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Abstract

The partially observed risk-sensitive optimal stochastic control of
a system with multiple time-delays in input, which minimizes the ex-
pected value of an exponential cost criterion, is considered. The change
of measure technique is used to obtain the sufficient statistics of the cost
criterion given the measurement history, which is called the information
state. The information state helps to convert the partially observed
problem into an equivalent fully observed one. The risk-sensitive con-
troller is obtained via a set of differential Riccati equations. The result
for the finite-time time-delay system is extended to obtain the infinite-
time case. Furthermore, asymptotic behaviors of both small noise and
small risk limits of the problem, which correspond to deterministic game
and risk-neutral stochastic problem, respectively, are analyzed.
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1 Introduction

Since Jacobson first attempted to solve a risk-sensitive control problem for
fully observed linear systems in [6], a risk-sensitive control problem for various
classes of systems has been considered([1], [2], [3], [4], [11], [14], [15]). The
relationship between the risk-sensitive control problem and differential game
was first investigated by [6]. Ever since it has been shown that a risk-sensitive
controller is equivalent to a game strategy in a stochastic differential game
setting. It is also known that the controller reduces to an H∞ controller when
Wiener noises in the system are absent. The further investigation on the
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relationships between the risk-sensitive control problem, differential games and
an H∞ control problem have been made in [7], [8] and [9] where the viscosity
solutions were used to establish the relationships.

In this paper, we consider the risk-sensitive stochastic optimal control prob-
lem for partially observed system with multiple time-delays in input. Delays
often occur in the transmission of information or material between different
parts of a system. Thus time-delay systems appear in various applications and
system formulations, and hence the controller design for time-delay systems is
important in many fileds. The standard H∞ control problem for time-delay
systems was solved in [12], [13] and reference therein. However, few works on
robust stochastic problems for time-delay systems have appeared in the recent
literature. In a stochastic time-delay system in this paper, we introduce an
important parameter, called a small-noise parameter, which is multiplied by
disturbances in the system so that the noise intensities are governed by the pa-
rameter. The cost criterion is the expected value of an generalized exponential
function and has a significant parameter, called a risk-sensitivity parameter.
This parameter generalizes a stochastic optimal control problem. Motivated by
the idea of [1] and [2], we consider the sufficient statistics of the cost criterion
given the measurement history, which satisfies an equation similar to a Zakai
equation. Then we obtain the information state for our class of systems. The
use of the information state converts a partially observed stochastic control
problem into an equivalent fully observed stochastic control problem. Then
we employ Dynamic Programming to solve the problem. The result is extended
to the infinite-time problem. Moreover, asymptotic limits of the problem are
analyzed as the small-noise and risk-sensitivity parameters tend to zero.

2 Risk-sensitive Optimal Control

In this section, we introduce a time-delay system and formulate a risk-sensitive
optimal control problem. We then attempt to solve a risk-sensitive optimal
control problem for the time-delay system, using the information state. The
result of the problem is extended to the infinite-time problem.

2.1 Problem Formulation

On a probability space (Ω,A, P ) we consider a time-delay system described by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx = (Ax(t) +
l∑

i=0

Biu(t− hi))dt+
√
εDdw,

dỹ = Cx(t)dt+
√
εdv,

x(0) = x̂0 +
√
εx̃0,

u(β) = ψ(β), −h ≤ β ≤ 0

(1)
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where x(·) ∈ �n is the state, w(·) ∈ �p is the process noise, u(·) ∈ �m is the
control and y(·) ∈ �r is the measured output, and v(·) ∈ �r is the measurement
noise. x̂0 is a known vector and x̃0 is a zero-mean random variable with
covariance P0. ψ(β) ∈ L2(−h, 0;�n) is given. hi > 0, i = 1, · · · , l are constant
time-delays and h0 = 0. ε is a positive scalar called a small-noise parameter.
For the system (1), we assume the followings.

Assumption 2.1 1) x(0) is a random variable with gaussian probability
law with mean x0 and covariance matrix P0.
2) w(·) is a zero-mean Wiener process with covariance matrix W .
3) v(·) is a zero-mean Wiener process with covariance matrix V > 0.
4) The processes w(·), v(·) and the initial variable x(0) are mutually indepen-
dent.

