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Abstract

In this paper, we propose an optimal method of imputation which leads to
an estimator of population mean with minimum mean squared error in survey
sampling when the data values are missing completely at random (MCAR).
The mean, ratio and regression methods of imputation are shown to be special
cases and less efficient than the developed optimal method of imputation. An
analytical comparison shows that the first order mean square error approxi-
mation for the optimal method of imputation is always smaller than the one
for regression method of imputation. The percent relative efficiency is found
to be inversely proportional to the response rate.

Keywords: Estimation of mean; Missing data; Imputation; Ratio and regression
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1 INTRODUCTION

Incomplete data or non-response in the form of missingness, censoring or grouping

is a troubling issue for many data sets. Statisticians have recognized for some time



1728 Sarjinder Singh and Sylvia R. Valdes

that failure to account for the stochastic nature of incompleteness or non-response

can spoil the nature of data. There are several factors that affect the non-response

rate in any particular inquiry. Hansen and Hurwitz (1946) were the first to deal

with the problem of incomplete samples in mail surveys. Mail surveys or telephone

surveys are commonly used by bureaucratic or business organizations because of

their low cost. Rubin (1976) defined two key concepts: Missing at random (MAR)

and Observed at random (OAR).

Missing at random (MAR): The data are MAR if the probability of the

observed missingness pattern given the observed and unobserved data does not de-

pend on the values of the unobserved data. It will therefore include cases where

the enumerator is not able to contact the respondents only by chance and had he

been able to contact, the data would have been collected. For example, when the

information is kept on punched cards, the nonresponse due to the accidental loss of

one or more cards is of the first category. Although this illusion is rather outdated

in the world of modern computing but still there is a chance that some data files

may get damaged due to virus attacks. This type of nonresponse is called random

nonresponse.

Observed at random (OAR): The data are OAR, if for every possible value

of the missing data, the probability of the observed missingness pattern, given the

observed and unobserved data, does not depend on the values of the observed data.

The combination of MAR and OAR is called MCAR. In other words, the MCAR can

be defined as f (A|D) = f(A) for all D where D is the data matrix and A is the

missing data indicator matrix ( aij = 1 if dij is reported, aij = 0 otherwise). Heitjan

and Basu (1996) have also considered the problem of distinguishing on between MAR

and MCAR. Note that the concept of OAR is vestige of Rubin (1976). Now a days

people jump right from MAR to MCAR, which is a logical step and quite easy to

follow. Let Y = N−1
N∑

i=1

yi be the mean of the finite population Ω = (1, 2, ...i, ...N).

A simple random sample without replacement (SRSWOR), s , of size n is drawn

from Ω to estimate Y . Let r be the number of responding units out of sampled n

units. Let the set of responding units be denoted by A and that of non-responding

units be denoted by A. For every unit i ∈ A, the value yi is observed. However

for the units i ∈ A, the yi values are missing and imputed values are derived. We

assume that imputation is carried out with the aid of an auxiliary variable, x, such

that xi, the value of x for unit i, is known and positive for every i ∈ s = A ∪ A. In

other words, the data xs = {xi : i ∈ s} are known. Following the notations of Lee,

Rancourt and Särndal (1994), in the case of single value imputation, if the ith unit
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requires imputation, the value b̂xi is imputed, where b̂ = yr

xr
. Data after imputation

becomes:

y•i =

{
yi if i ∈ A

b̂xi if i ∈ A
(1.1)

where A and A denote the responding and non-responding units in the sample.

This method of imputation is called the ratio method of imputation. Under this

method of imputation, the point estimator of population mean given by:

ys =
1

n

n∑
i=1

y•i (1.2)

becomes:

yrat = yr

(
xn

xr

)
, (1.3)

where xn = n−1
n∑

i=1

xi , xr = r−1
r∑

i=1

xi and yr = r−1
r∑

i=1

yi. Note that the suffix

rat in (1.3) stands for ratio estimator and the suffix s in (1.2) stands for sample

mean based on entire sample information s.

Under mean method of imputation, the data after imputation take the form:

y•i =

{
yi if i ∈ A

yr if i ∈ A
(1.4)

and the point estimator (1.2) becomes:

ym =
1

r

r∑
i=1

yi = yr (1.5)

Under regression method of imputation, the data after imputation take the form:

y•i =

{
yi if i ∈ A

yr + β̂ (xi − xr) if i ∈ A
(1.6)
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where β̂ = sxy

s2
x
, with sxy = (r − 1)−1

r∑
i=1

(xi − xr) (yi − yr) , s2
x = (r − 1)−1

r∑
i=1

(xi − xr)
2 ,

and the point estimator (1.2) becomes:

yreg = yr + β̂ (xn − xr) (1.7)

where the suffix reg stands for the regression estimator.

The next section has been devoted to define notation and expectations which

are useful to find the conditional bias and variance of the estimators at (1.3), (1.5),

(1.6) and the estimator resultant from the proposed methods of imputation.

