ �;
(b) 0 ≤ mλ{ξ ∈ A} ≤ 1 for any set A ⊂ �;
(c) mλ{ξ ∈ A} ≤ mλ{ξ ∈ B} whenever A ⊂ B;
(d) if Pos{ξ ∈ A} < 1 or mλ{ξ ∈ A} ≤ λ, then mλ{ξ ∈ A} = λPos{ξ ∈ A};
(e) For any A ⊂ � and λ ∈ [0, 1], we have mλ{ξ ∈ A} + m1−λ{ξ ∈ Ac} = 1;
(f) if λ ≥ 0.5, mλ-measure is subadditive, that is, mλ{ξ ∈ A ∪ B} ≤ mλ{ξ ∈
A} + mλ{ξ ∈ B} for any A, B ⊂ �;
(g) if λ1 < λ2, then mλ1{ξ ∈ A} ≤ mλ2{ξ ∈ A} for any A ⊂ �.

Proof. The parts (a), (b), (c), (d) and (e) may be proven easily by the definition
of mλ-measure. We first prove the part (f) in the following. The proof is
divided into the following four cases:

Case 1: Pos{ξ ∈ A} = 1 and Pos{ξ ∈ B} = 1. For this case, we have
mλ{ξ ∈ A} ≥ λ ≥ 0.5 and mλ{ξ ∈ B} ≥ λ ≥ 0.5. Therefore,

mλ{ξ ∈ A ∪ B} ≤ 1 ≤ λ + λ ≤ mλ{ξ ∈ A} + mλ{ξ ∈ B}.

Case 2: Pos{ξ ∈ A} < 1 and Pos{ξ ∈ B} < 1. For this case, it is clear
that Pos{ξ ∈ A ∪ B} = Pos{ξ ∈ A} ∨ Pos{ξ ∈ B} < 1. Thus, by using the
part (d), we have

mλ{ξ ∈ A} + mλ{ξ ∈ B} = λPos{ξ ∈ A} + λPos{ξ ∈ B}
≥ λ(Pos{ξ ∈ A} ∨ Pos{ξ ∈ B})
= λPos{ξ ∈ A ∪ B}
= mλ{ξ ∈ A ∪ B}.

Case 3: Pos{ξ ∈ A} = 1 and Pos{ξ ∈ B} < 1. For this case, it is easy to
see that Pos{ξ ∈ A ∪ B} = Pos{ξ ∈ A} ∨ Pos{ξ ∈ B} = 1. Furthermore, we
have the following inequality,

Pos{ξ ∈ Ac} = Pos{ξ ∈ Ac ∩ B} ∨ Pos{ξ ∈ Ac ∩ Bc}
≤ Pos{ξ ∈ Ac ∩ B} + Pos{ξ ∈ Ac ∩ Bc}
≤ Pos{ξ ∈ B} + Pos{ξ ∈ Ac ∩ Bc}.

(1)
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Using inequality (1) and the part (d), we may obtain

mλ{ξ ∈ A} + mλ{ξ ∈ B} = λ + (1 − λ)Nec{ξ ∈ A} + λPos{ξ ∈ B}
= λ + (1 − λ)(1 − Pos{ξ ∈ Ac}) + λPos{ξ ∈ B}
= 1 − (1 − λ)Pos{ξ ∈ Ac} + λPos{ξ ∈ B}
≥ 1 − (1 − λ)(Pos{ξ ∈ B} + Pos{ξ ∈ Ac ∩ Bc}) + λPos{ξ ∈ B}
= 1 − (1 − λ)Pos{ξ ∈ Ac ∩ Bc} + (2λ − 1)Pos{ξ ∈ B}
≥ 1 − (1 − λ)Pos{ξ ∈ Ac ∩ Bc}
= λ + (1 − λ)(1 − Pos{ξ ∈ Ac ∩ Bc})
= mλ{ξ ∈ A ∪ B}.

Case 4: Pos{ξ ∈ A} < 1 and Pos{ξ ∈ B} = 1. This case may be proven
by a similar way of Case 3.

