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1 Introduction

This paper studies preservation of the convolution property under locally ap-
proximating functions for sums of independent random variables. In particular,
suppose X is a random variable satisfying E(X) = μ and V ar(X) = σ2 < ∞
and that X1, X2, . . . is a sequence of independent and identically distributed
random variables each with the same distribution as X. In addition, suppose
that X has probability function p, where p is either a density or a probability
mass function, and denote the support set of X by SX = {x : p(x) > 0}. Let
p(i) be the i-fold convolution of p (i.e. the probability function for the partial
sum Si = X1 + X2 + · · · + Xi).

1Corresponding author.
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Let φnμ,nσ2 be the density for a normal random variable, N , with mean nμ
and variance nσ2, i.e.

φnμ,nσ2(x) =
1√

2πσ
√

n
e
− 1

2

�
x−nμ√

nσ

�2

, −∞ < x < ∞. (1)

For any random variable Y , let mY denote the moment generating function
(m.g.f.) of Y defined via

mY (t) = E(etY ) (2)

for −∞ < t < ∞. As well, for random variables Y1 and Y2, define RY1,Y2 via

RY1,Y2(t) =
mY1(t)

mY2(t)
. (3)

Note that for a normal random variable, N , with density as in (1) for n = 1,

mN (t) = etμ+ t2σ2

2 . (4)

For the remainder of the paper N will always denote a random variable
with moment generating function as in (4) where the values of μ and σ should
be clear from the context.

There are many well-known local limit theorems for random variables where
the associated attracting distribution is the normal (see Gnedenko and Kolo-
mogrov [6] and Petrov [8], and many others). Two such results are the following
two theorems.

Theorem 1 Suppose X takes values of the form b + Mh, M = 0,±1,±2, ...,
with probability 1, where b is a constant and h > 0 is the maximal span of the
distribution. Then

sup
M

σ
√

n
∣∣p(n)(nb + Mh) − hφnμ,nσ2(nb + Mh)

∣∣→ 0. (5)

Theorem 2 Suppose p is a density, and that there exists a K such that pK(x)
is bounded. Then

sup
x

σ
√

n
∣∣p(n)(x) − φnμ,nσ2(x)

∣∣→ 0. (6)
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For related results see for instance [4–6, 8–12].
Motivated by the following simple one-step conditioning equality implied

by independence

p(n)(x) = E(p(n−1)(x − X)), (7)

we have the following definition.

Definition 1 For any two functions f and g, define the “convolution ratio”,
HX

f,g of f and g with respect to X via

HX
f,g(x) =

E(f(x − X))

g(x)
(8)

for all x ∈ R such that g(x) �= 0.

Note that if Y is a random variable, independent of X, f is the probability
function for Y and g is the probability function for X + Y , then HX

f,g ≡ 1. In
particular, we have that for n > 1,

HX
p(n−1),p(n)(x) = 1, x ∈ SSn , (9)

where SSn is the support set of Sn.
Along the lines suggested by (7) and Theorems 1 and 2, we have the fol-

lowing definition.

Definition 2 For n > 1, set

C
X,p̃(x, n) = HX

p̃n−1,p̃n

(x) =
E(p̃n−1(x − X))

p̃n(x)
(10)

where p̃ = (p̃i)i≥1 is a sequence of real valued functions.

For our current consideration, p̃i in (10) will be a candidate approximating
function for p(i).

The following result, which will be useful for our computations, was recently
proven (see [1]).

Theorem 3 Suppose p̃i = φnμ,nσ2, if X is continuous (or p̃i = hφnμ,nσ2, if X is
defined on a lattice with maximal span h), and let N be a normally distributed
random variable with mean μ and variance σ2. Then

lim
n→∞

C
X,p̃(tn, n) =

mX

(
t−μ
σ2

)
mN

(
t−μ
σ2

) = RX,N

(
t − μ

σ2

)
, (11)

provided that the numerator in the middle quotient exists, and otherwise C
X,p̃(tn, n)

is unbounded. We will refer to the quantity in (11) as LX(t).
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Note that when p̃i(x) is taken as in Theorem 3, then p̃i(x) > 0 for all (i, x).
If p̃i = p(i) for all i (i.e. the approximation is exact for all (i, x)), then,

by (7), C
X,p̃(x, n) = 1 for x ∈ SSn (the support set of Sn). In this sense

C
X,p̃(x, n) (for x ∈ SSn) may be viewed as a measure of the quality of the nth

order approximation, locally at x, with regard to preservation of the inherent
convolution property.