2 BACKGROUND THEORY

Let us define:

ε =
yr

Y
− 1, δ =

xr

X
− 1, and η =

xn

X
− 1

Assuming MCAR and using the concept of two phase sampling by following Rao

and Sitter (1995), for given r and n, we have:

E (ε) = E (δ) = E (η) = 0

and

E
(
ε2

)
=

(
1

r
− 1

N

)
C2

y , E
(
δ2

)
=

(
1

r
− 1

N

)
C2

x, E (εδ) =

(
1

r
− 1

N

)
ρxyCyCx

E
(
η2

)
=

(
1

r
− 1

N

)
C2

x, E (δη) =

(
1

n
− 1

N

)
C2

x, and E (εη) =

(
1

n
− 1

N

)
ρxyCyCx

where

C2
y =

S2
y

Y
2 , C2

x =
S2

x

X
2 , ρxy =

Sxy

SxSy
, S2

x, S2
y and Sxy have their usual meanings.

Thus we have the following theorems:
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Theorem 2.1. The conditional bias of the estimator yrat is given by:

B (yrat) =

(
1

r
− 1

n

)
Y

(
C2

x − ρxyCyCx

)
(2.1)

and is valid for the given values (or conditional values) of r and n.

Proof. The estimator yrat at (1.3) in terms of ε , δ and η can be written as:

yrat = Y
[
1 + ε + η − δ + δ2 + εη − εδ − δη + O

(
ε2

)]
(2.2)

Taking expected value on both sides of (2.2) and its deviation from actual mean,

we get (2.1).

Theorem 2.2. The mean squared error of the estimator, yrat, is:

MSE (yrat) =

(
1

n
− 1

N

)
S2

y +

(
1

r
− 1

n

) [
S2

y + R2S2
x − 2RSxy

]
(2.3)

where R = Y
X

.

Proof. To the first order of approximation,we have

MSE (yrat) = E
[
yrat − Y

]2

≈ E [ε + η − δ]2

= E
[
ε2 + η2 + δ2 + 2εη − 2εδ − 2δη

]
On putting the expected values, we get (2.3).

The variance of the estimator (1.5) obtained by the mean method of imputation

is given by:

V (ym) =

(
1

r
− 1

N

)
S2

y (2.4)

On comparing (2.3) with (2.4), one can easily see that the ratio method of

imputation is better than mean method of imputation if:

R < 2
Sxy

S2
x

= 2β (2.5)
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where β = Sxy

S2
x
.

The condition (2.5) holds in most practical situations and the ratio method of

imputation remains better than the mean method of imputation.

The mean square error (MSE) of the estimator (1.7) obtained by the regression

method of imputation is given by:

MSE
(
yreg

)
=

(
1

n
− 1

N

)
S2

y +

(
1

r
− 1

n

)
S2

y

(
1 − ρ2

xy

)
(2.6)

On comparing (2.6) with (2.3) and (2.4), one can see that the regression method

of imputation remains always better than mean imputation as well as ratio imputa-

tion.

In the next section, we are suggesting an optimal method of imputation. The

estimator obtained from the proposed method of imputation has shown to remain

better than the estimator obtained from the mean, ratio and regression methods of

imputation.

3 OPTIMAL METHOD OF IMPUTATION

In the proposed method of imputation, the data after imputation take the form:

y•i =

{
yi if i ∈ A

Φ + Ψxi if i ∈ A
(3.1)

where Φ and Ψ are suitably chosen constants, such that either the mean square

error of the resultant estimator is minimum, or are pre-decided values.

Special Cases:

( i ) If Φ = yr, Ψ = 0, then (3.1) reduces to the mean method of imputation.

( ii ) If Φ = 0, Ψ = b̂, then (3.1) reduces to the ratio method of imputation.

( iii ) If Φ = yr − β̂ xr, Ψ = β̂, then (3.1) reduces to the regression method of

imputation.

( iv ) If Φ = 0, Ψ = yr

{n(xn
xr

)
α−r}

(nxn−rxr)
, where α is a suitably chosen constant, then

(3.1) reduces to the power transformation method of imputation suggested by Singh

and Deo (2003).

Note that Singh and Deo (2003) have shown that the power transformation

imputation method remains as good as the regression method of imputation, and

methods suggested by Singh and Horn (2000) and Singh, Horn and Tracy (2001).
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Theorem 3.1. The point estimator (1.2) of the population mean Y under the

proposed method of imputation becomes:

yp = pyr + (1 − p) Φ + Ψ (xn − pxr) (3.2)

where p = r
n

denotes the response rate.

Proof. We have

yp =
1

n

n∑
i=1

y•i =
1

n

⎡⎣∑
i∈A

y•i +
∑
i∈A

y•i

⎤⎦ (3.3)

and using (3.1), we get (3.2).

Now we have the following theorems:

Theorem 3.2. The conditional bias of the proposed estimator yp at (3.2) is:

B
(
yp

)
= (1 − p)

(
Φ + Ψ X − Y

)
(3.4)

Proof. Assuming |δ| < 1 and |η| < 1 , and neglecting higher order terms, the

estimator yp in terms of ε, δ and η can be written as:

yp = pY (1 + ε) + (1 − p)Φ + ΨX {(1 − p) + (η − pδ)} (3.5)

Taking expected value on both sides of (3.5) and its deviation from actual mean,

we get (3.4). Hence the theorem.

