
Applied Mathematical Sciences, Vol. 2, 2008, no. 47, 2323 - 2339

Numerical Simulation of a Diffusion Type

Evolutionary Stock Market Model

Walailuck Chavanasporn

School of Economics and Finance, University of St.Andrews
St Salvator’s College, St Andrews, Fife KY16 9AL, Scotland, UK

wc55@st-andrews.ac.uk

Christian-Oliver Ewald

School of Economics and Finance, University of St.Andrews
St Salvator’s College, St Andrews, Fife KY16 9AL, Scotland, UK

c.o.ewald@st-andrews.ac.uk

Abstract

We adapt the evolutionary stock market model from Evstigneev, Hens,
Schenk-Hoppé (2006) to a continuous time framework, where uncer-
tainty in dividends is produced by a single Wiener process. The setup
is therefore significantly different from Yang and Ewald (2008), who
also study continuous time, but remain within the framework of random
dynamical systems of non-diffusive type. For the case of fix-mix strate-
gies we derive the stochastic differential equation which determines the
evolution of the wealth processes of the various market players. These
stochastic differential equations are highly non-linear and we find that it
is impossible to solve them analytically. Instead we simulate the wealth
dynamic for various initial setups of the market. A detailed discussion
of our observations from the simulations is given.
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1 Introduction

According to the expected discounted dividends model; one of the fundamental
models used widely in finance, the rational and fair value of common stocks
is given by the discounted sum of future dividends paid out by the company.
It is found that in the long run the trend of stock prices coincides with the
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trend of the dividends paid by the companies while the prices can considerably
deviate from their dividend fundamentals over shorter horizons.

Two stock market models are presented in this paper. The first one is the
discrete time evolutionary stock market model set up by Evstigneev, Hens and
Schenk-Hoppé (2006). The second model is an adaptation of the first one in a
continuous time framework where randomness produced by a Wiener process.
Evstigneev, Hens and Schenk-Hoppé study an incomplete asset market with
heterogeneous population of portfolio rules in discrete time. The finite number
of investment rules manage capital by repeated reinvesting in a fixed set of long-
lived assets. Dividend payments in each period are according to the realization
of a stationary Markov process. Moreover, the exogenous wealth increases due
to the dividends, trading strategies face endogenously determined capital gains
or losses.

The trading strategies compete for market capital that is given by the total
value of all assets in each period in time. Using random dynamical systems
theory, they derive necessary and sufficient conditions for the evolutionary
stability of portfolio rules. In case of Markov payoffs, Evstigneev, Hens and
Schenk-Hoppé discover that the local stability conditions lead to a simple port-
folio rule that is the unique evolutionary stable strategy.

In a continuous time framework, we set up a model by supposing that the
company pays dividends continuously and the processes in our model are all
of Itô-type. Due to the complexity of the model, the problem cannot be solved
analytically. Even for the derivation of a tractable wealth dynamics, severe
restriction on the type of admissible strategies have to be made. We indicate
the problem that arises due to the quadratic variation term stemming from
the strategy itself, which then in principle would lead to a singular optimal
control problem. We don’t continue along this line, but instead restrict our
investigation to fix-mix strategies. This strategies have also been considered in
Evstigneev, Hens and Schenk-Hoppé (2006) as well as Yang and Ewald (2008)
and include important cases such as the Merton rule for example. The results
of various numerical simulation and experiments are presented and discussed.
The simulations contain 3 different cases relating to different initial wealth
distributions. The results vary depending upon the initial market shares of
each trader and the strategies they apply. Our simulations show that in some
cases, one agent can find a dominant strategy that cannot be invaded from
any strategy another agent uses. There are also cases where one investor gains
total market share while the other goes bankrupt. However, there are cases
that the market shares are allocated to each investor equally.