Now we define the cost criterion for the time-delay system;

J(u) = E exp[
θ

ε
{Φ(x, tf ) +

∫ tf

0
L(x, u, t)dt}] (2)

where

Φ(x, t) =
1

2
x(t)TQfx(t),

L(x, u, t) =
1

2
(||Q1/2

0 x(t) +
l∑

i=1

∫ 0

−hi

Q
1/2
i (β)u(t+ β)dβ||2 + uT (t)Ru(t)),

and ||·|| is the Euclidean norm, Qf ≥ 0, Q0 ≥ 0, R > 0, Qi(β), i = 1, · · · , l are
matrix functions whose elements are bounded continuous, and θ is a positive
scalar called a risk-sensitivity parameter.

Then the risk-sensitive optimal control problem is to find u∗ such that
J(u) is minimized; J(u∗) ≤ J(u) where u is restricted to a causal function
of the measurement history Y t defined by Y t = σ(ỹ(τ), τ ≤ t). We write
ũi(t) = u(t− hi) and the partial derivatives of the function f(x, t) as follows;

Dxf(x, t) =
∂f

∂x
, D2

xf(x, t) =
∂2f

∂x2
.

Similar notation will be used hereafter.

2.2 Information State

For the partially observed stochastic systems, the state is not directly observed.
In this case, we would look for the property that the state of the system at
time t should be computable from the information available at time t, which
is the measurement history Y t and the control history U t = σ(u(τ), τ ≤ t).
Kumar and Varaiya have showed in [10] that the conditional probability density
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function of the cost criterion given the measurement history Y t, called an
information state, does not depend on a control law and it can be evaluated
from the measurement history Y t and control history U t. The information
state can eventually convert a partially observed stochastic problem into an
equivalent one with the fully observed stochastic system.

As noted in [5], the use of Girsanov’s theorem allows us to get much simpler
form of the sufficient statistics of the cost criterion given the measurement
history, from which the information state is obtained. To this end, we define
the change of probability measure by

dP

dP̃
|
Ft

= ηt

= exp{1

ε
(
∫ t

0
xTCTV −1dỹ − 1

2

∫ t

0
xTCTV −1Cxdτ)}.

Then, ηt is an F t martingale and Ẽ[ηt] = 1. We note that ηt is a solution of

dηt =
1

ε
ηtx

TCTV −1dỹ, η0 = 1. (3)

By Girsanov’s theorem under this change of probability measure, ỹ is a Wiener
process with the covariance matrix εV on the probability space (Ω,A, P̃ ) (see
[5].). Moreover, x(0), w and ỹ remain mutually independent, x(0), w keeping
the same probability laws. Therefore, we convert the system (1) for a different
probability space (Ω,A, P̃ ).

For the time-delay system (1), we now calculate the sufficient statistics of
the cost criterion given the measurement history. Consider the cost criterion

J(u) = E[exp{θ
ε
(Φ(x, tf ) +

∫ tf

0
L(x, u, t)dt}]

= Ẽ[ηtf exp{θ
ε
(Φ(x, tf ) +

∫ tf

0
L(x, u, t)dt}].

If we write

Mt = exp(
θ

ε

∫ t

0
L(x, u, τ)dτ),

then Mt satisfies

dMt =
θ

ε
L(x, u, t)Mtdt, M0 = 1. (4)

For any function φ, we write

σ(φ)t = Ẽ[ηtMtφ(x)].

In case the measure defined by σ(φ)t has a density q(x, t), we have

σ(φ)t
�
=< φ, q >=

∫
�n
φ(x)q(x, t)dx. (5)

Now we obtain the conditional probability density function given the measure-
ment history; a modified Zakai equation for σ(φ)t.
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Lemma 2.2 Suppose that φ is a C2 function. Then

σ(φ)t = σ(φ)0 +
θ

ε

∫ t

0
σ(Lφ)dτ +

1

ε

∫ t

0
σ(φxTCTV −1)dỹ +

∫ t

0
σ(Tφ)dτ (6)

where T is the operator defined by

T = (Ax+
l∑

i=0

Biũi)
∂

∂x
+
ε

2
trDWDT ∂2

∂x2

and
σ(φ)0 = E[φ(x0)] = ε

∫
�n
φ(x)P0dx.

