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Abstract

In the present paper, we investigate some important properties of
(h, k)-dichotomy. Furthermore, we study the higher dimensional peri-
odic system

x′(t) = A(t)x(t) +
∫ t

−∞
C(t, s)P (x(s))ds +

l∑
i=1

gi(t, x(t − τi(t))) + f(t).

Based on the properties of (h, k)-dichotomy obtained in this paper, some
new criteria for the existence and uniqueness of periodic solution of the
above system are obtained. The approaches are based on the fixed
point theory and functional analysis method. Due to the generality of
(h, k)-dichotomy, our results generalize some previously known results.
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tions

1 Introduction

The properties of the exponential dichotomy and its applications have been
investigated extensively in theory and in practice (see e.g.[1-9,23-32] and the
references cited therein). One of the important applications is to use the ex-
ponential dichotomy theory to study the existence and uniqueness of (almost)
periodic solutions to the integro-differential equations.

1This work was supported by the Natural Science Foundation of Fujian Province of China
under Grant (No. S0750008) and the Educational Breau Foundation of Fujian Province of
China under Grant (No. JB06029).).
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The existence of periodic solution of nonlinear Volterra equation with in-
finitely delay has been well discussed by Burton under the boundedness con-
dition (see [10]), after introducing the space of (BC−∞,ρ) by combining Lya-
punov function (functional) and fixed point theory, Huang (see [11]) obtained
the sufficient conditions which guarantee the existence of periodic solutions of
following infinite delay system

x′(t) = f(t, xt). (1.1)

By introducing the Ch space, Wang and Huang [12] generalized the Yoshizawa
theorem [7, Theorem 37.1] to the Eq.(1.1). Also, paper [11,12] studied the
following equations successively,

x′(t) = A(t)x(t) +

∫ t

−∞
C(t, s)x(s)ds+ f(t) (1.2)

some frondose sufficient conditions which guarantee the existence of periodic
solution of system (1.2) are obtained. Wang [14] and Chen [33] considered a
kind of differential equation which is more generalized than (1.2), that is

x′(t) = A(t)x(t) +

∫ t

−∞
C(t, s)x(s)ds+ g(t, x(t)) + f(t). (1.3)

By using exponential dichotomy and fixed point theorem, they discussed the
existence, uniqueness and stability of periodic solution of (1.3), respectively.

Indeed, the exponential dichotomy theory plays great role in the ordinary
differential equations and functional equations. However, the requirements of
the exponential dichotomy are relatively stronger. More specifically, consider
the following linear system

ẋ(t) = A(t)x(t). (1.4)

The linear system (1.4) is said to possess an exponential dichotomy, if there
is a projection matrix P and positive constants K−, K+ ∈ R, α such that the
following inequalities hold:{

‖U(t)PU−1(s)‖ ≤ K−e
−α(t−s), t ≥ s,

‖U(t)(I − P )U−1(s)‖ ≤ K+e
α(t−s), t ≤ s,

(1.5)

where U(t) is the fundamental matrix of system (1.4). A solution-matrix U(t)
is said to be a fundamental-matrix, if U(0) = I .

But in bad situations, system (1.4) can not satisfy (1.5). For example,{
‖U(t)PU−1(s)‖ ≤ K−e

−α(t−s), t ≥ s,

‖U(t)(I − P )U−1(s)‖ ≤ K+, t ≤ s,
(1.6)
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which is so-called expo-ordinary dichotomy. Even for the autonomous linear
systems, the exponential dichotomy is not to cover all the possibilities. This
occurs, for instance, for system (1.4) with A(t) = A an n× n constant matrix
having eigenvalues λ so that Reλ �= 0 or Reλ = 0 for λ simple. The situation
with multiple eigenvalues λ such that Reλ = 0 give rise to other possibilities.
For this reason, Fenner, Pinto, Nauĺin etc. generalize the concept of exponen-
tial dichotomy to (h, k)-dichotomy (see e.g. [15-21]). Though the definition has
many forms, they are the same in essence and we use the definition proposed
by Fenner [15].
Definition 1.1 Let two positive continuous functions h(t), k(t) : R → R+ be
given. The linear system (1.4) is said to possess an (h, k) dichotomy, if there
is a projection matrix P and positive constants K−, K+ ∈ R, α such that the
following inequalities hold:{