The remainder is organized as follows. The next section illustrates the
evolutionary stock market model in discrete time which is set up by Evstigneev,
Hens and Schenk-Hoppé (2006). The model comprises an infinite time horizon
asset market model with long-lived assets and a single perishable consumption
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good. In this model, heterogeneous portfolio rules adapted to the information
filtration are introduced. In section 3, we modify the model in a way that
dividends are paid continuously and all processes are of Itô-type. The results
of a numerical simulation are provided and documented in section 4. Details
of the derivation of the wealth dynamics have been put to the appendix.

2 An Evolutionary Stock Market Model in Dis-

crete Time

In this section, we present a brief review of the evolutionary stock market
model developed by Evstigneev, Hens and Schenk-Hoppé (2006). These au-
thors consider an asset market model in discrete time with K ≥ 1 long-lived
assets and a single perishable consumption good. A dividend per share of each
asset k = 1, ..., K is paid at the beginning of every period and before trade
takes place in the period. The total dividend paid to all shareholders of asset k

at the beginning of period t is denoted by Dk
t ≥ 0. ωt = (..., ω0, ..., ωt) where

ωt ∈ S denotes the states revealed at the beginning of period t. There are
I ≥ 2 investors who use portfolio rules denoted by λi

t(ω
t) =

(

λi
t,k(ω

t)
)

k=0,...K

with 0 ≤ λi
t,k(ω

t) ≤ 1 for all k and
∑K

k=0 λi
t,k(ω

t) = 1. The interpretation is
that λi

t,k(ω
t) is the fraction of the wealth investor i assigns to the purchase of

the asset k in period t. Investment strategies are assumed to be distinct across
investors.

The units of assets (k = 1, ..., K) or units of cash (k = 0) that investor i

holds can be computed from

θi
t,k =

λi
t,k(ω

t) wi
t

pk
t

; k = 0, 1, ..., K, (1)

given portfolio rules λi
t,k(ω

t) and wealth wi
t. The price pk

t is the market clearing

price of asset k in period t. The initial supply of every asset k, sk
0, is normalized

to 1, and the supply remains constant at any period in time, i.e. sk
t = sk

0. In
addition, the supply of cash s0

t is given by the total dividends of all assets.
Hence, θi

t,k can be interpreted as the number of all shares issued of asset k

that investor i purchases. The price for cash is normalized to one, i.e. p0
t = 1

in every period t, and the same as the price of the consumption good. It is
also concluded that the market equilibrium conditions for cash and long-lived
assets for any portfolio holding of agents are

∑I

i=1 θi
t,k = sk

t ; k = 0, 1, ..., K.

Since
∑K

k=0 λi
t,k(ω

t) = 1, the budget constraint for investor i in every period
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t = 0, 1, ... is
K

∑

k=0

pk
t θ

i
t,k = wi

t. (2)

Due to the fact that the consumption good is perishable; the dynamics of
wealth is affected by dividend payments and capital gains. So the wealth of
investor i at the beginning of period t + 1 and after dividends are paid (before
the trade takes place) is

wi
t+1 =

K
∑

k=1

(

Dk
t+1(ω

t+1) + pk
t+1

)

θi
t,k (3)

From θi
t,k =

λi
t,k

(ωt) wi
t

pk
t

, and
∑I

i=1 θi
t,k = 1 , the market clearing price for

the risky assets (k ≥ 1) can be derived as

pk
t =

I
∑

i=1

λi
t,k(ω

t) wi
t. (4)

3 An Evolutionary Stock Market Model in Con-

tinuous Time

In this section, we modify the evolutionary stock market model described in
the previous section assuming that dividends are paid continuously and then
set up a stock market in continuous time model. Let Dt denote the dividend
paid in the period [t − ∆t, t].

In order to adapt the model into continuous time we consider the wealth
process and price process when time increments are going to zero. The wealth
of investor i at the beginning of period t + ∆t and after dividends are paid is

wi
t+∆t =

K
∑

k=1

(

Dk
t+∆t(ω

t+∆t) + pk
t+∆t

)

θi
t,k.