Next, we prove the part (g). If Pos{ξ ∈ A} < 1, it follows from the part
(d) that mλ{ξ ∈ A} = λPos{ξ ∈ A}. For this case, we have

mλ2{ξ ∈ A} − mλ1{ξ ∈ A} = (λ2 − λ1)Pos{ξ ∈ A} ≥ 0,

which implies mλ2{ξ ∈ A} ≥ mλ1{ξ ∈ A}. On the other hand, if Pos{ξ ∈
A} = 1, then we have

mλ2{ξ ∈ A} − mλ1{ξ ∈ A} = (λ2 − λ1)Pos{ξ ∈ A} + (λ1 − λ2)Nec{ξ ∈ A}
= λ2 − λ1 + (λ1 − λ2)Nec{ξ ∈ A}
≥ 0.

That is, mλ2{ξ ∈ A} ≥ mλ1{ξ ∈ A}. The proof is thus completed.

Theorem 3.2 Let ξ be a fuzzy variable, and A, A1, A2, · · · ⊂ �. Then we have

lim
i→∞

mλ{ξ ∈ Ai} = mλ{ξ ∈ A}

if one of the following conditions is satisfied

(a)mλ{ξ ∈ A} ≤ λ and Ai ↑ A; (b) lim
i→∞

mλ{ξ ∈ Ai} < λ and Ai ↑ A;

(c)mλ{ξ ∈ A} ≥ λ and Ai ↓ A; (d) lim
i→∞

mλ{ξ ∈ Ai} > λ and Ai ↓ A.

Proof. (a) If mλ{ξ ∈ A} ≤ λ and Ai ↑ A, it follows from the monotonicity of
mλ-measure that mλ{ξ ∈ Ai} ≤ λ for all i. Thus mλ{ξ ∈ A} = λPos{ξ ∈ A}
and mλ{ξ ∈ Ai} = λPos{ξ ∈ Ai}. Therefore, we have

mλ{ξ ∈ A} = λPos

{
ξ ∈

∞⋃
i=1

Ai

}
= λ

∞∨
i=1

Pos {ξ ∈ Ai}

= λ lim
i→∞

Pos{ξ ∈ Ai} = lim
i→∞

mλ{ξ ∈ Ai}.
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(b) Since lim
i→∞

mλ{ξ ∈ Ai} < λ and Ai ↑ A, we have mλ{ξ ∈ Ai} < λ for

all i. Thus Pos{ξ ∈ Ai} =
1

λ
mλ{ξ ∈ Ai} for all i. Therefore,

Pos{ξ ∈ A} = Pos

{
ξ ∈

∞⋃
i=1

Ai

}
= lim

i→∞ Pos{ξ ∈ Ai} = lim
i→∞

1

λ
mλ{ξ ∈ Ai} < 1,

which implies that mλ{ξ ∈ A} < λ. It follows from the part (a) that
lim
i→∞

mλ{ξ ∈ Ai} = mλ{ξ ∈ A}.
(c) Since mλ{ξ ∈ A} ≥ λ and Ai ↓ A, it is obvious that Pos{ξ ∈ A} = 1

and Pos{ξ ∈ Ai} = 1 for all i. Note that Pos{ξ ∈ Ac} = lim
i→∞

Pos{ξ ∈ Ac
i}

since Ac
i ↑ Ac. Thus, we may obtain

mλ{ξ ∈ A} = λ + (1 − λ)Nec{ξ ∈ A}
= λ + (1 − λ)(1 − Pos{ξ ∈ Ac})
= λ + (1 − λ)(1 − lim

i→∞
Pos{ξ ∈ Ac

i})
= lim

i→∞
[λ + (1 − λ)(1 − Pos{ξ ∈ Ac

i})]
= lim

i→∞
mλ{ξ ∈ Ai}.

(d) Since lim
i→∞ mλ{ξ ∈ Ai} > λ and Ai ↓ A, it follows that Pos{ξ ∈ Ai} = 1

for each i. Then we may obtain

Nec{ξ ∈ A} = 1 − Pos{ξ ∈ Ac}
= 1 − lim

i→∞ Pos{ξ ∈ Ac
i}

= lim
i→∞ Nec{ξ ∈ Ai}

= lim
i→∞

mλ{ξ ∈ Ai} − λ

1 − λ

=
lim
i→∞ mλ{ξ ∈ Ai} − λ

1 − λ
> 0.

Thus we have Pos{ξ ∈ A} = 1, which implies that mλ{ξ ∈ A} ≥ λ. It follows
from the part (c) that mλ{ξ ∈ Ai} → mλ{ξ ∈ A} as i → ∞. The theorem is
proved.