‖U(t)PU−1(s)‖ ≤ K−h(t)h(s)
−1e−α(t−s), t ≥ s,

‖U(t)(I − P )U−1(s)‖ ≤ K+k(t)k(s)
−1eα(t−s), t ≤ s,

(1.7)

where U(t) is the fundamental matrix of system (1.4) with U(0) = I.
Remark 1.1 Obviously, the exponential dichotomy is a special case of

the (h, k)-dichotomy. In fact take h = k = 1, (h, k)-dichotomy yields an
exponential dichotomy.

A very important property on the roughness of the (h, k)-dichotomy has
been well studied in [18]. Moreover, the (h, k)-dichotomy has been applied to
study the asymptotic behavior of linear or nonlinear systems (see [19,21,22]).

However, there are few paper considering the existence of periodic solution
for nonlinear system by using (h, k)-dichotomy. There is still no published
paper applying the (h, k)-dichotomy to study the integral-differential equation.
So, in the present paper, we consider following more generalized system

x′(t) = A(t)x(t) +

∫ t

−∞
C(t, s)P (x(s))ds+

l∑
i=1

gi(t, x(t− τi(t))) + f(t). (1.8)

Due to the generality of (h, k) dichotomy, the criteria established for the
existence, uniqueness and stability of the periodic solution are new and more
general.

2 Properties of (h, k)-dichotomy

Let R
n denote the set of read n-vector, and |x| any convenient norm for

x ∈ R
n, also let R = R

1.
Thanks to the works of Pinto, Nauĺin and Fenner etc. (see [15-21]), the

notion of (h, k)-dichotomy spectrum for linear nonautonomous ordinary differ-
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ential equations has been well defined. Here, we summarize those definitions
as follows.

Consider the linear nonautonomous system

ẋ = A(t)x, (2.1)

Definition 2.1 h and k are said to fulfill a compensation law (CL) if there
exists a positive constant Ch,k such that

h(t)h(s)−1 ≤ Ch,kk(t)k(s)
−1, ∀ t ≥ s. (2.2)

Definition 2.2 The system is said to be an h-system, if it has an (h, h)-
dichotomy.

Remark 2.1 Clearly, a system having an (h, k)-dichotomy with compen-
sation law (CL) belongs to the class of h-systems.

Definition 2.3 System (2.1) is said to satisfy an integral condition (I con-
dition), if there exists a projection P and μ > 0 such that∫ t

−∞
‖U(t)PU−1(s)‖ds+

∫ +∞

t

‖U(t)(I − P )U−1(s)‖ds ≤ μ (2.3)

uniformly in t ∈ R.
Definition 2.4 We say that (h, k) are integral if there exists μ > 0 such that

K−

∫ t

−∞
h(t)h(s)−1e−α(t−s)ds +K+

∫ +∞

t

k(t)k(s)−1eα(t−s)ds ≤ μ (2.4)

uniformly in t ∈ R.
Remark 2.2 Clearly, if the system has an (h, k)-dichotomy with integral

functions, then necessarily the I condition is satisfied.
Remark 2.3 Obviously, the case h = k = 1, i.e., exponential dichotomy,

the I condition is always satisfied. In fact, one can take μ = 1
α
[K− +K+].

Theorem 2.1 Under the I condition, if system (2.1) has the (h, k)-dichotomy
of the form (1.7), then x(t) = 0 is the unique bounded solutions of system (2.1).