This gives

wi
t+∆t − wi

t =
K

∑

k=1

[

Dk
t+∆t(ω

t+∆t)θi
t,k + pk

t+∆tθ
i
t,k − Dk

t (ω
t)θi

t−∆t,k − pk
t θ

i
t−∆t,k

]

=
K

∑

k=1

[
(

Dk
t+∆t(ω

t+∆t) − Dk
t (ω

t)
)

θi
t,k +

(

pk
t+∆t − pk

t

)

θi
t,k

+
(

Dk
t (ω

t) + pk
t

)

∆θi
t,k ].
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Letting ∆t go to zero we obtain the following continuous time interpretation
of the wealth dynamic:

dwi
t =

K
∑

k=1

[(

dDk
t (ω

t) + dpk
t

)

θi
t,k +

(

Dk
t (ω

t) + pk
t

)

dθi
t,k

]

(5)

or alternatively in integrated form

wi
t =

t
∫

0

K
∑

k=1

[(

dDk
s (ω

s) + dpk
s

)

θi
s,k +

(

Dk
s (ω

s) + pk
s

)

dθi
s,k

]

. (6)

As the θi
s,k are the choice variables, without further restriction we would for-

mally obtain some sort of singular stochastic optimal control problem. These
problems are typically very hard to deal with and we will make suitable re-
strictions to avoid this. On the other side, the market clearing price at period
t + ∆t is

pk
t+∆t =

I
∑

i=1

λi
t+∆t,k(ω

t+∆t) wi
t+∆t

and the increment is given by

pk
t+∆t − pk

t =
I

∑

i=1

[

λi
t+∆t,k(ω

t+∆t) wi
t+∆t − λi

t,k(ω
t) wi

t

]

=
I

∑

i=1

[ λi
t+∆t,k(ω

t+∆t) wi
t+∆t − λi

t,k(ω
t) wi

t

+wi
t+∆tλ

i
t,k(ω

t) − wi
t+∆tλ

i
t,k(ω

t) ]

=
I

∑

i=1

[

λi
t,k(ω

t)
(

wi
t+∆t − wi

t

)

+ wi
t+∆t

(

λi
t+∆t,k(ω

t+∆t) − λi
t,k(ω

t)
)]

.

Letting ∆t go to zero we obtain the following continuous time interpretation
of the price dynamic:

dpk
t =

I
∑

i=1

[

λi
t,k(ω

t) dwi
t + wi

t dλi
t,k(ω

t)
]

(7)

pk
t =

t
∫

0

I
∑

i=1

[

λi
s,k(ω

s) dwi
s + wi

s dλi
s,k(ω

s)
]

(8)

Here the term dλi
s,k(ω

s) is worrying, as in a general framework it will pro-
duce unwanted quadratic variation which would potentially lead us out of the
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class of diffusion type models. For this reason we restrict our investigations
to so called fix-mix strategies, which are constant in time and state. This re-
striction is admittingly restrictive, on the other side classical strategies such as
the Merton-rule and various fundamentalist strategies do well classify as such.
The consequence of this assumption is that dλi

t,k(ω
t) = 0. Furthermore we can

write λi
k = λi

t,k(ω
t).

Applying the Itô formula, we get

dθi
t,k =

∂θi
t,k

∂wi
t

dwi
t +

1

2

∂2θi
t,k

(∂wi
t)

2
(dwi

t)
2 (9)

=

(

I
∑

i=1

λi
kw

i
t

)

(λi
k) − (λi

kw
i
t)

(

I
∑

i=1

λi
k

)

(

I
∑

i=1

λi
kw

i
t

)2 dwi
t

−











{(

I
∑

i=1

λi
kw

i
t

)

(λi
k) − (λi

kw
i
t)

(

I
∑

i=1

λi
k

)} (

I
∑

i=1

λi
k

)

(

I
∑

i=1

λi
kw

i
t

)3











(dwi
t)

2

We also obtain

dpk
t =

I
∑

i=1

[

λi
k(ω

t) dwi
t

]

(10)

To simplify the following discussion we are now considering the special case
of two investors and two assets, one riskless asset, called bond, and one risky
asset, called stock. The assets pay continuous dividends. Hence, there are two
dividend processes, two wealth processes and two price processes. We suppose
that the processes are in the form of Itô-type.