Theorem 3.3 mλ-measure is a uniformly continuous function with respect to
λ.

Proof. It suffices to prove that for any given ε > 0, there exists δ > 0 such
that

|mλ1{·} − mλ2{·}| < ε



Fuzzy chance-constrained programming 2277

for any λ1, λ2 ∈ [0, 1] with |λ1−λ2| < δ. In fact, since mλ-measure is the linear
combination of possibility measure and necessity measure, that is,

mλ{·} = λPos{·} + (1 − λ)Nec{·},
then we have

|mλ1{·} − mλ2{·}| = |(λ1 − λ2)Pos{·} + (λ2 − λ1)Nec{·}|
≤ |(λ1 − λ2)Pos{·}| + |(λ2 − λ1)Nec{·}|
≤ |λ1 − λ2| + |λ1 − λ2|
= 2|λ1 − λ2|.

Thus letting δ = ε/2, we can ensure |mλ1{·} − mλ2{·}| < ε. The proof is
completed.

Note 3.1 We can see from the proof of Theorem 3.3 that if |λ1 − λ2| < ε/2,
then for any fuzzy event {·}, we have the inequality

|mλ1{·} − mλ2{·}| < ε.

In the following, we present the definitions of critical values of fuzzy variable
with respect to mλ-measure.

Definition 3.1 Let ξ be a fuzzy variable, and α ∈ (0, 1]. Then

ξinf(λ; α) = inf{r| mλ{ξ ≤ r} ≥ α}
is called the (λ; α)-pessimistic value of ξ. And

ξsup(λ; α) = sup{r| mλ{ξ ≥ r} ≥ α}
is called the (λ; α)-optimistic value of ξ.

Example 3.1 Let ξ = [a, b] be an interval fuzzy number. Then we have

ξsup(λ; α) =

{
b, if α ≤ λ
a, if α > λ,

ξinf(λ; α) =

{
a, if α ≤ λ
b, if α > λ.

Example 3.2 Let ξ = (a, b, c, d) be a trapezoidal fuzzy number. Then we have

ξsup(λ; α) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α(c − d)

λ
+ d, if α ≤ λ

(1 − α)(b − a)

1 − λ
+ a, if α > λ,

ξinf(λ; α) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α(b − a)

λ
+ a, if α ≤ λ

(1 − α)(c − d)

1 − λ
+ d, if α > λ.
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Theorem 3.4 Let ξsup(λ; α) and ξinf(λ; α) be the (λ; α)-optimistic value and
(λ; α)-pessimistic value of fuzzy variable ξ, respectively. Then
(a) ξsup(λ; α) is a decreasing and left-continuous function of α for each fixed
λ;
(b) ξsup(λ; α) is an increasing and right-continuous function of λ for each fixed
α;
(c) ξinf(λ; α) is an increasing and left-continuous function of α for each fixed
λ;
(d) ξinf(λ; α) is a decreasing and right-continuous function of λ for each fixed
α.

Proof. (a) For any α1, α2 ∈ (0, 1] with α1 < α2, it is easy to prove

{r|mλ{ξ ≥ r} ≥ α1} ⊃ {r|mλ{ξ ≥ r} ≥ α2},
which implies ξsup(λ; α1) ≥ ξsup(λ; α2). Thus ξsup(λ; α) is a decreasing function
of α for each fixed λ.

In the following, we prove the left-continuity of ξsup(λ; α) with respect to
α. Let {αi} be an arbitrary sequence of numbers in (0, 1] such that αi ↑ α. We
need to prove that lim

i→∞
ξsup(λ; αi) = ξsup(λ; α). In fact, if this relation does not

hold, we have the inequality lim
i→∞

ξsup(λ; αi) > ξsup(λ; α). Let z∗ be a number

such that

lim
i→∞ ξsup(λ; αi) > z∗ > ξsup(λ; α).

Thus we have
mλ{ξ ≥ z∗} ≥ αi, i = 1, 2, · · ·

Letting i → ∞, we have mλ{ξ ≥ z∗} ≥ α, which implies that ξsup(λ; α) ≥ z∗.
A contradiction proves that lim

i→∞
ξsup(λ; αi) = ξsup(λ; α).

