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Abstract

Two classes of univalent functions with respect to k-symmetric points
define on the unit disk satisfying the conditions:

o0 o0
Zn:1 (nk 41— a)|apg+1| + Zn:2;n;£lk+l nla,| <1—a,

and
o0 o
> (nk+1)(nk +1-a)anksi] + Y nPlag <1-a
n=1 n=2;n#lk+1

are given. The two inequalities of the functions belonging to these two
classes are the starlike and convex functions with respect to k-symmetric
points, respectively. Some interesting properties of generalisations of
Hadamard product in these classes are given.
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1 Introduction

Let A denote the class of functions of the form:

f(z) =2+ Zanz",
n=2



1788 K. Al-Shagsi and M. Darus

which are analytic in the open unit disk U = {z € C : |z| < 1}. Let S denote
the subclass of A consisting of all functions which are univalent in U. Also let
T denote the subclasses of A consisting of functions of the form

f(z):z—Zanz” (a, > 0).

n=2

We denote by S*(a) and C(a) for 0 < a < 1 the familiar subclasses of A
consisting of functions which are, respectively, starlike and convex functions of
order oo. Thus by definition, we have

S*(a) =< f:f€Aand Re ZHC) >a, (0<a<l;zel)y,
f(z)
and
C(&):{f:fEAandRe{leZ;:;S)}>04, (O§&<1;ZEU)}.

Also, denote by 7 S*(«) and 7C(«) the subclasses of 7 where

75" (a)=5"(a)NT and TC(a)=C(a)NT.
Let fi(2) € A, (j =1,2,---,m) be given by
fj(z) =2+ Z Cln’jZn.
n=2

Then the Hadamard product (or convolution) is defined by:
fi(2) % fo(2) %% fr(2) = (fi*x fax- % fn)(2) = z+z (Han,j>z".
n=2 \ j=1

Also the generalised Hadamard Product is defined here by

(f1<>f2<>"'<>fm)(2)22+z ( (an,j)z’lﬂ'>z".

n=2 j=

where ZTzlz,ij:l,pj>1andj:LQ,...m
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Let Fj(2) € T(j = 1,2, --,m) be given by

o
2)=z— Zawz” (an; > 0).
n=2

Then the modified Hadamard product is defined by

(Fy % Fy s« % F,)(2) —2—2<Han]> " (an,; >0).

n=2

Also the generalised modified Hadamard Product is defined here by

(FioFy0---0Fy)(2) —Z—i(

(an.) ”) (@nj > 0).
-1

J

where > 7" =1,p;>landj=1,2,---m.

le

Sakaguchi [1] once introduced a class S§ of functions starlike with respect to
symmetric points, which consists of functions f € § satisfying the inequality

2f'(2) )
Re{f(z)—f(—z)} >0, e U.

Many different authors have studied the work of Sakaguchi [1] and have dis-
cussed extensively about this class and its subclasses (see[2-9]). In 1979 Chand
and Singh [5] introduced the classes ngk) (a) of functions starlike with respect
to k-symmetric points of order «, and C’ék) (a) of functions convex with respect
to k-symmetric points of order o which are the special classes corresponding
to the ones defined in [9], which satisfy the following:

59 (a) = {f:feSand Re{;i’((zi)} >a (0<a< 1;zeU)},

and

Cék)(a):{f:fESandRe{@;:i(('j;y} > o (O§&<1;26U)},

where k > 1 is positive integer and fi(z) is defined by the following equality

eV f(e"2), (e = exp(2mi/k); z € U).
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Note that the function f(z) € A is in the class C’ék) () if and only if zf'(2) €
5¢(@).

Finally, denote by TSék)(a) and TC’ék) (cv) the subclasses of 7 where

T5{(0) = 8PN T and TCP(a) = P (@) T.

Now we state the results due to [9] as a special case when A = 0, which we will
use throughout this paper.

