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Abstract

Let A denote the class of analytic functions with the normalization
f(0) = f ′(0) − 1 = 0 in the open unit disk U = {z : |z| < 1}, set

fn
b,λ(z) = z +

∞∑
k=2

(k + b

1 + b

)n (k + λ − 1)!
λ!(k − 1)!

zk

(n ∈ C, b ∈ C \ Z
−, λ > −1; z ∈ U).

and define (fn
b,λ)(−1) in terms of the Hadamard product

fn
b,λ(z) ∗ (fn

b,λ)(−1)(z) =
z

(1 − z)μ
(μ > 0; z ∈ U).

In this paper, the authors introduce several new subclasses of analytic
functions defined by means of the operator In

b,λ,μ : A → A, given by

In
b,λ,μf(z) = (fn

b,λ)(−1) ∗ f(z) (f ∈ A; n ∈ C, b ∈ C \ Z
−, λ > −1;μ > 0).

Inclusion properties of these classes and the classes involving the gen-
eralized Libera integral operator are also considered
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1 Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑

k=2

akz
k, (1.1)

which are analytic in the unit disk U = {z : |z| < 1}. If f and g are analytic
in U, we say that f is subordinate to g, written f ≺ g or f(z) ≺ g(z), if
there exists Schwarz function w in U such that f(z) = g(w(z)). We denote by
S∗(γ), C(γ) and K(γ, δ) the subclasses of A consisting of all analytic functions
which are, respectively, starlike of order γ(0 ≤ γ < 1), convex of order γ(0 ≤
γ < 1) and close-to-convex of order δ type γ in U.(see, e.g., Srivastava and
Owa [1]).

For n ∈ C, b ∈ C \ Z− and λ > −1, the authors [4] introduced the Multiplier
transformation Dn

b,λ of functions f ∈ A by

Dn
b,λf(z) = z +

∞∑
k=2

(k + b

1 + b

)n (k + λ− 1)!

λ!(k − 1)!
akz

k.

Let P be the class of all functions φ which are analytic and univalent in U and
for which φ(U) is convex with φ(0) = 1 and Re {φ(z)} > 0 for z ∈ U.

Making use of subordination principle between two analytic functions, we in-
troduce the subclasses S∗(γ;φ), C(γ;φ) and K(γ, δ;φ;ψ) of the class A for
0 ≤ γ, δ < 1 and φ, ψ ∈ P (cf., [2]), which are defined by

S∗(γ;φ) =

{
f : f ∈ A and

1

1 − γ

(
zf ′(z)
f(z)

− γ

)
≺ φ(z) in U

}
,

C(γ;φ) =

{
f : f ∈ A and

1

1 − γ

(
1 +

zf ′′(z)
f ′(z)

− γ

)
≺ φ(z) in U

}
,

and

K(γ, δ;φ, ψ) =

{
f : f ∈ A and ∃ g ∈ S∗(γ;φ)s.t.

1

1 − δ

(
zf ′(z)
g(z)

− δ

)
≺ ψ(z) in U

}
.
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In particular, when γ = δ = 0 we have the classes S∗(φ), C(φ), and K(φ, ψ)
investigated by Ma and Minda [12] and Kim et al. [13]. For suitable choices
of φ and ψ we can easily gather the various subclasses of A. For example :

S∗(γ;
1 + z

1 − z
) = S∗(γ), C(γ;

1 + z

1 − z
) = C(γ),

K(γ, δ;
1 + z

1 − z
,
1 + z

1 − z
) = K(γ, δ).

Setting

fn
b,λ(z) = z +

∞∑
k=2

(k + b

1 + b

)n (k + λ− 1)!

λ!(k − 1)!
zk

(n ∈ C, b ∈ C \ Z
−, λ > −1; z ∈ U),

we define a new function (fn
b,λ)

(−1) in terms of the Hadamard product (or
convolution)

fn
b,λ(z) ∗ (fn

b,λ)
(−1)(z) =

z

(1 − z)μ
(μ > 0; z ∈ U).