Proof Define B0 ⊂ Rn to be the set of initial conditions ξ ∈ Rn pertaining
to bounded solutions of Eq. (2.1). Take any n-vector ξ ∈ Rn and assume first
that (I−P )ξ �= 0. Define φ(t) = 1/‖U(t)(I −P )ξ‖, by using (I−P )2 = I−P
we may write∫ +∞

t

φ(s)U(t)(I−P )ξds =

∫ ∞

t

U(t)(I−P )U−1(s)U(s)(I−P )ξφ(s)ds (2.5)

so that upon taking norms and using the (h, k) dichotomy as well as the I
condition, we have ∫ ∞

t

φ(s)ds ≤ μφ(t), uniformly in t. (2.6)
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Calculating the derivative both sides and by the comparison theorem, one

has −φ(t) ≤ μdφ(t)
dt
, which implies φ(t) ≥ φ(0)e−

1
µ

t. For this, it must be that
lim inf

s∈[t,∞)
φ(s) = 0, which means that ‖U(t)(I − P )ξ‖ must be unbounded.

If we assume now that Pξ �= 0, then defining φ(t) = 1/‖U(t)Pξ‖, then
defining φ(t) = 1/‖U(t)Pξ‖, we perform the same procedure, with the integral
over the interval (−∞, t]; we conclude that lim inf

s∈(−∞,t]
= 0, which means

‖U(t)Pξ‖ must be unbounded. Thus the only possibility for boundedness of
the solutions of system (2.1) is that B0 = {0} i.e. x(t) = 0.
Theorem 2.2 Under the I condition, if the linear system (2.1) possesses an
(h, k)-dichotomy of the form (1.7), then the projector P is unique, i.e., P was
decided uniquely by (h, k).

Proof Assume that there exists another projector P̃ , and positive con-
stants K̃±, α̃ satisfying the formula (1.7), i.e.,

‖U(t)P̃U−1(s)‖ ≤ K̃−h(t)h(s)
−1e−�α(t−s), t ≥ s,

‖U(t)(I − P̃ )U−1(s)‖ ≤ K̃+k(t)k(s)
−1e�α(t−s), t ≤ s,

(2.7)

and I condition

K̃−

∫ t

−∞
h(t)h(s)−1e−�α(t−s)ds+ K̃+

∫ +∞

t

k(t)k(s)−1e�α(t−s)ds ≤ μ. (2.8)

It follows from (2.8) thatK−h(t)e
−αt

∫ t

−∞ h(s)−1eαsds ≤ μ. Let ϕ(t) = h(t)e−αt,

we have
∫ t

−∞
1

ϕ(s)
ds ≤ K−1

− μ 1
ϕ(t)

calculating the derivative with respect to t,

one has ϕ′(t) ≤ −K−μ
−1ϕ(t) which implies ϕ(t) ≤ ϕ(0) exp{−K−μ

−1t}. Thus,
there exists M1 > 0 such that

ϕ(t) = h(t)e−αt ≤M1, for all t ≥ 0. (2.9)

On the other hand, it also follows from (2.8) thatK+

∫ +∞
t

k(t)k(s)−1eα(t−s)ds ≤
μ. Let ψ(t) = k(t)eαt, we have ψ′(t) ≤ K+μ

−1ψ(t), which implies ψ(t) ≤
ψ(0) exp{K+μ

−1t}. Therefore, there exists M2 > 0 such that

ψ(t) = k(t)eαt ≤ M2, for all t ≤ 0. (2.10)

Similar to the discussion of (2.9), (2.10), there exists M̃1, M̃2 > 0 such that

h(t)e−�αt ≤ M̃1, for all t ≥ 0, k(t)e�αt ≤ M̃2, for all t ≤ 0. (2.11)

Take any ξ ∈ R
n, for t ≥ 0, it follows from (1.7), (2.7) and (2.9) that

‖U (t)P (I − P̃ )ξ‖ ≤ K−h(t)h(0)−1e−αt‖(I − P̃ )ξ‖ ≤ K−h(0)−1M1‖(I − P̃ )ξ‖, (2.12)

(t ≥ 0).
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On the other hand, for t ≤ 0, it follows from (1.7), (2.7) and (2.11) that