The two price processes satisfy

dpk
t =

2
∑

i=1

[

λi
k dwi

t

]

, k = 1, 2,

and therefore pk
t =

2
∑

i=1

[λi
k wi

t] ; k = 1, 2.

The dividend processes of the bond and stock are given by

dD1
t = rdt
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and
dD2

t = αD2
t dt + σD2

t dB(t)

where B(t) denotes the standard Brownian Motion. In the following we derive
the stochastic differential equations which characterize the evolution of the
wealth of the two investors. We assume that they are of diffusion-type, which
means they can be written in the following form

dw1
t = β1

1(wt, λk)dt + β1
2(wt, λk)dB(t)

and
dw2

t = β2
1(wt, λk)dt + β2

2(wt, λk)dB(t)

with wt = (w1
t , w

2
t ) and λk = (λ1

k, λ
2
k). We will identify the unknown functions

β1
1 , β

1
2 , β

2
1 and β2

2 by comparison with (5), using (7) and (9). It is clear that the
smaller the consumption rate, the higher the growth rate of wealth. Therefore,
the following we assume that all investors have the same rate of consumption,
i.e. λi

0(ω
t) = λ0(ω

t). This assumption is made in order to make the study
unbiased in favor of investor with a high saving rate. In fact this assumption
has also been made in Evstigneev, Hens and Schenk-Hoppé (2006) and Yang
and Ewald (2008). To find β1

1 , β
1
2 , β

2
1 and β2

2 , we apply the Itô formula and
substitute all processes we have. β1

1 , β
1
2 , β

2
1 and β2

2 are found eventually as
shown in the four following equations. The details of the computation of all
β’s are presented in the appendix.

β1
2 =

σw1
t

(

λ1

2

P2

− C
WA−λ0

)

1 − w1
t C

(

WA+λ0

WA−λ0

)

− w1
t

(

(λ1

1)
2

P1

+
(λ1

2)
2

P2

)

+ WA

(11)

β2
2 =

WA + λ0

WA − λ0

β1
2 −

σ

WA − λ0

(12)

β1
1 =

1

1 − w1
t C

(

WA+λ0

WA−λ0

)

− w1
t

(

(λ1

1)
2

P1

+
(λ1

2)
2

P2

)

+ WA

(13)

[
w1

t C

WA − λ0

{W (A1E1 + A2E2)
[

(β2
2)

2 − (β1
2)

2
]

− r − α}

+r

(

λ1
1w

1
t

P1

)

+ α

(

λ1
2w

1
t

P2

)

+ W (A1E1 + A2E2)(β1
2)

2]

β2
1 =

(

WA + λ0

WA − λ0

)

β1
1 +

W (A1E1 + A2E2)

WA − λ0

[

(β2
2)

2 − (β1
2)

2
]

(14)

−
r

WA − λ0

−
α

WA − λ0
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where W = w1
t −w2

t , Pk = λ1
kw

1
t +λ2

kw
2
t , Ak = λ1

kλ
2
k

Dk
t +Pk

(Pk)2
and A = A1+A2,

C =
λ1

1
λ2

1

P1

+
λ1

2
λ2

2

P2

, Ek =
λ1

k
+λ2

k

Pk
.

It is obvious that the complexity of the equations forbids an analytical
solution to the wealth dynamics.