Theorem 1.1 Let0<a<1,k>1.If

Z (nk + 1 — a)|angr1| + Z nla,| <1—«q, (1.1)
n=l n=2
n#lk+1

then f(z) € Sék)(a). Condition (1.1) is also necessary if f(z) € TSék)(oz).

Theorem 1.2 Let0 <a<1,k>1. If

Y (k4 D)k +1-a)amal+ D> nla<1-a,  (12)
n=1 n=2
n#lk+1

then f(z) € Cék)(a). Condition (1.2) is also necessary if f(z) € TCék)(a).

In the present paper, we shall make use of the generalised Hadamard product
with a view of Theorems 1.1 and 1.2 to prove interesting characterisation
theorems involving the classes ngk) (), Cék) (), ’]'Sék)(a) and ’]'Cék) ().

2 Generalised convolution properties of func-
tions in the classes Sék)(a), TSék)(oz)

We state our first theorem as follows:
Theorem 2.1 If f; € ngk)(aj), (j=1,2,---m), then

(frofao---o fu)(z) € 83 (B. 1),
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where
k
B<min{1— nE ,
n22 LS nk+l—a; \ Pj 1
.Hl 1-qj
]:
and
w< min 11— Ll
n#lk+1 31;11 1=

for >0, pi—l,pj>1.

Proof. Let f;(z) € Sék) (e;), by using Theorem 1.1 we have:

> nk+1 o n .
21_7|ank+1,]‘+ Z 1—a»‘a”’j <1, (j=1,2,---m).
n=1 J
n=2
n#lk+1
Moreover,

1 L
ARy nk+1-—a;\" )P\
I (% -
=1 \'n=1 —
m 00 n pj N pj é
]I X (i) ety ) st
j=1 ’

n=2

n#lk+1

By using the Holder inequality, we have

1
e m Pj 1
nk+1—o; P
H 1—oy |a”k+17j‘ !
n=1 7j=1
1 . L
m [eS) k1 Py 1 Py Pj
n —ay
< H 1—a; ‘ankJrlj‘ J )
j=1 \ n=1
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and

Then, we have

= il nk+1l—« pl- L
Z H < 1— Qi J) ]‘ank+17.j‘pj

n=1
2 () el e <1
n =2 =1 ’
n#lk+1

Here, we see that

p> {( o) ﬁlwankmﬁ}

-+ i {( nu) ﬁl‘anj‘pj}gl

=

n =
n#lk+1
with
k
G <ming 1-— n T ,
n>2 [ nk+1 a; '\ Pj 1
Hl 1-aj N
]:
and
w< min 11— Ll
n#lk+1 31;11 1=

Thus, by Theorem 1.1, the proof of Theorem 2.1 is complete.

Next, we obtain our first corollary.
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Corollary 2.2 If f;(z) € ngk)(a), (j=1,---,m), then
(frofoo---0 fn)(z) € 55 (),

Proof. In view of Theorem 1.1, Corollary 2.2 follows readily from Theorem
2.1 for the special case when o; = a.
Further, we obtain the following results:

Theorem 2.3 If Fj(z) € TSP (a)), (j =1,---,m), then
(FioFyo---0F,)(2) € TSék)(ﬁ,,u),

m 1
J=1 p;

where 3 and p given by conditions in Theorem 2.1 and for =1,p; > 1

Proof. By using the same technique as in the proof of Theorem 2.1, the
required result is obtained.