‖U(t)P (I − P̃ )ξ‖ ≤ ‖U(t)PU−1(t)‖ · ‖U(t)(I − P̃ )U−1(0)‖ · ‖U(0)(I − P̃ )ξ‖
≤ K−h(t)h(t)

−1 · K̃+k(t)k(0)−1e�αt‖(I − P̃ )ξ‖
≤ K−K̃+k(0)−1M̃2‖(I − P̃ )ξ‖, (t ≤ 0). (2.13)

It follows from (2.12) and (2.13) that for any ξ ∈ R
n, x(t) = U(t)P (I − P̃ ) is

the bounded solution of system (2.1). By Theorem 2.1, we have P (I − P̃ )ξ =

0, which implies P = PP̃ . Similar to the above discussion, we also have
(I − P )P̃ = 0, i.e., P̃ = PP̃ . Therefore, P = PP̃ = P̃ . This shows that the
projection P is unique. �

Theorem 2.3 Under the I condition, let the linear system (2.1) possesses
an (h, k)-dichotomy of the form (1.7) with the projection P , if further assume
that A(t + T ) = A(t), U(t) is the fundamental matrix. Then U(t)PU−1(t) is
also a T -periodic function.

Proof By the periodicity, we note that U(t+ T ) is also a solution matrix
of (2.1). Obviously, we have U(t + T ) = U(t)C . By using U(0) = I , we
have C = U(T ). Therefore, U(t + T ) = U(t)U(T ). Since (2.1) possesses an
(h, k)-dichotomy of the form (1.7), we have{

‖U(t)U(T )PU−1(T )U−1(s)‖ ≤ K−h(t)h(s)
−1e−α(t−s), t ≥ s,

‖U(t)U(T )(I − P )U−1(T )U−1(s)‖ ≤ K+k(t)k(s)
−1eα(t−s), t ≤ s,

we note that U(T )PU−1(T ) is also a projection. By projection 2.2, the projec-
tion P is unique. Thus, U(T )PU−1(T ) = P . Therefore, U(t+T )PU−1(t+T ) =
U(t)U(T )PU−1(T )
U−1(t) = U(t)PU−1(t), i.e., U(t)PU−1(t) is T -periodic function. �

Consider the following system

dx

dt
= A(t)x+ f(t) (2.14)

where A(t) is continuous matrix function, f(t) is continuous bounded function.
Theorem 2.4 Under the I condition, if the homogeneous linear system
ẋ(t) = A(t)x possess (h, k)-dichotomy, then system (2.14) has exactly one
bounded solution which can be represented as follows

x(t) =

∫ t

−∞
U(t)PU−1(s)f(s)ds −

∫ +∞

t

U(t)(I − P )U−1(s)f(s)ds. (2.15)

Proof Let x(t) =
∫ t

−∞ U(t)PU−1(s)f(s)ds−
∫ +∞

t
U(t)(I−P )U−1(s)f(s)ds.

It is not difficult to check that x(t) is a solution of (2.15). By I condition,
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simple computation shows ‖x(t)‖ ≤ μ‖f‖, which implies x(t) is a bounded
solution of (2.15).

If there exists another bounded solution y(t), obviously, x(t) − y(t) is a
bounded solution of the homogeneous linear system (2.1). By Theorem 2.1,
x(t) − y(t) ≡ 0, i.e., x(t) ≡ y(t). The uniqueness of the bounded solution of
(2.15) is proved. �.
Theorem 2.5 Let the all the conditions in Theorem 2.4 hold, if further assume
that A(t+T ) = A(t) and f(t+T ) = f(t). Then system (2.14) has exactly one
T -periodic solution, which can be represented as (2.15).

Proof By Theorem 2.3, it is not difficult to check that x(t) is a T -periodic
solution, we note that periodic solution is a bounded solution. Then, by The-
orem 2.4, Theorem 2.5 is proved immediately.