4 Numerical Simulations and Experiments

The analytic solution of the two dividend processes dD1
t = rdt and dD2

t =
αD2

t dt + σD2
t dB(t) with the initial conditions D1

0 = 0 and D2
0 = 1 are

D1
t = rt

and

D2
t = exp

(

(α −
σ2

2
)dt + σdB(t)

)

.

Due to the complexity of β1
1 , β

1
2 , β

2
1 and β2

2 shown in (11) – (14), SDEs of
the wealth processes

dw1
t = β1

1(wt, λk)dt + β1
2(wt, λk)dB(t)

and
dw2

t = β2
1(wt, λk)dt + β2

2(wt, λk)dB(t)

cannot be solved analytically. We used the MATLAB c© software to simulate
the Brownian Motion and find the numerical solutions of these SDEs1. In
the simulation, the parameters’ values in the dividend processes are set as
follow. Interest rate (r) is set to be 7% while α and σ are set to be 0.07 and
0.2 respectively. The consumption rate (λ0) is equal to 0.1 to be used in the
simulation. Moreover, we consider the simulation in 3 scenarios depending
on the initial wealth of the two investors w1

0 and w2
0. In the first case, we

simulate with the initial wealth of the two investors assumed to be equal, that
is w1

0 = w2
0 = 1. In the second case, the initial wealth of the second investor is

more than the first one, say w1
0 = 1 and w2

0 = 2. Finally, the initial wealth of
the first investor is more than the second one; we use w1

0 = 1 and w2
0 = 0.6.

In each case, we evaluate the market share of each investors by

ri
t =

wi
t

I
∑

i=1

wi
t

with the different portfolio rules of both investors. By fixing λ1
1;the proportion

of wealth investor 1 invests in the bond, we plot the market shares of the

1The MATLAB code is not provided in this paper. However, it is available on request.
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investors corresponding to λ2
1;the proportion of wealth investor 2 invests in

bond, which is increasing by 0.1 from 0 to 1−λ0. Note that there is not a case
when λ1

1 = λ2
1 = 0 and λ1

1 = λ2
1 = 1−λ0, because both of them lead to pk

t = 0.

For the first scenario, w1
0 = w2

0 = 1; that is (r1
0, r

2
0) = (0.5, 0.5), the following

results are found. If the investor invests his total money in stock; λi
1 = 0,

another investor dominates the market for all his strategies. (Recall that there
is not a case that both investors invest all their money either in bond or stock.)
In addition, if both agents use the same strategies, their market shares will not
be different. That is both r1

T and r2
T are closed to 0.5. We can interpret that

the agent will dominate the market if he invests in bond more than another
agent. However, for all strategies of both investors we have tried, there is not
a case where any investor can obtain total market share. The maximum of
market share one can reach is around 0.7. It means that if both investors
start with the same amount of money, it does not matter what strategies they
use, they both survive in the market. Some samples of the simulation are
illustrated in Figure 1, where the dashed line (- - -) denotes r1

t and the line
with asterisk (-*-) represents r2

t .

The second scenario is w1
0 = 1 and w2

0 = 2; that is (r1
0, r

2
0) = (0.3333, 0.6667).

Some samples of the simulation are demonstrated in Figure 2. We found that
the second investor dominates the market for all cases of the first investor’s
strategies, except the case when λ1

1 = 0.9 and λ2
1 = 0 as shown in Figure 2(c).

It is the case that the first agent invests all his money in the bond while the
second agent invests all his money in stock. If this case happens, the mar-
ket shares of both investors are quite similar (in fact r1

T and r2
T are closed

to 0.5). The best strategy of the second trader is to invest all his budget in
bonds (λ2

1 = 0.9), because this strategy leads him to gain more market share
than another no matter what the first investor’s strategies are. For all λ1

1 and
0 ≤ λ2

1 ≤ 0.8, the market shares are changed in small intervals.

The third scenario is w1
0 = 1 and w2

0 = 0.6; that is (r1
0, r

2
0) = (0.625, 0.375).