(b) For any λ1, λ2 ∈ [0, 1] with λ1 < λ2, by using Theorem 3.1(g), we can
easily prove that

{r|mλ1{ξ ≥ r} ≥ α} ⊂ {r|mλ2{ξ ≥ r} ≥ α},
which implies ξsup(λ1; α) ≤ ξsup(λ2; α). Thus ξsup(λ; α) is an increasing func-
tion of λ for each fixed α.

Next, we prove the right-continuity of ξsup(λ; α) with respect to λ. Let
{λi} be an arbitrary sequence of numbers in [0, 1] such that λi ↓ λ. We
need to prove that lim

i→∞
ξsup(λi; α) = ξsup(λ; α). In fact, if this equality does

not hold, we must have the inequality lim
i→∞

ξsup(λi; α) > ξsup(λ; α). Letting

z∗ = ( lim
i→∞

ξsup(λi; α) + ξsup(λ; α))/2, we have

lim
i→∞

ξsup(λi; α) > z∗ > ξsup(λ; α).



Fuzzy chance-constrained programming 2279

Thus we have
mλi

{ξ ≥ z∗} ≥ α

for each i. By using Theorem 3.3, we have mλ{ξ ≥ z∗} = lim
i→∞

mλi
{ξ ≥

z∗} ≥ α, which implies that ξsup(λ; α) ≥ z∗. A contradiction proves that
lim
i→∞ ξsup(λi; α) = ξsup(λ; α).

The parts (c) and (d) may be proved similarly. The proof is thus completed.

Theorem 3.5 Let ξ be a fuzzy variable. Then we have
(a) if c ≥ 0, then (cξ)inf(λ; α) = cξinf(λ; α) and (cξ)sup(λ; α) = cξsup(λ; α);
(b) if c < 0, then (cξ)inf(λ; α) = cξsup(λ; α) and (cξ)sup(λ; α) = cξinf(λ; α).

Proof. (a) If c = 0, then the part (a) is obvious. In the case of c > 0, we have

(cξ)inf(λ; α) = inf{r | mλ{cξ ≤ r} ≥ α}
= c inf{r/c | mλ{ξ ≤ r/c} ≥ α}
= cξinf(λ; α).

By using a similar way, we may prove that (cξ)sup(λ; α) = cξsup(λ; α).
In order to prove the part (b), it suffices to prove that (−ξ)inf(λ; α) =

−ξsup(λ; α) and (−ξ)sup(λ; α) = −ξinf(λ; α). In fact, we have

(−ξ)inf(λ; α) = inf{r | mλ{−ξ ≤ r} ≥ α}
= − sup{−r | mλ{ξ ≥ −r} ≥ α}
= −ξsup(λ; α).

Similarly, we may prove that (−ξ)sup(λ; α) = −ξinf(λ; α).
Thus the proof is completed.

Theorem 3.6 Let ξ be a fuzzy variable with continuous membership function
μξ(x). Then if α ≤ λ, we have ξsup(λ; α) ≥ ξinf(λ; α); otherwise, we have
ξsup(λ; α) ≤ ξinf(λ; α).

Proof. Let r0 be a number such that μξ(r0) = 1. Since the membership function
μξ(x) of ξ is continuous, it is easy to prove mλ{ξ ≤ r0} = mλ{ξ ≥ r0} = λ.
If α ≤ λ, we have mλ{ξ ≤ r0} = mλ{ξ ≥ r0} ≥ α, which implies that
ξinf(λ; α) ≤ r0 ≤ ξsup(λ; α). On the other hand, if α > λ, then we have
mλ{ξ ≤ r0} = mλ{ξ ≥ r0} < α, which implies that ξsup(λ; α) ≤ r0 ≤ ξinf(λ; α).
The proof is completed.

4 Fuzzy CCP Models and Algorithm

In this section, we shall employ mλ-measure to construct fuzzy chance-constrained
programming models for fuzzy decision problems.
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4.1 Chance-Constrained Programming Models

If the decision-maker wants to maximize the optimistic value of the return
function subject to some chance constraints, he may construct the following
chance-constrained programming model:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max
x

max
f̄

f̄

subject to:

mλ

{
f(x, ξ) ≥ f̄

}
≥ α

mλj
{gj(x, ξ) ≤ 0} ≥ αj, j = 1, 2, · · · , n

x ∈ D.