Proof: Applying the Ito’s formula, we have

dφ(x) = (Tφ)(x)dt+
√
εDxφ(x)Ddw. (7)

It follows from (3), (4) and (7) that

d(ηtMtφ(x)) = (dηt)Mtφ(x) + ηt(dMt)φ(x) + ηMt(dφ(x))

=
1

ε
ηtMtφ(x)xTCTV −1dỹ +

θ

ε
ηtL(x, u, t)Mtφ(x)dt

+ηtMt(Tφ)(x)dt+
√
εηtMtDxφ(x)Ddw.

Hence integrating both sides, we have

Mtφ(x) = M0φ(x0) +
1

ε

∫ t

0
ητMτφ(x)xTCTV −1dỹ

+
θ

ε

∫ t

0
ητL(x, u, τ)Mτφ(x)dτ +

∫ t

0
ητMτ (Tφ)(x)dτ

+
√
ε

∫ t

0
ητMτDxφ(x)Ddw.

Taking the conditional expectation in both sides on Y t, we obtain the desired
result. ♦

The conditional probability density function of the cost criterion given the
measurement history is readily derived from Lemma 2.2, as in [2].

Theorem 2.3 If φ(·)t has a density q(x, t), then it satisfies

dq = [−Dxq(x, t)(Ax+
l∑

i=0

Biũi) − q(x, t)trA+
θ

ε
q(x, t)L(x, u, t)

+
ε

2
trDWDTD2

xq(x, t)]dt+
1

ε
q(x, t)xTCTV −1dỹ, (8)

q(x, 0) =
exp{− 1

2ε
(x− x̂0)

TP−1
0 (x− x̂0)}

(2π)n/2|εP0|1/2
. (9)

We call q(x, t) the information state.
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Proof: Using (5) and (6), we have

∫
�n
φ(x)q(x, t)dx =

∫
�n
φ(x)q(x, 0)dx+

θ

ε

∫
�n

∫ t

0
L(x, u, τ)φ(x)q(x, τ)dτdx

+
1

ε

∫
�n

∫ t

0
φ(x)xTCTV −1q(x, τ)dỹdx

+
∫
�n

∫ t

0
(Tφ(x))q(x, τ)dτdx.

It follows that

q(x, t) = q(x, 0) +
θ

ε

∫ t

0
L(x, u, τ)q(x, τ)dτ +

1

ε

∫ t

0
xTCTV −1q(x, τ)dỹ

+
∫ t

0
T ∗q(x, τ)dτ

where T ∗ is the adjoint of T . Differentiating both sides, we get

dq =
θ

ε
L(x, u, t)q(x, t)dt+

1

ε
xTCTV −1q(x, t)dỹ + T ∗q(x, t)dt

= [−Dxq(x, t)(Ax+
l∑

i=0

Biũi) − q(x, t)trA+
θ

ε
q(x, t)L(x, u, t)

+
ε

2
trDWDTD2

xq(x, t)]dt+
1

ε
q(x, t)xTCTV −1dỹ.

♦
The information state q(x, t) can explicitly be expressed.

Theorem 2.4 The solution to the partial differential equation (8) with (9)
is given by

q(x, t) =
ν(t) exp{−1

2
(x(t) − x̂(t))TP−1(t)(x(t) − x̂(t))}

(2π)n/2|P (t)|1/2
(10)

where x̂(t) satisfies

dx̂ = (Ax̂(t) +
l∑

i=0

Biu(t− hi))dt+
1

ε
P (t)CTV −1(dỹ − Cx̂(t)dt)

+
θ

ε
P (t)(Q0x̂(t) +Q

1/2
0

l∑
i=1

∫ 0

−hi

Q
1/2
i (β)u(t+ β)dβ),

x̂(0) = x̂0,

(11)

and P (t) satisfies the Riccati equation

Ṗ (t) = AP (t) + P (t)AT + εDWDT + P (t)(
θ

ε
Q0 − CTV −1C)P (t),

P (0) = εP0,
(12)
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and ν(t) is given by

ν(t) = exp[
1

ε
(
∫ t

0
x̂TCTV −1dỹ − 1

2

∫ t

0
x̂TCTV −1Cx̂dτ)

+
θ

ε

∫ t

0
(L(x̂, u, τ) +

1

2
trP (τ)Q0)dτ ].