3 Existence of T -periodic solutions

Let BC(−∞, t0] = {ϕ(t)| ϕ : (−∞, t0] → R
n is a bounded continuous func-

tion }, for any ϕ ∈ BC(−∞, t0], let the norm of ϕ be ‖ϕ‖ = sup{‖ϕ(t)‖ : t ∈
(−∞, t0]}. Let x(t, t0, ϕ) (or x(t, ϕ), x(t) for convenience) denote the solution
of system (1.8) with bounded continuous initial function ϕ ∈ BC(−∞, t0].

Considering the following nonlinear integro-differential equations with both
continuous delay and discrete delay of the form

x′(t) = A(t)x(t) +

∫ t

−∞
C(t, s)P (x(s))ds+

l∑
i=1

gi(t, x(t− τi(t))) + b(t) (3.1)

and its linear system
dx

dt
= A(t)x(t) (3.2)

where x ∈ R, A(t) = (aij(t))n×n, C(t, s) = (cij(t, s))n×n are n × n matrix
functions; A(t) is continuous on R, C(t, s) is continuous on R×R; b : R → R

n

is continuous; gi : R × Rn → Rn is continuous, T -periodic function in t (i =
1, · · · , l). Now we introduce the following conditions:

•(H1) The linear system (3.2) possesses a (h, k)-dichotomy under the I
condition.

•(H2) A(t+ T ) = A(t), b(t+ T ) = b(t), τi(t + T ) = τi(t), i = 1, · · · , l.
•(H3) There exists nonnegative T -periodic functions bi(t) such that

‖gi(t, x) − gi(t, y)‖ ≤ bi(t)‖x− y‖, i = 1, 2, · · · , l, x, y ∈ Rn.

•(H4)
∫ t

−∞ ‖C(t, s)‖dt is bounded and C(t + T, s + T ) = C(t, s), for any
t, s ∈ R.
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•(H5) For arbitrary ε > 0, there exists L0 = L0(ε) > 0, such that∫ t1

−∞
‖C(t, s)‖ds < ε, for any t1 > −∞, t− t1 ≥ L0,

•(H6) There exists nonnegative T -periodic functions di(t) such that

lim
n→+∞

1

n
sup
‖x‖≤n

‖gi(t, x)‖ = di(t), i = 1, 2, · · · , l, uniformly for all t ∈ R.

•(H7) P (0) = 0, ‖P (x) − P (y)‖ ≤ L‖x − y‖, x, y ∈ Rn, L is a positive
constant.

•(H8) There exists a positive constant ρ1 <
1
μ

such that L
∫ t

−∞C(t, s) +
l∑

i=1

bi(t) ≤ ρ1.

•(H9) There exists a positive constant ρ2 <
1
μ

such that L
∫ t

−∞C(t, s) +
l∑

i=1

di(t) ≤ ρ2.

•(H10) There exist positive continuously differentiable T -periodic functions
pi(t), i = 1, 2, ...n and continuous T -periodic function α1(t) such that

ṗi(t)+pi(t)aii(t)+
n∑

j=1,j �=i

|aji(t)| ≤ α1(t)pi(t), and k1 = exp
(∫ T

0

α1(τ )dτ
)
< 1.

•(H11) There exist positive continuously differentiable T -periodic functions
pi(t), i = 1, 2, ...n and continuous T -periodic function α2(t) such that

ṗi(t)+pi(t)aii(t)+
n∑

j=1,j �=i

|aji(t)| ≥ α2(t)pi(t), and k2 = exp
(∫ T

0

(−α2(τ ))dτ
)
< 1.

•(H12) p̄(t) = max
i

{pi(t)} ≤ p1 and p(t) = min
i
{pi(t)} ≥ p2 > 0.

In order to process further, we also need the following Lemmas.
Lemma 3.1[13,Lemma 3.2],[32,Lemma 3.4] Let C(t, s) be a continuous n× n matrix
function, if the following assumptions are satisfied.

(i)
∫ t

−∞ ‖C(t, s)‖ds is bounded and C(t+T, s+T ) = C(t, s) for any t, s ∈ R.