Remark. The value limn→∞ C
X,p̃(tn, n) in (11) addresses preservation of the

convolution property, for values t in the support set of X̄n = Sn/n, for large
n. Note that if t ∈ SSm/m for some m > 1 then t ∈ SSn/n for infinitely
many n. Note as well that the set UX =

⋃
n>1 SSn/n is dense in the interval

{x : inf{SX} ≤ x ≤ sup{SX}} (where the infimum or supremum may be
infinite). In what follows, we will be interested in developing bounds for LX(t)
for t ∈ UX for some distributions which are heavily used in practice.

Remark. Note that ratios RX,N(t) occur when considering Cornish-Fisher
expansions (see for instance [13]).

The remainder of the paper proceeds as follows. In Section 2, we consider
bounds for LX(t) where X is Bernoulli with parameter p, while Section 3 in-
cludes discussion of uniformly distributed (continuous and discrete) random
variables X. Section 4 addresses bounds for some X with unbounded sup-
port. Some bounds for a variety of distributions, discussed in the paper, are
summarized in the following table.

Table 1: Optimal global bounds for LX(t) for t ∈ UX

X Lower bound Upper bound

Bernoulli(1/2) (e1/2 + e−3/2)/2 1
Bernoulli(p) (e1/2 + e−3/2)/2 Unbounded

Uniform on {0, 1, . . . , T − 1} e3/2(1 − e−6)/6 1
Uniform on [a, b] e3/2(1 − e−6)/6 1
Exponential(λ) e1/2/2 Unbounded

Poisson(λ) e−λ/2+λ/e Unbounded
Geometric(p) e−1/2/2 Unbounded

2 Bernoulli Random Variables

Suppose X is a Bernoulli random variable with parameter p, i.e. P (X = 1) = p
and P (X = 0) = 1 − p with 0 < p < 1. Then μ = p, σ2 = p(1 − p),
mX(t) = pet + (1 − p) and UX ⊂ [0, 1].
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In light of Theorem 3, we have

LX(t) =
mX

(
t−μ
σ2

)
mN

(
t−μ
σ2

) = RX,N

(
t − p

p(1 − p)

)

= (1 − p)e
(t2−p2)
2p(p−1) + pe

(t−p)(t+p−2)
2p(p−1) . (12)

For simplicity, we will write L(t, p) to represent LX(t).
We will prove the following theorem.

Theorem 4 Suppose X is a Bernoulli random variable with parameter p.
Then, for all 0 < t < 1,

LX(t) = L(t, p) ≥ L(t, 1/2) ≥ L(0, 1/2) =
1

2
(e

1
2 + e−

3
2 ) ≈ 0.9359. (13)

Proof: For 0 < p < 1, we have

L(t, p) = e
(t2−p2)
2p(p−1) − pe

(t2−p2)
2p(p−1) + pe

(t−p)(t+p−2)
2p(p−1) . (14)

We will show that, as a function of p, L(t, p) is increasing for p ∈ (0, t),
attains its maximum at p = t, and is decreasing for p ∈ (t, 1).

Differentiating with respect to p in (14) gives,

d

dp
L(t, p) =

(t − p)(2p − 1)

2p(p − 1)

(
t + p

p
e

(t2−p2)
2p(p−1) − t + p − 2

p − 1
e

(t−p)(t+p−2)
2p(p−1)

)

=
(t − p)(2p − 1)(t + p − 2)

2p(p − 1)2
e

(t−p)(t+p−2)
2p(p−1)

(
(t + p)(p − 1)

p(p + t − 2)
e

(t−p)
p(p−1) − 1

)

=
(t − p)(2p − 1)(t + p − 2)

2p(p − 1)2
e

(t−p)(t+p−2)
2p(p−1) gp(t), (15)

say.
Now,

d

dt
gp(t) = e

t−p
p(p−1)

t2 − 2t + 2tp − p2

p2(t + p − 2)2

= e
t−p

p(p−1)
−2t(1 − t) − (t − p)2

p2(t + p − 2)2
< 0. (16)

Thus gp(t) is a decreasing function of t. Since t = p is the only zero of
gp(t), gp(t) > 0 for t ∈ (0, p), and gp(t) < 0 for t ∈ (p, 1).

Employing (15), d
dp

L(t, p) < 0 for 0 < p < 1
2
, d

dp
L(t, p) > 0 for 1

2
< p < 1,

which implies that, for 0 < t < 1,

min
0<p<1

L(t, p) = L(t, 1/2), (17)
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hence we have the first inequality in (13).