(13)

Proof: Differentiating q(x, t) defined by (10), (11), (12) and (13), and substi-
tuting in (8) verify the result. ♦

Remark 2.5 There exists a backward adjoint process p(x, t) such that

< p(x, t1), q(x, t1) >=< p(x, t2), q(x, t2) >

for all t1, t2 ∈ [0, tf ]. Actually, the process p(x, t) satisfies the parabolic equa-
tion adjoint to (8) and (9), namely,

−dp = [Dxp(x, t)(Ax+
l∑

i=0

Biũi) +
θ

ε
p(x, t)L(x, u, t)

+
ε

2
trDWDTD2

xp(x, t)]dt+
1

ε
p(x, t)xTCTV −1dỹ,

p(x, tf) = exp(
θ

2ε
xT (tf )Qfx(tf )).

2.3 Solution to Risk-sensitive Control Problem

Now we solve the risk-sensitive control problem. The cost criterion (2) can be
written using the information state.

Theorem 2.6 The cost criterion can be written as

J(u) = E[exp{ θ
2ε

(φ̂(x̂(tf ), P (tf)) +
∫ tf

0
(L(x̂, u, t) +

1

2
trP (t)Q0)dt)}] (14)

where

φ̂(x, P ) =
2ε

θ
log |I − θ

ε
PQf | + xT Q̂fx,

Q̂f =
1

2
[(I − θ

ε
QfP )−1Qf +Qf(I − θ

ε
PQf)

−1].

Proof: Using Theorem 2.4, the cost criterion can be written as

J(u) = E[exp{θ
ε
(Φ(x, tf ) +

∫ tf

0
L(x, u, t)dt}]

= Ẽ[
∫
�n
p(x, tf)q(x, tf )dx]

= E[
∫
�n

exp{ θ
2ε
xTQfx− 1

2
(x− x̂)TP−1(x− x̂)}

(2π)n/2|P |1/2
dx

× exp[
θ

ε
{
∫ tf

0
(L(x̂, u, t) +

1

2
trP (t)Q0)dt}]

= E[exp{ θ
2ε
φ̂(x̂(tf), P (tf)) +

θ

ε

∫ tf

0
(L(x̂, u, t) +

1

2
trP (t)Q0)dt}].

♦
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Thus our original problem is restated as follows; minimize the cost crite-
rion J(u) defined by (14), subject to dynamics (11) and (12). Suppose that
X(x̂, P, t) is differentiable in t, x̂ and P . Since the factor 2ε

θ
log |I − θ

ε
PQf | +∫ tf

0 trP (t)Qdτ of the cost criterion is independent of minimization, the
Hamilton-Jacobi-Bellman equation for this altered problem can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂X

∂t
= Dx̂X{Ax̂(t) +

l∑
i=0

Biu(t − hi)

+
θ

ε
P (t)(Q0x̂(t) + Q

1/2
0

l∑
i=1

∫ 0

−hi

Q
1/2
i (β)u(t + β)dβ)},

+
θ

ε
X(L(x̂, u, t) +

1
2
trP (t)Q0) +

1
2ε

trD2
x̂XP (t)CT V −1CP (t),

X(x̂, P, tf ) = exp(
θ

2ε
x̂T (tf )Q̂f x̂(tf )).

(15)
Now we obtain the main result. For simplicity, we let Bi = 0, Qi(·) =

0, i = 2, · · · , l, and denote h
Δ
= h1, Q̄1(β)

Δ
= Q

1/2
0 Q

1/2
1 (β), Q̄2(α, β)

Δ
=

Q
1/2
1 (α)Q

1/2
1 (β).