Samples of the simulation are presented in Figure 3. The simulation illustrates
that the first agent dominates the market for all strategies of the second agent,
except two cases which are (λ1

1, λ
2
1) = (0, 0.9) and (0.1, 0.9). In the first case;

Figure 3(a), the agent 2 dominates the market while another case; Figure
3(b), both agents’ market shares are similar (r1

T and r2
T are closed to 0.5).

This scenario seems to be in opposition to the second scenario, the difference
is, there are some portfolio rules which lead agent 1 to obtain a whole market
share and agent 2 going bankrupt in the market; i.e. (r1

T , r2
T ) is close to (1, 0).

For the second agent; the higher λ2
1, the higher r2

T . In most cases, r2
T is maximal

when λ2
1 = 0.9 except only one case when λ1

1 is also equal to 0.9. If λ1
1 = 0.9,

maximum r2
T comes from λ2

1 = 0.
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5 Appendix

5.1 Technical Computations

This section contains the details of the computations as shown in (11) – (14).
From the form of wealth processes we set up and Itô formula, we can see
that (dwi

t)
2 = (βi

2)
2
dt. After we substitute for dDk

t , dpk
t and dwi

t, and dθi
t,k

from (9) using the previous relation for (dwi
t)

2in the wealth processes (5) and
rearrange the equations, the following four equations are obtained for solving
for β1

1 , β
1
2 , β

2
1 and β2

2 .

β1
1 = r

(

λ1
1w

1
t

λ1
1w

1
t + λ2

1w
2
t

)

+
(

λ1
1β

1
1 + λ2

1β
2
1

)

(

λ1
1w

1
t

λ1
1w

1
t + λ2

1w
2
t

)

(15)

+{
(

D1
t + λ1

1w
1
t + λ2

1w
2
t

)

(

(λ1
1w

1
t + λ2

1w
2
t ) (λ1

1) − (λ1
1w

1
t )(λ

1
1 + λ2

1)

(λ1
1w

1
t + λ2

1w
2
t )

2

)

(

β1
1 −

(β1
2)

2(λ1
1 + λ2

1)

λ1
1w

1
t + λ2

1w
2
t

)

}

+α

(

λ1
2w

1
t

λ1
2w

1
t + λ2

2w
2
t

)

+
(

λ1
2β

1
1 + λ2

2β
2
1

)

(

λ1
2w

1
t

λ1
2w

1
t + λ2

2w
2
t

)

+{
(

D2
t + λ1

2w
1
t + λ2

2w
2
t

)

(

(λ1
2w

1
t + λ2

2w
2
t ) (λ1

2) − (λ1
2w

1
t )(λ

1
2 + λ2

2)

(λ1
2w

1
t + λ2

2w
2
t )

2

)

(

β1
1 −

(β1
2)

2(λ1
2 + λ2

2)

λ1
2w

1
t + λ2

2w
2
t

)

}

β2
1 = r

(

λ2
1w

2
t

λ1
1w

1
t + λ2

1w
2
t

)

+
(

λ1
1β

1
1 + λ2

1β
2
1

)

(

λ2
1w

2
t

λ1
1w

1
t + λ2

1w
2
t

)

(16)

+{
(

D1
t + λ1

1w
1
t + λ2

1w
2
t

)

(

(λ1
1w

1
t + λ2

1w
2
t ) (λ2

1) − (λ2
1w

2
t )(λ

1
1 + λ2

1)

(λ1
1w

1
t + λ2

1w
2
t )

2

)

(

β2
1 −

(β2
2)

2(λ1
1 + λ2

1)

λ1
1w

1
t + λ2

1w
2
t

)

}

+α

(

λ2
2w

2
t

λ1
2w

1
t + λ2

2w
2
t

)

+
(

λ1
2β

1
1 + λ2

2β
2
1

)

(

λ2
2w

2
t

λ1
2w

1
t + λ2

2w
2
t

)