(2)

where x is the decision variables vector, ξ is the fuzzy parameters vector,
α, αj, j = 1, 2, · · · , n are predetermined confidence levels with respect to mλ-
measure and D is the crisp feasible domain of decision variables.

Also, if the decision-maker wants to maximize the pessimistic value of the
return function subject to some chance constraints, he may construct the fol-
lowing minimax chance-constrained programming model:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max
x

min
f̄

f̄

subject to:

mλ

{
f(x, ξ) ≤ f̄

}
≥ α

mλj
{gj(x, ξ) ≤ 0} ≥ αj, j = 1, 2, · · · , n

x ∈ D.

(3)

In addition, according to the Hurwicz criterion, chance-constrained pro-
gramming model may be constructed as the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
x

(
β max

f̄
f̄ + (1 − β) min

ḡ
ḡ

)

subject to:

mλ

{
f(x, ξ) ≥ f̄

}
≥ α

mλ {f(x, ξ) ≤ ḡ} ≥ α
mλj

{gj(x, ξ) ≤ 0} ≥ αj, j = 1, 2, · · · , n
x ∈ D.

(4)

In this model, the aim is to optimize the linear combination of optimistic and
pessimistic values of the return function, where β ∈ [0, 1] is a parameter pre-
determined by decision-maker. Obviously, this objective function may balance
extreme optimism and extreme pessimism by assigning the weights β and 1−β
to optimistic value and pessimistic value, respectively.

Theorem 4.1 Let {λ, λ1, · · · , λn} and {λ∗, λ∗
1, · · · , λ∗

n} be two sets of parame-
ters, and z, z∗ be the corresponding optimal objective values of the model (2).
If λ ≤ λ∗, λj ≤ λ∗

j for each j, we have z ≤ z∗.
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Proof. Let D1 and D2 be the feasible domains of the model (2) with respect
to the parameters sets {λ, λ1, · · · , λn} and {λ∗, λ∗

1, · · · , λ∗
n}, respectively. Since

mλ-measure is an increasing function of λ, it is easy to prove D1 ⊂ D2. Note
that (λ; α)-optimistic value is an increasing function of λ for each fixed α.
Thus we have

max
x∈D1

f(x, ξ)sup(λ; α) ≤ max
x∈D2

f(x, ξ)sup(λ
∗; α),

which implies z ≤ z∗. The proof is completed.

Theorem 4.2 Let {α, α1, · · · , αn} and {α∗, α∗
1 · · · , α∗

n} be two sets of param-
eters, and z, z∗ be the corresponding optimal objective values of the model (2).
If α ≥ α∗, αj ≥ α∗

j for each j, then we have z ≤ z∗.

Proof. Let D1 and D2 be the feasible domains of the model (2) with respect to
{α, α1, · · · , αn} and {α∗, α∗

1 · · · , α∗
n}, respectively. It is easy to prove D1 ⊂ D2.

Since (λ; α)-optimistic value is a decreasing function of α for each fixed λ, we
have

max
x∈D1

f(x, ξ)sup(λ; α) ≤ max
x∈D2

f(x, ξ)sup(λ; α∗),

which implies z ≤ z∗. The proof is completed.

Note 4.1 The properties with respect to parameters for the models (3) and
(4) may be discussed similarly.

Theorem 4.3 Suppose that for any feasible solution x, the membership func-
tion of f(x, ξ) is continuous and z1, z2 and z3 are optimal objective values of
the models (2), (3) and (4), respectively. Then if α ≤ λ, we have z1 ≥ z3 ≥ z2;
otherwise, we have z1 ≤ z3 ≤ z2.

Proof. By using Theorem 3.6, we can easily prove this theorem.
For the above models, it is not easy to use the analytic method to solve

them since we need to compute chance functions such as mλj
{gj(x, ξ) ≤ 0}.

Generally, if the fuzzy parameters are complex, the computation of chance
function is not easy. But for some special conditions, we may compute by
some shortcuts.

Note 4.2 If the return function f(x, ξ) can be represented by trapezoidal fuzzy
number or interval fuzzy number, then the (λ; α)-optimistic value and (λ; α)-
pessimistic value of f(x, ξ) may be computed according to Examples 3.1 and
3.2.