Theorem 2.7 Consider the risk-sensitive control problem for the time -
delay system. Suppose that the following conditions hold;
(i) There exists a solution P (t) of the Riccati equation

⎧⎨
⎩

Ṗ (t) = AP (t) + P (t)AT + εDWDT + P (t)(
θ

ε
Q0 − CTV −1C)P (t),

P (0) = εP0.

(ii) For the solution P (t) in (i), there exists a triplet Π = (Π0(t), Π1(β, t),
Π2(α, β, t)) of the Riccati equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂

∂t
Π0(t) + (A+

θ

ε
P (t)Q0)

T Π0(t) + Π0(t)(A+
θ

ε
P (t)Q0) +Q0

−{Π0(t)B0 + Π1(0, t)B1}R−1{BT
0 Π0(t) +BT

1 ΠT
1 (0, t)}

+
θ

ε2
Π0(t)P (t)CTV −1CP (t)Π0(t) = 0,

−(
∂

∂t
+

∂

∂β
)Π1(β, t) + (A+

θ

ε
P (t)Q0)

T Π1(β, t) + Q̄1(β)

−{Π0(t)B0 + Π1(0, t)B1}R−1{BT
0 Π1(β, t) +BT

1 ΠT
2 (0, β, t)}

+
θ

ε2
Π0(t)P (t)CTV −1CP (t)Π1(β, t) +

θ

ε
Π0(t)P (t)Q̄1(β) = 0,

−(
∂

∂t
+

∂

∂α
+

∂

∂β
)Π2(α, β, t) + Q̄2(α, β) +

θ

ε
ΠT

1 (α, t)P (t)Q̄1(β)

+
θ

ε
Q̄T

1 (α)P (t)Π1(β, t) +
θ

ε2
ΠT

1 (α, t)P (t)CTV −1CP (t)Π1(β, t)

−{ΠT
1 (α, t)B0 + Π2(α, 0, t)B1}R−1{BT

0 Π1(β, t) +BT
1 ΠT

2 (0, β, t)} = 0
(16)
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with the boundary conditions

Π0(tf ) = Q̂f , Π0(t) = ΠT
0 (t), Π1(−h, t) = Π0(t),

Π2(−h, β, t) = Π1(β, t), Π2(α, β, t) = ΠT
2 (β, α, t), −h ≤ α, β ≤ 0.

Then the risk-sensitive controller is given by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u∗(t) = −R−1[{BT
0 Π0(t) +BT

1 ΠT
1 (0, t)}x(t)

+
∫ 0

−h
{BT

0 Π1(β, t) +BT
1 Π2(0, β, t)}B1u(t+ β)dβ],

dx̂ = (Ax̂(t) +B0u(t) +B1u(t− h))dt+
1

ε
P (t)CTV −1(dỹ − Cx̂(t)dt)

+
θ

ε
P (t)(Q0x̂(t) +

∫ 0

−h
Q̄1(β)u(t+ β)dβ),

x̂(0) = x̂0,
u(β) = ψ(β).

Proof: (15) can be solved by assuming a solution in the form

X(x̂,Π, t) = γ(t) exp[
θ

2ε
{x̂T (t)Π0(t)x̂(t) + 2x̂(t)

∫ 0

−h
Π1(β, t)B1u(t+ β)dβ

+
∫ 0

−h

∫ 0

−h
uT (t + α)BT

1 Π2(α, β, t)B1u(t+ β)dαdβ}].
(17)

Substitution of (17) into (15) and minimization with respect to the control
verify that Π(t) satisfies (16). ♦

2.4 The Infinite-time Problem

In this section, we consider the infinite-time problem for the time-delay system
where the terminal time tf → 0 and Qf = 0 in the cost criterion (2);

J(u) = lim
tf→∞

1

tf
E exp[

θ

2ε

∫ tf

0
(||Q1/2

0 x(t) +
∫ 0

−h
Q

1/2
1 (β)u(t+ β)||2

+uT (t)Ru(t))dt]

We make the following assumptions on the system (1). They give stabiliz-
ability and detectability on the system (1).