+{
(

D2
t + λ1

2w
1
t + λ2

2w
2
t

)

(

(λ1
2w

1
t + λ2

2w
2
t ) (λ2

2) − (λ2
2w

2
t )(λ

1
2 + λ2

2)

(λ1
2w

1
t + λ2

2w
2
t )

2

)

(

β2
1 −

(β2
2)

2(λ1
2 + λ2

2)

λ1
2w

1
t + λ2

2w
2
t

)

}
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β1
2 =

(

λ1
1β

1
2 + λ2

1β
2
2

)

(

λ1
1w

1
t

λ1
1w

1
t + λ2

1w
2
t

)

(17)

+
(

D1
t + λ1

1w
1
t + λ2

1w
2
t

)

[

(λ1
1w

1
t + λ2

1w
2
t ) (λ1

1) − (λ1
1w

1
t )(λ

1
1 + λ2

1)

(λ1
1w

1
t + λ2

1w
2
t )

2

]

β1
2

+σ

(

λ1
2w

1
t

λ1
2w

1
t + λ2

2w
2
t

)

+
(

λ1
2β

1
2 + λ2

2β
2
2

)

(

λ1
2w

1
t

λ1
2w

1
t + λ2

2w
2
t

)

+
(

D2
t + λ1

2w
1
t + λ2

2w
2
t

)

[

(λ1
2w

1
t + λ2

2w
2
t ) (λ1

2) − (λ1
2w

1
t )(λ

1
2 + λ2

2)

(λ1
2w

1
t + λ2

2w
2
t )

2

]

β1
2

β2
2 =

(

λ1
1β

1
2 + λ2

1β
2
2

)

(

λ2
1w

2
t

λ1
1w

1
t + λ2

1w
2
t

)

(18)

+
(

D1
t + λ1

1w
1
t + λ2

1w
2
t

)

[

(λ1
1w

1
t + λ2

1w
2
t ) (λ2

1) − (λ2
1w

2
t )(λ

1
1 + λ2

1)

(λ1
1w

1
t + λ2

1w
2
t )

2

]

β2
2

+σ

(

λ2
2w

2
t

λ1
2w

1
t + λ2

2w
2
t

)

+
(

λ1
2β

1
2 + λ2

2β
2
2

)

(

λ2
2w

2
t

λ1
2w

1
t + λ2

2w
2
t

)

+
(

D2
t + λ1

2w
1
t + λ2

2w
2
t

)

[

(λ1
2w

1
t + λ2

2w
2
t ) (λ2

2) − (λ2
2w

2
t )(λ

1
2 + λ2

2)

(λ1
2w

1
t + λ2

2w
2
t )

2

]

β2
2

First, we solve for β1
2 and β2

2 from (17) and (18)

β1
2 + β2

2 =
(

λ1
1β

1
2 + λ2

1β
2
2

)

(

λ1
1w

1
t + λ2

1w
2
t

λ1
1w

1
t + λ2

1w
2
t

)

+
(D1

t + λ1
1w

1
t + λ2

1w
2
t ) (λ1

1λ
2
1)(w

1
t − w2

t )(β
2
2 − β1

2)

(λ1
1w

1
t + λ2

1w
2
t )

2

+σ

(

λ1
2w

1
t + λ2

2w
2
t

λ1
2w

1
t + λ2

2w
2
t

)

+
(

λ1
2β

1
2 + λ2

2β
2
2

)

(

λ1
2w

1
t + λ2

2w
2
t

λ1
2w

1
t + λ2

2w
2
t

)

+
(D2

t + λ1
2w

1
t + λ2

2w
2
t ) (λ1

2λ
2
2)(w

1
t − w2

t )(β
2
2 − β1

2)

(λ1
2w

1
t + λ2

2w
2
t )