Theorem 4.4 Let gj(x, ξ) = hj(x)− vj(x, ξ), and vj(x, ξ) be a fuzzy number
with continuous membership function μ(x). Then Pos{gj(x, ξ) < 0} ≤ αj if
and only if hj(x) ≥ Fαj

, where Fαj
= sup{F |F = μ−1(αj)}.
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Proof. The inequality Pos{gj(x, ξ) < 0} ≤ αj may be rewritten as Pos{hj(x) <
vj(x, ξ)} ≤ αj . Since μ(x) is continuous, there exists real number F such that
μ(F ) = αj for any given confidence level αj . Let Fαj

= sup{F |F = μ−1(αj)}.
By using the continuity of μ(x) and the properties of fuzzy number, we have
Pos{Fαj

< vj(x, ξ)} = sup
y>Fαj

μ(y) = μ(Fαj
) = αj. Note that the possibility

Pos{Fαj
< vj(x, ξ)} will decrease if the number Fαj

is replaced with a larger
number. Thus the crisp equivalent of Pos{gj(x, ξ) < 0} ≤ αj is hj(x) ≥ Fαj

.
The proof is completed.

Theorem 4.5 Let gj(x, ξ) = hj(x)− vj(x, ξ), and vj(x, ξ) be a fuzzy number
with continuous membership function μ(x). Then for any αj ∈ (0, 1], the
constraint mλj

{gj(x, ξ) ≥ 0} ≥ αj is equivalent to hj(x) ≥ Fαj
, where

Fαj
=

{
inf{F |F = μ−1(αj/λj)}, if αj ≤ λj

sup{F |F = μ−1((1 − αj)/(1 − λj))}, if αj > λj.
(5)

Proof. Note that mλj
{gj(x, ξ) ≥ 0} ≥ αj can be rewritten as mλj

{vj(x, ξ) ≤
hj(x)} ≥ αj . We divide the proof into the following two cases.

Case 1: αj ≤ λj . Since vj(x, ξ) is a fuzzy number with continuous member-
ship function, there exists real number F such that μ(F ) = αj/λj. Let Fαj

=
inf{F |F = μ−1(αj/λj)}. By using the continuity of μ(x) and the properties
of fuzzy number, we have Pos{vj(x, ξ) ≤ Fαj

} = sup
y≤Fαj

μ(y) = μ(Fαj
) = αj/λj

and Pos{vj(x, ξ) > Fαj
} = 1, which implies that mλj

{vj(x, ξ) ≤ Fαj
} = αj.

Note that mλj
{vj(x, ξ) ≤ Fαj

} will increase if the number Fαj
is replaced

with a larger number. Thus the crisp equivalent of mλj
{gj(x, ξ) ≥ 0} ≥ αj is

hj(x) ≥ Fαj
.

Case 2: αj > λj. For this case, we have that Pos{vj(x, ξ) ≤ hj(x)} = 1.
Then mλj

{vj(x, ξ) ≤ hj(x)} ≥ αj is equivalent to Nec{vj(x, ξ) ≤ hj(x)} ≥
(αj − λj)/(1 − λj). Since possibility measure and necessity measure are dual,
Nec{vj(x, ξ) ≤ hj(x)} ≥ (αj − λj)/(1 − λj) is equivalent to Pos{vj(x, ξ) >
hj(x)} ≤ (1−αj)/(1−λj). By using Theorem 4.4, we have that Pos{vj(x, ξ) >
hj(x)} ≤ (1 − αj)/(1 − λj) is equivalent to hj(x) ≥ Fαj

, where Fαj
=

sup{F |F = μ−1((1 − αj)/(1 − λj))}. Thus the proof is completed.

Corollary 4.1 Let gj(x, ξ) = hj(x) − vj(x, ξ), and
vj(x, ξ) = (v1

j (x), v2
j (x), v3

j (x), v4
j (x)) be a trapezoidal fuzzy number. Then

for any αj ∈ (0, 1], the constraint mλj
{gj(x, ξ) ≥ 0} ≥ αj is equivalent to

hj(x) ≤ Fαj
, where

Fαj
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

aj

λj

(v2
j (x) − v1

j (x)) + v1
j (x), if αj ≤ λj

1 − aj

1 − λj

(v3
j (x) − v4

j (x)) + v4
j (x), if αj > λj .