Assumption 2.8 Define Δ(s) = sI −A. Then we have

rank[Δ(s) B +Be−sh] = n, rank[ΔT (s) CT ] = n,

rank[Δ(s) D] = n, rank[ΔT (s) Q
1/2
0 ] = n,

for all s in the right-half plane including the imaginary axis such that

det Δ(s) = 0.
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The following result is deduced from Theorem 2.7.

Theorem 2.9 Suppose that the following conditions hold;
(i) There exists a nonnegative definite solution P of the Riccati equation

AP + PAT + εDWDT + P (
θ

ε
Q0 − CTV −1C)P = 0. (18)

(ii) For the solution P in (i), there exists a nonnegative definite triplet Π =
(Π0, Π1(β), Π2(α, β)) of the Riccati equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A+
θ

ε
PQ0)

T Π0 + Π0(A+
θ

ε
PQ0) +Q0 − {Π0B0 + Π1(0)B1}R−1

×{BT
0 Π0 +BT

1 ΠT
1 (0)} +

θ

ε2
Π0PC

TV −1CPΠ0 = 0,

− ∂

∂β
Π1(β) + (A+

θ

ε
PQ0)

T Π1(β) + Q̄1(β) +
θ

ε
Π0PQ̄1(β)

−{Π0B0 + Π1(0)B1}R−1{BT
0 Π1(β) +BT

1 ΠT
2 (0, β)}

+
θ

ε2
Π0PC

TV −1CPΠ1(β) = 0,

−(
∂

∂α
+

∂

∂β
)Π2(α, β) + Q̄2(α, β) +

θ

ε2
ΠT

1 (α)PCTV −1CPΠ1(β)

+
θ

ε
ΠT

1 (α)PQ̄1(β) +
θ

ε
Q̄T

1 (α)PΠ1(β)

−{ΠT
1 (α)B0 + Π2(α, 0)B1}R−1{BT

0 Π1(β) +BT
1 ΠT

2 (0, β)} = 0

(19)

with the boundary conditions

Π1(−h) = Π0, Π2(−h, β) = Π1(β),
Π0 = ΠT

0 , Π2(α, β) = ΠT
2 (β, α), −h ≤ α, β ≤ 0.

(20)

Then the risk-sensitive controller is given by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u∗(t) = −R−1[{BT
0 Π0 +BT

1 ΠT
1 (0)}x(t)

+
∫ 0

−h
{BT

0 Π1(β) +BT
1 Π2(0, β)}B1u(t+ β)dβ],

dx̂ = (Ax̂(t) +B0u(t) +B1u(t− h))dt+
1

ε
PCTV −1(dỹ − Cx̂(t)dt),

+
θ

ε
P (Q0x̂(t) +

∫ 0

−h
Q̄1(β)u(t+ β)dβ),

x̂(0) = x̂0,
u(β) = ψ(β).

Remark 2.10 The nonnegativity of Π is defined as follows;

zT Π0z+2
∫ 0

−h
zT Π1(β)B1w(β)dβ+

∫ 0

−h

∫ 0

−h
wT (α)BT

1 Π2(α, β)B1w(β)dαdβ ≥ 0

for all z ∈ �n and w ∈ L2(−h, 0;Rm).
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3 Asymptotic Analysis of Risk-sensitive Con-

troller

We investigate asymptotic limits of the risk-sensitive controllers given in The-
orem 2.9 when ε and θ tend to zero. It has been shown in [8] and [9] that
the small noise and small risk limits of the controllers are equivalent to H∞
controller and risk-neutral optimal controller, respectively.

3.1 Small Noise Limit

We consider the small noise limit when ε goes to zero, and obtain the risk-
sensitive optimal controllers in the small noise limit.

First consider the Riccati equations (18) and (19). Taking ε→ 0, we have

P

ε
→ P.

provided ỹ → ∫ t
0 yds. Thus we have the following result from Theorem 2.9.

Corollary 3.1 Suppose that the following conditions hold;
(i) There exists a nonnegative definite solution P to the Riccati equation

AP + PAT +DWDT + P (θQ0 − CTV −1C)P = 0.