Now, suppose p = 1/2, and let

h(t) = L(t, 1/2)

=
1

2
e−2(t2− 1

4
) +

1

2
e−2(t−1

2
)(t−3

2
). (18)

Differentiating in (18) with respect to t, gives

h′(t) = 2te−2(t−1
2
)(t−3

2
)

(
1

t
− 1 − e−(4t−2)

)

= 2te−2(t−1
2
)(t−3

2
)e2−4t

(
t−1 − 1

e2−4t
− 1

)
= 2te−2(t−1

2
)(t−3

2
)e2−4t

(
eq(t) − 1

)
, (19)

where

q(t) = log

(
t−1 − 1

e2−4t

)
= log(t−1 − 1) − (2 − 4t)

= (2 − 4t)
∞∑
i=1

1

4i

(2 − 4t)2i

2i + 1
. (20)

Combining (19) and (20), gives that L(t, 1/2) is increasing for 0 < t < 1
2
, and

decreasing for 1
2

< t < 1. Thus,

max
0<t<1

L(t, 1/2) = L(1/2, 1/2) = 1 (21)

and

min
0<t<1

L(t, 1/2) = L(0, 1/2) = L(1, 1/2) =
1

2
(e

1
2 + e−

3
2 ) ≈ 0.9359. (22)

We now turn to consideration of uniformly distributed random variables.

3 Uniformly Distributed Random Variables

In this section we consider bounds for uniformly distributed random variables.
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3.1 Discrete uniformly distributed random variables

Suppose X takes value on B = {0, 1, . . . T − 1} with constant probability
P (X = i) = 1

T
for i ∈ B (where we assume T > 3; the case T = 2 was covered

in Section 2). The mean and the variance of X are μ = T−1
2

and σ2 = T 2−1
12

,
respectively and UX ⊂ [0, T − 1]. In addition,

mX(t) =
1 − eTt

1 − et

1

T
. (23)

Employing Theorem 3, we have

LX(t) =
mX

(
t−μ
σ2

)
mN

(
t−μ
σ2

) = RX,N

(
6(2t − T + 1)

T 2 − 1

)

=

(
e
−6T −2t+T−1

T2−1 − 1

e
−6−2t+T−1

T2−1 − 1

)
e

3
2

(T−1)2−4t2

T2−1

T

=

∑T−1
i=0 e

− 3(−2t+T−1)(−T+4i+1−2t)

2(T2−1)

T
. (24)

For simplicity, here we will write L(t, T ) to represent LX(t).

We will prove the following

Theorem 5 Suppose X is uniformly distributed on B. Then LX(t) is maxi-
mized at t = T−1

2
and minimized at t = 0. In addition, for all t ∈ [0, T − 1],

1 > L(t, T ) ≥ L(0, T ) =

(
e−

6T
T+1 − 1

e−
6

T+1 − 1

)
e

3
2

T−1
T+1

T

≥ lim
T→∞

L(0, T ) =
1 − e−6

6
e3/2 ≈ 0.745097 . . . . (25)

The next lemma will be useful in proving the final inequality in (25), for
generalizations see [2].

Lemma 1 Set s = e−6, and define the function f via

f(x) =
1 − s1−x

1 − sx

x

1 − x
s

x
2 . (26)

Then, f(x) is monotonically increasing for 0 < x < 1/4.



1706 K. S. Berenhaut and D. Chen

Proof: Taking the natural log of f in (26) gives

ln f(x) = ln(1 − s1−x) − ln(1 − sx) + ln x − ln(1 − x) +
x

2
ln s. (27)

Differentiating, simplifying and noting that s = e−6 and 0 < x < 1, we
have

d

dx
ln f(x) = 3 +

1

1 − x
−
(

6

1 − sx
− 1

x

)
− 6

sx−1 − 1

≥ 4 −
(

6

1 − sx
− 1

x

)
− 6

sx−1 − 1

= 4 − h(x) − k(x), (28)

say.
Since k′(x) = 36sx−1(sx−1 − 1)−2 ≥ 0, we have that k(x) is increasing on

0 < x < 1/4 and thus

k(x) ≤ k(1/4) ≤ 0.068. (29)

Also,

h′(x) =
−36x2sx − 2sx + 1 + s2x

(1 − sx)2x2
=

r(x)

(1 − sx)2x2

where

r′(x) = 12sx(1 − 6x + 18x2 − e−6x). (30)

Since e−6x ≤ 1 − 6x + 18x2 for all x, r(x) is monotonically increasing, and
r(x) ≥ r(0) = 0. Thus, h′(x) ≥ 0, and hence

h(x) ≤ h (1/4) ≤ 3.724 (31)

Therefore,

d

dx
ln f(x) ≥ 4 − 0.068 − 3.724 > 0 (32)

and the result is proven.