(ii) For arbitrary ε > 0, there exists L0 = L0(ε) > 0 such that
∫ t1
−∞ ‖C(t, s)‖ds <

ε, for any t1 > −∞, t− t1 ≥ L0.
(iii) f ∈ C(R,Rn), f1(t+ T ) = f1(t).

Then g(t) =
∫ t

−∞C(t, s)f1(s)ds is also a continuous T -periodic function.

Lemma 3.2[14,Lemma 2.1],[32,Lemma 3.1] Let U(t) be any fundamental matrix of
system (3.2), if A(t) satisfies H10 and H12, then

‖U(t)U−1(s)‖ ≤ p1

p2
exp

( ∫ t

s
α1(τ )dτ

)
, t ≥ s. If A(t) satisfies H10 and H12,
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then
‖U(t)U−1(s)‖ ≤ p1

p2
exp

( ∫ s

t
(−α2(τ ))dτ

)
, t ≤ s.

Lemma 3.3[13,Lemma 2.3],[32,Lemma 3.6] If the T -periodic function α1(t) satis-

fies k1 < 1, then exp
( ∫ t

s
α1(τ )dτ

)
≤ β exp(−α(t − s)), t ≥ s, where α =

− 1
T

ln k1 > 0, β = exp(αT ) sup{exp(
∫ t

s
α1(τ )dτ), 0 ≤ s ≤ t ≤ T}.

Lemma 3.4[32,Lemma 3.6] If the T -periodic function α2(t) satisfies k2 < 1, then

exp
(
−

∫ s

t
α1(τ )dτ

)
≤ β exp(α(t − s)), t ≤ s, where α = − 1

T
ln k1 > 0, β =

exp(αT ) sup{exp(−
∫ s

t
α1(τ )dτ), 0 ≤ t ≤ s ≤ T}.

Now we are ready to state our results on the existence of T -periodic solution
for the integro-differential equations.
Theorem 3.1 If the assumptions (H1)-(H5), (H7) and (H8) hold, system (3.1)
has exactly one T -periodic solution.
Theorem 3.2 If the assumptions (H1)-(H2), (H4)-(H7) and (H9) hold, system
(3.1) has at least one T -periodic solution.

By Lemma 3.2 and Lemma 3.3, taking P = I and K− = β p1

p2
, μ = K−

α
,

system (3.2) possesses an exponential dichotomy with the projector P = I .
Then we have following corollaries.
Corollary 3.1 If the assumptions (H2)-(H5), (H7), (H8), (H10) and (H12)
hold, system (3.1) has exactly one T -periodic solution.
Corollary 3.2 If the assumptions (H2), (H4)-(H7), (H9), (H10) and (H12)
hold, system (3.1) has at least one T -periodic solution.

By Lemma 3.2 and Lemma 3.4, taking P = 0 and K+ = β p1

p2
, μ = K+

α
,

system (3.2) possesses an exponential dichotomy with the projector P = 0.
Then we have following corollaries.
Corollary 3.3 If the assumptions (H2)-(H5), (H7), (H8), (H11) and (H12)
hold, system (3.1) has exactly one T -periodic solution.
Corollary 3.4 If the assumptions (H2), (H4)-(H7), (H9), (H11) and (H12)
hold, system (3.1) has at least one T -periodic solution.

Remark 3.1 Take h = k ≡ 1 in condition (H1), then (h, k)-dichotomy
reduces to the exponential dichotomy. Therefore, the previous known results
which the exponential dichotomy theory is employed to analysis the integro-
differential equations are special cases of Theorems 3.1 and 3.2. In condition
(H11), taking pi(t) ≡ 1, conditions (H11) reduces to α(t) = max

1≤j≤n
{ajj(t) +

n∑
j=1,j �=i

|aij(t)|} which is used in [13]. It is in some sense that we generalize

those results [13].
Remark 3.2 Considering system (3.1) without delays, that is

x′ = Ax+ g(t, x) (3.3)