(ii) For the solution P in (i), there exists a nonnegative definite triplet Π =
(Π0, Π1(β), Π2(α, β)) to the Riccati equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A+ θPQ0)
T Π0 + Π0(A+ θPQ0) +Q0 + θΠ0PC

TV −1CPΠ0

−{Π0B0 + Π1(0)B1}R−1{BT
0 Π0 +BT

1 ΠT
1 (0)} = 0,

− ∂

∂β
Π1(β) + (A+ θPQ0)

T Π1(β) + Q̄1(β) + θΠ0PQ̄1(β)

+θΠ0PC
TV −1CPΠ1(β)

−{Π0B0 + Π1(0)B1}R−1{BT
0 Π1(β) +BT

1 ΠT
2 (0, β)} = 0,

−(
∂

∂α
+

∂

∂β
)Π2(α, β) + Q̄2(α, β) + θΠT

1 (α)PQ̄1(β)

+θQ̄T
1 (α)PΠ1(β) + θΠT

1 (α)PCTV −1CPΠ1(β)
−{ΠT

1 (α)B0 + Π2(α, 0)B1}R−1{BT
0 Π1(β) +BT

1 ΠT
2 (0, β)} = 0

with the boundary conditions (20). Then the risk-sensitive optimal controller
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in the small noise limit is given by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u∗(t) = −R−1[{BT
0 Π0 +BT

1 ΠT
1 (0)}x(t)

+
∫ 0

−h
{BT

0 Π1(β) +BT
1 Π2(0, β)}B1u(t+ β)dβ],

˙̂x(t) = Ax̂(t) +B0u(t) +B1u(t− h) + PCTV −1(y(t) − Cx̂(t))

+θP (Q0x̂(t) +
∫ 0

−h
Q̄1(β)u(t+ β)dβ),

x̂(0) = x̂0,
u(β) = ψ(β).

(21)

Remark 3.2 The controller u∗(t) in (21) is equivalent to an H∞ controller
for the time-delay system(See [13] for example.).

3.2 Small Risk Limit

We next consider the small risk limit when θ goes to zero, and obtain the
risk-sensitive optimal controllers in the small risk limit.

Consider the Riccati equations (18) and (19) again. Taking θ → 0, we have
the following result from Theorem 2.9.

Corollary 3.3 Suppose that the following conditions hold;
(i) There exists a nonnegative definite solution P to the Riccati equation

AP + PAT + εDWDT − PCTV −1CP = 0.

(ii) For the solution P in (i), there exists a nonnegative definite triplet Π =
(Π0, Π1(β), Π2(α, β)) to the Riccati equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AT Π0 + Π0A+Q0 − {Π0B0 + Π1(0)B1}R−1{BT
0 Π0 +BT

1 ΠT
1 (0)} = 0,

− ∂

∂β
Π1(β) + AT Π1(β) + Q̄1(β)

−{Π0B0 + Π1(0)B1}R−1{BT
0 Π1(β) +BT

1 ΠT
2 (0, β)} = 0,

−(
∂

∂α
+

∂

∂β
)Π2(α, β) + Q̄2(α, β)

−{ΠT
1 (α)B0 + Π2(α, 0)B1}R−1{BT

0 Π1(β) +BT
1 ΠT

2 (0, β)} = 0

with the boundary conditions (20). Then the risk-sensitive optimal controller
in the small risk limit is given by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u∗(t) = −R−1[{BT
0 Π0 +BT

1 ΠT
1 (0)}x(t)

+
∫ 0

−h
{BT

0 Π1(β) +BT
1 Π2(0, β)}B1u(t+ β)dβ],

dx̂ = (Ax̂(t) +B0u(t) +B1u(t− h))dt+
1

ε
PCTV −1(dỹ − Cx̂(t)dt),

x̂(0) = x̂0,
u(β) = ψ(β).

(22)
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Remark 3.4 The controller u∗(t) in (22) is equivalent to a risk-neutral
optimal controller for the time-delay system.

4 Conclusion

We have considered the risk-sensitive control problem for a class of time-delay
systems. We have employed the information state to analyze the problem,
and have explicitly obtained the risk-sensitive optimal controllers for both the
finite-time and infinite-time problems. We have also investigated asymptotic
limits of the controller, which correspond to H∞ controller and risk-neutral
optimal controller.
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