The optimal method of imputation will be unbiased if

Φ + Ψ X − Y = 0

that is:

( i ) if Φ = 0 , and Ψ = Y
X

.

( ii ) if Φ =
(
Y − ΨX

)
for any choice of Ψ .

( iii ) if Ψ =
(Y −Φ)

X
for any choice of Φ.
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Theorem 3.3. The minimum mean squared error of the proposed estimator yp

is:

Min.MSE
(
yp

)
= p2S2

y

[(
1

r
− 1

N

)
− Θρ2

xy

]
(3.6)

where

Θ =

{(
1
n
− 1

N

) − p
(

1
r
− 1

N

)}2{(
1
n
− 1

N

)
+ p2

(
1
r
− 1

N

) − 2p
(

1
n
− 1

N

)} (3.7)

for the optimal values of Φ and Ψ given by:

Φ = Y

(
1 + p � ρxy

Cy

Cx

)
(3.8)

and

Ψ = −Y

X
p �ρxy

Cy

Cx
(3.9)

where

� =
Θ{(

1
n
− 1

N

) − p
(

1
r
− 1

N

)}
Proof.We have:

MSE
(
yp

)
= E

[
yp − Y

]2

= E
[
(p − 1) Y + pY ε + (1 − p) Φ + ΨX {(1 − p) + (η − pδ)}]2

= ζ1 + ζ2Φ
2 + ζ3Ψ

2 − 2ζ4Φ − 2ζ5Ψ + 2ζ6ΦΨ

(3.10)

where
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ζ1 = (1 − p)2 Y
2
+ p2Y

2
(

1

n
− 1

N

)
C2

y , ζ2 = (1 − p)2 ,

ζ3 = X
2
[
(1 − p)2 +

{(
1

n
− 1

N

)
+ p2

(
1

r
− 1

N

)
− 2p

(
1

n
− 1

N

)}
C2

x

]
, ζ4 = Y (1 − p)2

ζ5 = X Y

[
(1 − p)2 − p

{(
1

n
− 1

N

)
− p

(
1

r
− 1

N

)}
ρxyCyCx

]
, and ζ6 = (1 − p)2 X

Now setting:

∂MSE
(
yp

)
∂Φ

= 0 and
∂MSE

(
yp

)
∂Ψ

= 0

we get

Φ =
ζ4ζ3 − ζ5ζ6

ζ2ζ3 − ζ2
6

and Ψ =
ζ2ζ5 − ζ4ζ6

ζ2ζ3 − ζ2
6

and substitution of these optimal values in (3.10) proves the theorem.

It can be shown using expression (3.7) that the proposed method of imputation

remains always better than regression, ratio and mean methods of imputation.

Important Message for Imputator Statisticians: Note that the values of

Φ and Ψ depend upon the value of population mean, Y , and ρxy
Cy

Cx
, while this may

not be a substantial limitation of the method suggested here. Note that in most of

the cases the imputation is used to complete the missing data instead of estimating

population mean Y . Furthermore note that in many cases the population mean, Y

, or its good guess may be known. For example, consider the situation the total

number of AIDS patients across the USA is known. Note that the number of AIDS

patients depends upon number of HIV cases. If the number of HIV cases are known

in a particular locality, then it can be used to impute the number of AIDS patients

in that particular locality. Under such situation, the proposed method of imputation

will be better than the existing methods.

4 RELATIVE EFFICIENCY

The percent relative efficiency of the proposed optimal method of imputation com-

pare to the regression method of imputation is given by:
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RE =
MSE

(
yreg

)
Min.MSE

(
yp

) × 100 =

{(
1
n
− 1

N

)
+

(
1
r
− 1

n

) (
1 − ρ2

xy

)} × 100

p2
{(

1
r
− 1

N

) − Θρ2
xy

} (4.1)

which is an interesting expression. The percent relative efficiency expression given

in (4.1) is a function of only four variables n, r, N and ρxy. Assuming that the

population size N = 100, 000 is large, and n = 100 moderate sample size, then

the relative efficiency of the proposed estimator for different response rates between

40% to 90% and the values of the correlation coefficients between the range 0.1 to

0.9 is given in the following table.

Table 4.1. Relative efficiency of the proposed imputation method

with respect to the regression method of imputation.

ρxy p = 0.40 p = 0.50 p = 0.60 p = 0.70 p = 0.80 p = 0.90

0.1 612.2 398.0 276.7 203.5 155.9 123.3

0.3 519.2 382.0 267.8 198.6 153.4 122.3

0.5 531.2 350.0 250.0 188.8 148.4 120.4

0.7 441.2 302.0 223.3 174.1 140.9 117.4

0.9 321.1 237.9 187.7 154.5 130.9 113.4

5 DISCUSSION OF RESULTS

The percent relative efficiency of the proposed method of imputation ranges from

113.4% to 612.2% for response rate in the range 90% to 40% and correlation co-

efficient in the range 0.1 to 0.9 for moderate sample from a large population. We

considered all the situations that can happen in real practice and hence our proposed

method of imputation can be trusted.
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