(6)
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4.2 Simulation Algorithms and Hybrid Genetic Algo-
rithm

If the functions satisfy the conditions of Note 4.2 or Theorem 4.5, we may
convert the objective function or chance constraints into their crisp equivalents.
If we cannot check constraints or compute objective value by analytic methods,
we may design simulation algorithms to obtain the approximate value.

1. Compute chance measure with the form mλ{f(x, ξ) ≤ 0}.
Step 1. Randomly generate crisp vectors uk from the ε-level set

of fuzzy vector ξ, respectively, where ε is a sufficiently small
number and k = 1, 2, · · · , N ;

Step 2. Let νk = μξ(uk) for k = 1, 2, · · · , N , where μξ is the

membership function of ξ;

Step 3. Return the following value

L = λ × max
1≤k≤N

{νk|f(x,uk) ≤ 0} + (1 − λ) × min
1≤k≤N

{1 − νk|f(x,uk) > 0}.

2. Compute the optimistic value sup
{
f̄ |mλ

{
f(x, ξ) ≥ f̄

}
≥ α

}
.

Note that mλ

{
f(x, ξ) ≥ f̄

}
is a decreasing function of f̄ . We shall employ

the bisection algorithm to simulate (λ; α)-optimistic value.

Step 1. Randomly generate two values f̄1 and f̄2 such that mλ

{
f(x, ξ) ≥ f̄1

} ≥
α and mλ

{
f(x, ξ) ≥ f̄2

}
< α;

Let f̄ =
f̄1 + f̄2

2
;

Step 2.Step 3. If mλ

{
f(x, ξ) ≥ f̄

}
≥ α, then let f̄1 = f̄ ; otherwise,

let f̄2 = f̄ ;

Step 4. If
∣∣∣f̄1 − f̄2

∣∣∣ < δ, return f̄1; otherwise, go to Step 2.

3. Compute the pessimistic value inf
{
f̄ |mλ{f(x, ξ) ≤ f̄

}
≥ α}.

Note that mλ

{
f(x, ξ) ≤ f̄

}
is an increasing function of f̄ . The bisection

algorithm is also employed to simulate (λ; α)-pessimistic value.

Step 1. Randomly generate two values f̄1 and f̄2 such that mλ

{
f(x, ξ) ≤ f̄1

} ≥
α and mλ

{
f(x, ξ) ≤ f̄2

}
< α;

Let f̄ =
f̄1 + f̄2

2
;

Step 2.Step 3. If mλ

{
f(x, ξ) ≤ f̄

}
≥ α, then let f̄1 = f̄ ; otherwise,

let f̄2 = f̄ ;
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Step 4. If
∣∣∣f̄1 − f̄2

∣∣∣ < δ, return f̄1; otherwise, go to Step 2.

In order to solve the models (2), (3) and (4), we may design genetic al-
gorithm based on the fuzzy simulation to obtain the approximate optimal
solution, in which simulation algorithms are employed to check the feasibility
of solutions and compute the objective values if analytic methods are invalid.
We list the procedure of the hybrid genetic algorithm as follows:

Step 1. Initialize popsize chromosomes in which the simulation
algorithm may be employed to check the feasibility of solution
if the fuzzy parameters are complex;

Step 2. Calculate the objective values for all chromosomes by sim-
ulation algorithm or analytic method if possible;

Step 3 Compute the fitness of each chromosome according to the
objective value;

Step 4. Select the chromosomes by spinning the roulette wheel;

Step 5. Update the chromosomes by crossover and mutation op-
erations in which the feasibility of offspring may be checked
by simulation algorithm or analytic method;

Step 6. Repeat Step 2 to Step 5 for a given number of cycles;

Step 7. Output the best chromosome as the approximate optimal
solution.