Proof of Theorem 5. Differentiating LX(t) in (24) with respect to t, we
have

d

dt
L(t, T ) =

12Te
− 3(2t−T+1)2

2(T2−1)

T 2 − 1

T−1∑
i=0

(i − t)e
3(2i−T+1)(2t−T+1)

T2−1

=
12Te

− 3(2t−T+1)2

2(T2−1)

T 2 − 1
KT (t), (33)
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say.
We will show L(t, T ) is increasing for t ∈ (0, T−1

2
), attains its maximum at

v = T−1
2

, and is decreasing for t ∈
(

T−1
2

, T − 1
)
.

Set x = T−1
2

and c = 12
T 2−1

. Expanding K(t) = KT (t) in a Taylor’s series
about t = x, we have

K(t) =
∞∑

n=0

−ξn

n!
(t − x)n, (34)

where

ξn =
T−1∑
i=0

cn−1(i − x)n−1(n − c(i − x)2) (35)

= ncn−1
T−1∑
i=0

(i − x)n−1 − cn
T−1∑
i=0

(i − x)n+1. (36)

For n = 1, we have

ξ1 =
T−1∑
i=0

(1 − c(i − x)2) = T − c
T−1∑
i=0

(
i − T − 1

2

)
= T − c

T 3 − T

12
= 0.

(37)

As well, when n is even, by symmetry we have

ncn−1

T−1∑
i=0

(i − x)n−1 = 0 = cn

T−1∑
i=0

(i − x)n+1,

and hence ξn = 0.
When n ≥ 3 is odd, we have

n − c(i − x)2 = n − 12

T 2 − 1
(i − x)2 ≥ n − 12

T 2 − 1
x2

> n − 3 ≥ 0, (38)

and hence applying (35), ξn > 0.
Summarizing, we have

d

dt
L(t, T ) =

12Te
− 3(2t−T+1)2

2(T2−1)

T 2 − 1

∞∑
n=0

(−1)ξn

(
t − T − 1

2

)n

=
12Te

− 3(2t−T+1)2

2(T2−1)

T 2 − 1

∞∑
k=1

(−1)ξ2k+1

(
t − T − 1

2

)2k+1

. (39)
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Therefore, L(t, T ) is increasing for t ∈ (0, T−1
2

), attains its maximum at t =
T−1

2
, and is decreasing for t ∈

(
T−1

2
, T − 1

)
. The first and second inequalities

in (25) then follow. For the third inequality note that

L(0, T ) =

(
e−

6T
T+1 − 1

e−
6

T+1 − 1

)
e

3
2

T−1
T+1

T
= e

3
2
1 − s1−x

1 − sx

x

1 − x
s

x
2 , (40)

where x = 1/(T +1) and s = e−6. The result then follows from Lemma 1 upon
noting that T ≥ 3 and for f as defined in (26), limx→0 f(x) = (s− 1)/ ln(s).

3.2 Continuous uniformly distributed random variables

Suppose that X possesses a uniform distribution on the interval [a, b]. The

mean and the variance of X are μ = b−a
2

and σ2 = (b−a)2

12
, respectively and

UX ⊂ [a, b] .
The moment generating function of X is given by

mX(t) =
etb − eta

t(b − a)
. (41)

We recall the following elementary result from [1].

Lemma 2 Suppose c, d ∈ R and c �= 0, then

LcX+d(t) = LX

(
t − d

c

)
. (42)

Note that Lemma 2 reduces our consideration through scaling to (a, b) =
(0, 1).

In light of Theorem 3, we then have, in this case,

LX(t) =
mX

(
t−μ
σ2

)
mN

(
t−μ
σ2

) = RX,N (12t − 6)

=
e12t−6 − 1

(12t − 6)e
(12t−6)2

24
+6t−3

. (43)

For simplicity, we will write L(t) to represent LX(t).
We will prove the following theorem.
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Theorem 6 Suppose X is a continuous uniform [0, 1] random variable. Then,

1 = L(1/2) ≥ LX(t) = L(t)

≥ L(0) = L(1)

=
1 − e−6

6
e3/2 ≈ 0.7450967 . . . . (44)

Proof. Differentiating in (43) gives

L
′
(t) = − 12t2 − 6t + 1

3(2t − 1)2e
3(2t−1)(2t+1)

2

(
(12t2 − 18t + 7)e12t−6

12t2 − 6t + 1
− 1

)

= − 12t2 − 6t + 1

3(2t − 1)2e
3(2t−1)(2t+1)

2

g(t), (45)

say.