Theorem 2.4 Let the function f;(z) € ngk)(ozj), (7=1,---,m), and let t,,(z)
be defined by

tm(2) = 2+ Z <Z (ank+17]~)p> 2"+ Z <Z (aw-)p> 2" (2.1)

n=1 j=1 n—9 j=1
n#lk+1
Then
t S® (s
m(z) € S ( 77)7
where
nk n
60=1-— =1-—
L(nkJrlfa)p_l’ i L(L)p
m 11—« m\ l—«a
and

nk+1— a\P n \P )
< ) ; ( ) > mn, @ = min ;.
1 —« 1—« 1<j<m

Proof. Since f; € ngk) (a;), using Theorem 1.1, we observe that

> k+1 8 = 8
n — Oéj n
> (ﬁ) ankir P+ D (1 — aj) | 5"

=1 n=2
n#lk+1
nk+1 g - g
n — Q5 n
(S e) (X e <
n=1 _aj _aj
n =2
n#lk+1

(2.2)
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It follows from (2.2) that

n=1 j=1
.o {%zm) ons }
n=2 =1
n#lk+1

=1 n=2 =1
n#lk+1
00 0 p m
< 3 (25e) Slownit+ - X () X lenb
n=1 . j=1
n =
n#lk+1
< =D <nk1+_71;a]> | k1517
n=1 j=1 J
+ > % > <1_na > ‘an,J‘ <1,
n=2 7=l ’
n#lk+1
if,
nk n
60=1- =1-
i(nkJrlfa)p o 1’ 7 i<L>p
m -« m\ 11—«
Now let
k
u(n) =1-— 1 v(n)=1- n

1 (nk+1-a\? ’ N 1 n P
E( l—ta > —1 E<17a>
Then v/(n), v'(n) > 0 if p > 2. Hence

nk n
1 ( nk+l—oa P -1 ’ - 1 n P
m l—«a m\ 1—«

nk+l—a P n P
By <f> ; <E> > mn, we see that 0 < d < land 0 <~ < 1.

Thus the proof of Theorem 2.4 is complete.
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3 Generalised convolution properties of func-
tions in the classes Cék>(a), TCék)(a)

In this section, we give another set of results regarding the classes C’ék) (o) and
(k)
TC (o).

Theorem 3.1 If the functions f; € Cék)(aj), (j=1,---,m), then

(frofao o fm)(z) € CP (B, ),

where 3 and p given by conditions in Theorem 2.1 and for Z;n:l ]% =1,p; > 1
J

Proof. Let f; € Cék)(aj)(j =1,---,m), by using Theorem 1.2, we have

= (nk + 1)(nk +1—qj) = n? :
SN e Y e <1
n=1 n=2

n#lk+1

Thus the proof of Theorem 3.1 is much akin to that of Theorem 2.1 already
detailed, instead of Theorem 1.1, it uses Theorem 1.2.

Corollary 3.2 If f;(z) € C'ék)(oz), (7=1,---,m), then

(frofoo---o fu)(z) € CP().

Proof. In view of Theorem 1.2, Corollary 3.2 follows readily from Theorem
3.1 for special case when o; = a.

Theorem 3.3 If F;(z) € TC’ék)(ozj), (j=1,---,m), then
(FioFyo---oFy)(z) € TCS (8, ),
where B and p given by conditions in Theorem 2.1 and for Z;”Zl }% =1,p; > 1

Proof. By using the same technique as in the proof of Theorem 2.1, the
required result is obtained.

Theorem 3.4 Let the function f;(z) € Cék)(aj), (j=1,---,m), and let t,,,(2)
be given by (2.1). Then

tm(2) € CY(6,7),
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nk 1 n
) Y=Li—-——"7""x7p
%(nk + 1)p—1<nk+lfa)p -1 %np—l<ﬁ)p

11—«

and

E+1—a\r P
(nk + 1)1’_2(u> ; np_2<L> >m, a= min «;.
11—« 1—«a 1<j<m

Proof. Since f;(z) € Cék)(aj), by using Theorem 1.2, we observe that

0o 0 2

(nk+1)(nk+1—q; n , ,
Z >1( ])‘ankJrl,j’ + Z ’anaj’ S 17 (] = 17' T
— - 1 —a;
n=l n=2
n#lk+1

Thus the proof of Theorem 3.4 using Theorem 1.2 is precisely in the same
manner as the above proof of Theorem 2.4 using Theorem 1.1.
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