5 Numerical Examples

Example 1: Consider the following model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
x

max
f̄

f̄

subject to:

m0.3

{
ξ1x

2
1 + ξ2

2x
2
2 − ξ3x

2
3 ≥ f̄

}
≥ 0.85

m0.3 {ξ2
1x1 + ξ2x

2
2 − ξ3x

3
3 ≥ 0} ≥ 0.90

m0.3 {x1 + ξ1ξ2x2 + ξ3x3 ≥ 10} ≥ 0.95
x2

1 + x2
2 + x2

3 ≤ 100
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(7)

In the above model, ξ1 = (1, 2, 3), ξ2 = (2, 4, 6) and ξ3 = (3, 4, 5) are triangular
fuzzy numbers. After running hybrid genetic algorithm (2000 cycles in fuzzy
simulation) with different parameters, we list the optimal objective values in
Table 1, where the notations “Pc” and “Pm” denote crossover probability and
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mutation probability, respectively, and the error is computed according to the
following formula:

Error =
the largest optimal objective − optimal objective

the largest optimal objective
× 100%. (8)

We can see that by using different parameters, the errors of the optimal
objective value are no more than 1.2671%. The best objective value is 584.0607,
and the corresponding approximate optimal solution is

(x∗
1, x

∗
2, x

∗
3) = (0.3712, 9.9842, 0.0001).

For the two chance constraints, we have

m0.3

{
ξ2
1x

∗
1 + ξ2x

∗
2
2 − ξ3x

∗
3
3 ≥ 0

}
≈ 0.9743 ≥ 0.90,

m0.3 {x∗
1 + ξ1ξ2x

∗
2 + ξ3x

∗
3 ≥ 10} ≈ 0.9869 ≥ 0.95.

Table 1: Comparison of the Optimal Objectives

popsize Pc Pm Generation Optimal Objective Error

20 0.1 0.1 500 579.2542 0.8229%

20 0.1 0.2 700 579.1016 0.8491%

20 0.2 0.2 800 576.6602 1.2671%

30 0.2 0.3 1000 583.9844 0.0000%

30 0.4 0.4 1500 583.9844 0.0000%

30 0.5 0.4 1500 583.9844 0.0000%

30 0.5 0.6 2000 584.0607 0.0000%

Example 2: Consider the following minimax chance-constrained program-
ming model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
x

inf
f̄

f̄

subject to:

m0.2

{
ξ1x

2
1 + ξ2x

2
2 − ξ3x

2
3 + x4 ≤ f̄

}
≥ 0.90

m0.2 {x1 + ξ2x
2
2 − x3 + ξ4x

2
4 ≥ 0} ≥ 0.90

m0.2 {ξ1x
2
1 − x2 + ξ3x

2
3 − x4 ≥ 10} ≥ 0.90

x2
1 + x2

2 + x2
3 + x2

4 ≤ 100.

(9)
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In the above model, ξ1 = (2, 3, 5, 6), ξ2 = (4, 5, 6, 7), ξ3 = (3, 4, 5, 6) and
ξ4 = (−4,−3,−2,−1) are trapezoidal fuzzy numbers. In fact, we may convert
this model into the following form:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max 5.875x2
1 + 6.875x2

2 − 3.125x2
3 + x4

subject to:
x1 + 4.125x2

2 − x3 − 3.875x2
4 ≥ 0

2.125x2
1 − x2 + 3.125x2

3 − x4 ≥ 10
x2

1 + x2
2 + x2

3 + x2
4 ≤ 100.

(10)

After running genetic algorithm with different parameters, we list the optimal
objective values in Table 2, where the error is computed according to the
formula (8).

We can see that by using different parameters, the errors of the optimal
objective value are no more than 1.4320%. The best objective is 687.5080, and
the corresponding solution is

(x∗
1, x

∗
2, x

∗
3, x

∗
4) = (0.1603,−9.9986, 0.0016, 0.0532).

Table 2: Comparison of the Optimal Objectives

popsize Pc Pm Generation Optimal Objective Error

30 0.1 0.1 500 684.8353 0.3888%

30 0.2 0.2 700 677.6629 1.4320%

40 0.2 0.3 800 687.5012 0.0000%

40 0.3 0.3 1000 687.4548 0.0000%

40 0.3 0.4 1200 687.4925 0.0000%

50 0.4 0.4 1500 687.5016 0.0000%

50 0.5 0.6 2000 687.5058 0.0000%

50 0.6 0.6 3000 687.5080 0.0000%

6 Conclusion

The main work of this paper can be summarized as the following three as-
pect: (i) mλ-measure was presented and its mathematical properties were
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investigated; (ii) chance-constrained programming models with respect to mλ-
measure were constructed and some crisp equivalents of objectives and con-
straints were obtained; (iii) genetic algorithm based on the fuzzy simulation
technique was designed to solve the models.
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