Since g′(t) = 108e12t−6(2t−1)4

(12t2−6t+1)2
≥ 0 and g(1/2) = 0, we have that g(t) < 0 for

0 < t < 1
2

and g(t) > 0 for 1
2

< t < 1.

Returning to (45), we have L
′
(t) > 0 for 0 < t < 1

2
and L

′
(t) < 0 for

1
2

< t < 1, and the result follows.

3.3 Uniform distributions on non-evenly spaced points

Lemma 2 and Theorem 4 imply that the minimum value of

{LX(t) : t ∈ UX}

over all possible distributions on two points is attained when each is assigned
probability 1/2. One might ask what pertains on support sets with a larger
number of points. Perhaps surprisingly over distributions on three points the
minimum value of LX(t) is not attained at equally spaced points as is seen in
the following example.

Example. Consider a random variable X with uniformly distributed mass on
the three points 0, x and 1, where 0 < x < 1. We have E[X] = (x + 1)/3,
V ar(X) = 2/9(1 − x + x2), UX ⊂ [0, 1] and upon applying Theorem 3,

LX(t) = 1/3
(
1 + e

−3/2 (−3t+1+x)x

1+x2−x + e
−3/2−3t+1+x

1+x2−x

)
e
1/4 (−3t+1+x)(1+x+3t)

1+x2−x (46)

For simplicity, here we will write L(t, x) to represent LX(t).
Note that Theorem 5, for T = 3, implies that min0≤t≤1 L(t, 1/2) = L(0, 1/2) ≈

0.8982552642, while L(0, 1/3) = 1/3
(
1 + e−6/7 + e−

18
7

)
e4/7 ≈ 0.8858691762.
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It would be interesting to know the relative configuration of n points with
uniformly distributed mass that minimizes LX(t) over the associated set S.
By Lemma 2, it suffices to restrict attention to points 0 = x1 < x2 < x3 <
· · · < xn−1 < xn = 1 and UX ⊂ [0, 1].

4 Distributions with unbounded support

In this section we consider some families of random variables with unbounded
support.

4.1 Exponential random variables

Suppose X is an exponential random variable with parameter λ > 0, i.e.
p(x) = λe−λx for x > 0. Then μ = 1/λ, σ2 = 1/λ2, mX(t) = λ/(λ − t) for
t < λ and UX ⊂ [0,∞). As well, LX(t) is finite only for t < 2/λ.

In light of Theorem 3, we have

LX(t) =
mX

(
t−1/λ
1/λ2

)
mN

(
t−1/λ
1/λ2

) = RX,N

(
λ2t − λ

)

= −e−
1
2
(tλ−1)(tλ+1)

tλ − 2
, (47)

for t < 2/λ. For simplicity, we will write L(t, λ) to represent LX(t).

We will prove the following theorem.

Theorem 7 Suppose X is an exponential random variable with parameter λ.
Then, for all 0 < t < 2/λ,

LX(t) = L(t, λ) ≥ L(0, λ) =
1

2
e

1
2 ≈ 0.8243606355. (48)

Proof. Differentiating in (47) gives

d

dt
LX(t) =

e−
1
2
(tλ−1)(tλ+1)λ (tλ − 1)2

(tλ − 2)2 > 0, (49)

and the result follows.
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4.2 Poisson random variables

Suppose X is a Poisson random variable with parameter λ > 0, i.e. P (X =
i) = e−λλi/i! for i = 0, 1, 2, . . . . Then μ = λ, σ2 = λ, mX(t) = eλ(et−1) and
UX ⊂ [0,∞).

In light of Theorem 3, we have

LX(t) =
mX

(
t−λ
λ

)
mN

(
t−λ
λ

) = RX,N (t/λ − 1)

= e
1/2

�
−λ2+2λ2e−

−t+λ
λ −t2

�
λ−1

, (50)

for t > 0. For simplicity, we will write L(t, λ) to represent LX(t).
We will prove the following theorem.