Krasnoselski (see [6, P12]) proved that under the condition lim
‖x‖→+∞

‖g(t,x)‖
‖x‖ = 0,
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system (3.3) has at least one T -periodic solution. In fact, applying Theorem 3.2

to system (3.3), we just require that lim
‖x‖→+∞

‖g(t,x)‖
‖x‖ = d(t), d(t) is a nonnegative

T -periodic function.
Remark 3.3 As a special case, when C(t, s) = C(t − s), (H4) can be

reduced to
∫ t

−∞ ‖C(t, s)‖ds =
∫ t

−∞ ‖C(t− s)‖ds =
∫ +∞

0
‖C(s)‖ds < +∞.

Proof of Theorem 3.1

Let B = {u(t)| u : R→ R
n is continuous T -periodic function }.

Obviously, B is Banach space with the norm ‖u‖ = sup{|u(t)| : 0 ≤ t ≤ T}.
For any u ∈ B, consider the following integro-differential equation

x′(t) = A(t)x(t) +

∫ t

−∞
C(t, s)P (u(s))ds+

l∑
i=1

gi(t, u(t− τi(t))) + b(t) (3.4)

By the conditions (H1)-(H7) and Theorem 2.5, system (3.4) has exactly one
T -periodic solution which can be written as

xu(t) =
∫ t

−∞
U(t)PU−1(r)

[ ∫ r

−∞
C(r, s)P (u(s))ds +

l∑
i=1

gi(r, u(r − τi(r))) + b(r)
]
dr

−
∫ +∞

t

U(t)(I−P )U−1(r)
[∫ r

−∞
C(r, s)P (u(s))ds+

l∑
i=1

gi(r, u(r−τi(r)))+b(r)
]
dr. (3.5)

Define the operator T : B → B as follows:

T u(t) = xu(t), ∀ u ∈ B.

By (H8), we shall prove that T is a contraction mapping in B. In fact, for any
u1, u2 ∈ B, it follows from (3.5) and the conditions in Theorem 3.1 that

‖T u1(t) − T u2(t)‖ ≤
[ ∫ t

−∞
K−h(t)h(s)−1e−α(t−r)

[
L

∫ r

−∞
‖C(r, s)ds +

l∑
i=1

bi(r)
]
dr

+
∫ +∞

t

K+k(t)k(s)−1eα(t−r)
[
L

∫ r

−∞
‖C(r, s)ds +

l∑
i=1

bi(r)
]
dr

]
‖u1 − u2‖

≤ μρ1‖u1 − u2‖.

That is ‖T u1(t)−T u2(t)‖ ≤ μρ1‖u1 − u2‖. It follows from μρ1 < 1, that T is
a contraction mapping. Therefore T has exactly one fixed point u∗ in B. It is
easy to check u∗ is the unique T -periodic solution of (3.1).

Proof of Theorem 3.2
Take the Banach space B and the operator T which have been defined in

the proof of Theorem 3.1. Now by using Schauder’s fixed point theorem, we
shall prove that T has at least a fixed point under the assumption of Theorem
3.2. In order to prove this, we set

Dn = {u| u ∈ B and ‖u‖ ≤ n, n ∈ N}.
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Step 1 First, we claim that there exists N ∈ N such that T : DN → DN .
Or else, for any n ∈ N, there exists un ∈ Dn such that ‖T un‖ ≥ n. Since b(t)
is a continuous T -periodic function, there exists M > 0 such that ‖b(t)‖ ≤ M ,
t ∈ R. For any sufficiently small ε, it follows from (H6) that there exists
sufficient large Ni ∈ N such that if n > Ni (i = 1, · · · , l) then

1

n
sup
‖x‖≤n

‖gi(t, x)‖ ≤ di(t) +
ε

2l
, i = 1, 2, · · · , l. (3.6)

and that there exist sufficient large Nl+1 ∈ N such that

M

n
<
ε

2
. (3.7)

Take N0 = max{N1, N2, · · · , Nl, Nl+1} ∈ N, it follows from (3.6) and (3.7) that
if n > N0, then