2

By using Pk = λ1
kw

1
t + λ2

kw
2
t , W = w1

t − w2
t , Ak = λ1

kλ
2
k

Dk
t +Pk

(Pk)2
and

A = A1 + A2, we get

β1
2 + β2

2 =
[(

λ1
1 + λ1

2

)

− WA
]

β1
2 +

[(

λ2
1 + λ2

2

)

+ WA
]

β2
2 + σ
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β2
2 =

WA + λ0

WA − λ0

β1
2 −

σ

WA − λ0

(19)

Inserting (19) in (17) yields

β1
2 =

(

λ1
1λ

2
1w

1
t

P1

+
λ1

2λ
2
2w

1
t

P2

) [

WA + λ0

WA − λ0

β1
2 −

σ

WA − λ0

]

+
(λ1

1)
2w1

t

P1

β1
2 +

(λ1
2)

2w1
t

P2

β1
2 −

D1
t + P1

(P1)2
(λ1

1λ
2
1)(w

1
t − w2

t )β
1
2

−
D2

t + P2

(P2)2
(λ1

2λ
2
2)(w

1
t − w2

t )β
1
2 + σ

λ1
2w

1
t

P2

That is

β1
2 =

σw1
t

(

λ1

2

P2

− C
WA−λ0

)

1 − w1
t C

(

WA+λ0

WA−λ0

)

− w1
t

(

(λ1

1)
2

P1

+
(λ1

2)
2

P2

)

+ WA

(20)

where C =
λ1

1
λ2

1

P1

+
λ1

2
λ2

2

P2

.

Next, using (15) and (16) solve for β1
1 and β2

1 .

β1
1 + β2

1 = r

(

λ1
1w

1
t + λ2

1w
2
t

P1

)

+ α

(

λ1
2w

1
t + λ2

2w
2
t

P2

)

+
(

λ1
1β

1
1 + λ2

1β
2
1

)

(

λ1
1w

1
t + λ2

1w
2
t

P1

)

+
(

λ1
2β

1
1 + λ2

2β
2
1

)

(

λ1
2w

1
t + λ2

2w
2
t

P2

)

+
(D1

t + P1) (λ1
1λ

2
1)(w

1
t − w2

t )

(P1)
2

[

(β2
1 − β1

1) −
{

(β2
2)

2 − (β1
2)

2
}

(

λ1
1 + λ2

1

P1

)]

+
(D2

t + P2) (λ1
2λ

2
2)(w

1
t − w2

t )

(P2)
2

[

(β2
1 − β1

1) −
{

(β2
2)

2 − (β1
2)

2
}

(

λ1
2 + λ2

2

P2

)]

β1
1 + β2

1 = r + α + (λ1
1 + λ1

2)β
1
1 + (λ2

1 + λ2
2)β

2
1 + W (A1 + A2)(β2

1 − β1
1)

−W

[

A1(λ1
1 + λ2

1)

P1

+
A2(λ1

2 + λ2
2)

P2

]

[

(β2
2)

2 − (β1
2)

2
]



Diffusion type evolutionary stock market model 2335

β2
1 =

(

WA + λ0

WA − λ0

)

β1
1 +

W (A1E1 + A2E2)

WA − λ0

[

(β2
2)

2 − (β1
2)

2
]

(21)

−
r

WA − λ0

−
α

WA − λ0

where Ek =
λ1

k
+λ2

k

Pk
.

Finally,

β1
1 =

1

1 − w1
t C

(

WA+λ0

WA−λ0

)

− w1
t

(

(λ1

1)
2

P1

+
(λ1

2)
2

P2

)

+ WA

(22)

[
w1

t C

WA − λ0

{W (A1E1 + A2E2)
[

(β2
2)

2 − (β1
2)

2
]

− r − α}

+r

(

λ1
1w

1
t

P1

)

+ α

(

λ1
2w

1
t

P2

)

+ W (A1E1 + A2E2)(β1
2)

2]
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5.2 Figures

Figure 1:
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Figure 2:
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Figure 3:
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