Theorem 8 Suppose X is a Poisson random variable with parameter λ. Then,
for all 0 < t < ∞,

LX(t) = L(t, λ) ≥ L(0, λ) = e−λ e−2
2e ≈ e−.1321205588λ. (51)

Proof. Differentiating in (50) gives

d

dt
LX(t) =

(
λe

t
λ
−1 − t

)
e
1/2

�
−λ2+2 λ2e−

−t+λ
λ −t2

�
λ−1

λ−1. (52)

Noting that ex−1 > x for all x ≥ 0 (see for instance Mitrinović [7], page 266),
we have that d

dt
LX(t) ≥ 0 for t > 0, and the result follows.

4.3 Geometric random variables

Suppose X is a geometric random variable with parameter 0 < p < 1, i.e.
P (X = i) = p(1 − p)i−1 for i = 1, 2, 3, . . . . Then μ = 1/p, σ2 = (1 − p)/p2,
UX ⊂ [1,∞], mX(t) = etp/(1 − et(1 − p)) for t < log(1/(1 − p)) and LX(t) is
finite only for t ∈ Tp, where

Tp =

{
t :

t − 1
p

1−p
p2

< log

(
1

1 − p

)}

=

{
t : t <

1

p
+ log

(
1

1 − p

)
1 − p

p2

}
. (53)

In light of Theorem 3, we have

LX(t) =
mX

(
t−μ
σ2

)
mN

(
t−μ
σ2

) = RX,N

(
p(tp − 1)

1 − p

)

=
e

1
2

(1−tp)(1−p(2−t))
1−p p

1 − (1 − p)e
p(tp−1)

1−p

, (54)



1712 K. S. Berenhaut and D. Chen

for t ∈ Tp. For simplicity, we will write L(t, p) to represent LX(t).

We will prove the following theorem.

Theorem 9 Suppose X is a geometric random variable with parameter p.
Then, for all t ∈ UX ,

LX(t) = L(t, p) ≥ L(1, p) =
e

1
2
(p−1)p

1 − (1 − p)e−p

≥ L(1, 0+) =
1

2
e−

1
2 ≈ 0.3032653298.... (55)

Proof. For the second inequality in (55), note that

d

dp
L(1, p) = 1/2

e−1/2 p+1/2 (−2 + p) (e−p(p + 1) − 1)

(1 − e−p + e−pp)2 > 0, (56)

for 0 < p < 1, since the function f defined by f(p) = e−p(p+1)−1 is decreasing
for p on (0, 1) and f(0) = 0.

For the first inequality, note that

d

dt
L(t, p) =

p3te−
1
2

(pt−1)(−2p+pt+1)
1−p

(
(1 − p)e

(pt−1)p
1−p − t−1

t

)
(
1 − (1 − p)e

(pt−1)p
1−p

)2

(1 − p)
. (57)

For 0 < p < 1, set fp(t) = (1 − p)e
(pt−1)p

1−p , gp(t) = (t − 1)/t and Up(t) =

fp(t) − gp(t). We then have f ′′
p (t) = p4e

(pt−1)p
1−p /(1 − p) > 0, g′′

p(t) = −2t−3 < 0,
f ′

p(1/p) = g′
p(1/p) = p2 and fp(1/p) = gp(1/p) = 1 − p. Thus, U ′′

p (t) > 0 and

U ′
p(1/p) = 0. Hence, Up(t) > Up(1/p) = 0 and (57) gives that d

dt
L(t, p) ≥ 0 for

t ≥ 1 and 0 < p < 1, and the result follows.

Remark. The above considerations raise questions as to systematic under-
standing of variation in behavior of LX according to summary properties of
the variable X. Characteristics of LX under various assumptions are currently
under consideration.

We close with the following table which includes the limiting convolution
ratio, LX(t), for some further common distributions with unbounded support.
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Table 2: Limiting convolution ratio LX(t) for some further common distribu-
tions

Distribution Prob. Function Mean Variance M.G.F. LX(t)

Gamma e−x/θxk−1

θkΓ(k)
, x > 0 kθ kθ2 1

(1−θt)k
kkθk

(2kθ−t)k e−
t2−k2θ2

2kθ2

k, θ > 0

Neg. Binomial Γ(r+k)
k!Γ(r) pr(1 − p)k r(1−p)

p , r > 0 r(1−p)
p2

(
p

1−(1−p)et

)r
pre

− p2t2−r2(1−p)2

2r(1−p)�
1−(1−p)e

p2t−rp(1−p)
r(1−p)

�r

0 < p < 1, k ∈ N

Laplace 1
2be

− |x−μ|
b μ 2b2 eμt

1−b2t2
4b2

4b2−(t−μ)2 e−
(t−μ)2

4b2

b > 0, μ ∈ R
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