1

n
sup
‖x‖≤n

‖gi(t, x)‖ ≤ ci(t) +
ε

2l
,
M

n
<
ε

2
, i = 1, 2, · · · , l. (3.8)

Therefore, it follows from the assumptions in Theorem 3.2 and (3.8) that

‖T un‖
n

≤ 1

n

� � t

−∞
‖U (t)PU−1(r)‖

�� r

−∞
‖C(r, s)‖L‖un(s)‖ds +

��� l�
i=1

gi(r, un(r − τi(r)))
���+ M

�
dr

≤ μρ2 + με. (3.9)

By the condition (H9) and take sufficient small ε, we have μρ2 + με < 1.

Therefore, it follows from (3.9) that lim
n→+∞

‖T un‖
n

< 1 which implies that for

sufficient large n, ‖T un‖
n

< 1. This is a contradiction to ‖T un‖ ≥ n. Thus,
there exists N ∈ N such that T : DN → DN .

Step 2 We claim that T DN is a compact subset of B. In fact, since
T DN ⊆ DN , {T u(t)| u ∈ DN} is uniformly bounded. We set

a1 = sup{‖A(t)‖
∣∣∣ t ∈ [0, T ]},

a2 = sup
{ ∫ t

−∞
‖C(t, s)‖ds

∣∣∣ t ∈ [0, T ]
}
,

a3 = sup
{ l∑

i=1

‖gi(t, x)‖
∣∣∣ (t, x) ∈ [0, T ] × RN

}
where RN = {x| x ∈ R

n, ‖x‖ ≤ N}. For any u ∈ DN , we have

dT u(t)
dt

=
dxu(t)

dt
= A(t)xu(t)+

∫ t

−∞
C(t, s)p(u(s))ds+

l∑
i=1

gi(t, u(t−τi(t)))+b(t).
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Simple computation shows
∥∥∥dT u(t)

dt

∥∥∥ ≤ a1N+a2N+a3+M. Therefore, {T u(t)| u ∈
DN} is equal-continuous. It follows from Ascoli-Arzela theorem that TDN is
a compact subset of B.

Step 3 We claim that T is continuous on DN . In fact, since gi(t, x)
is uniformly continuous on [0, T ] × RN and gi(t + T, x) = gi(t, x), gi(t, x)
is uniformly continuous on R × RN . Therefore, for any ε > 0, there exists
δi = δi(ε) > 0 (i = 1, 2, · · · , l) such that if ‖x1 − x2‖ < δi (x1, x2 ∈ RN ), then

‖gi(t, x1) − gi(t, x2)‖ ≤ ε

3μl
(t ∈ R).

Take δ′ = min
1≤i≤l

{
δi(ε),

ε
3μρ2

}
, for any u1, u2 ∈ DN , t ∈ R, if ‖u1 − u2‖ ≤ δ′,

then we have ‖T u1(t)−T u2(t)‖ ≤ μρ2δ
′ + ε

3
< ε. Therefore, if ‖u1 − u2‖ → 0,

we have ‖T u1 − T u2‖ → 0, i.e., T is continuous on DN .
From the above three Steps, in a word, T : DN → DN is completely

continuous. Therefore by Schauder’s fixed point theorem, there exists at least
fixed point in DN . It follows from (3.1), (3.4) and (3.5) that the fixed point
is just the T -periodic solution of system (3.1). The proof of Theorem 3.2 is
complete. �
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[18] R.Nauĺiu, M.Pinto, Roughness of (h, k)-dichotomies, J. Differential Equa-
tions, 118:1(1995),20-35.

[19] M.Pinto, Dichotomies and asymptotic formulas for the solutions of differ-
ential equations, J. Math. Anal. Appl., 195(1995),16-31.

[20] M.Pinto, Dichotomies for differential systems with impulsive effect, Proc.
1st World Congr. of Nonlinear Analysts, Walter De Gruyter, Berlin, 1966,
pp.1181-1192.



2322 Dexian Sun
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