Then, motivated essentially by the Choi-Sagio-Srivastava operator [2] (see also
[3] and [5]), we now introduce the operator In

b,λ,μ : A → A, which are defined
here by

In
b,λ,μf(z) = (fn

b,λ)
(−1)(z) ∗ f(z) (1.2)

(f ∈ A;n ∈ C, b ∈ C \ Z−, λ > −1, μ > 0).

Note that I0
0,λ,μ the Choi-Sagio-Srivastava operator was introduced and studied

by Choi et al. [2], and I0
0,λ,2 (λ ∈ N0) the Noor integral operator was introduced

by Noor [5]. (see also [3]). Also the operator In
b,0,μ (n ∈ R; b > −1) was studied

by Cho and Kim [6]. In particular, we note that I0
0,0,2 = zf ′(z) and I1

0,0,2 =
I0

0,1,2 = f(z). In view of (1.1) and (1.2), for n ∈ C, b ∈ C \Z−, λ > −1, μ > 0,
we obtain the following relations:

z(In+1
b,λ,μf(z))′ = (b+ 1)In

b,λ,μf(z) − bIn+1
b,λ,μf(z), (1.3)

z(In
b,λ+1,μf(z))′ = (λ+ 1)In

b,λ,μf(z) − λIn
b,λ+1,μf(z), (1.4)

and

z(In
b,λ,μf(z))′ = μIn

b,λ,μ+1f(z) − (μ− 1)In
b,λ,μf(z), (1.5)
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Next, by using the operator In
b,λ,μ, we introduce the following classes of analytic

functions for φ, ψ ∈ P, n ∈ C, b ∈ C \ Z−, λ > −1, μ > 0 and 0 ≤ γ, δ < 1:

Sn
b,λ,μ(γ;φ) =

{
f : f ∈ A and In

b,λ,μf(z) ∈ S∗(γ;φ)
}
,

Cn
b,λ,μ(γ;φ) =

{
f : f ∈ A and In

b,λ,μf(z) ∈ C(γ;φ)
}
,

and

Kn
b,λ,μ(γ, δ;φ, ψ) =

{
f : f ∈ A and In

b,λ,μf(z) ∈ K(γ, δ;φ, ψ)
}
.

We note that

f(z) ∈ Cn
b,λ,μ(γ;φ) ⇔ zf ′(z) ∈ Sn

b,λ,μ(γ;φ). (1.6)

In particular, we set

Sn
b,λ,μ

(
γ;
(1 + Az

1 +Bz

)α
)

= Sn
b,λ,μ(γ;A,B;α), (0 < α ≤ 1; −1 ≤ B < A ≤ 1),

and

Cn
b,λ,μ

(
γ;
(1 + Az

1 +Bz

)α
)

= Cn
b,λ,μ(γ;A,B;α), (0 < α ≤ 1; −1 ≤ B < A ≤ 1).

In this paper, we investigate several inclusion properties for the classes
Sn

b,λ,μ(γ;φ), Cn
b,λ,μ(γ;φ) and Kn

b,λ,μ(γ, δ;φ, ψ) associated with the operator In
b,λ,μ.

Some applications involving these and other families of operator are also ob-
tained.

2 Inclusion properties involving Inb,λ,μ
To derive our results we need the following lemmas:

Lemma 2.1 [7]. Let β, ν be complex numbers. Let φ ∈ P be convex univalent
in U with φ(0) = 1 and 	 [βφ(z)+ν] > 0, z ∈ U. If p(z) = 1+p1z+p2z

2 + · · ·
is analytic in U with p(0) = 1, then

p(z) +
zp′(z)

βp(z) + ν
≺ φ(z) ⇒ p(z) ≺ φ(z), (z ∈ U).

Lemma 2.2 [11]. Let φ ∈ P be convex univalent in U and w be analytic in U

with 	 w(z) ≥ 0, z ∈ U If p is analytic in U with p(0) = φ(0), then

p(z) + w(z)zp′(z) ≺ φ(z) ⇒ p(z) ≺ φ(z), (z ∈ U).
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At first, with the help of Lemma 2.1, we obtain the following:

Theorem 2.3

Sn
b,λ,μ+1(γ;φ) ⊂ Sn

b,λ,μ(γ;φ) ⊂ Sn+1
b,λ,μ(γ;φ),

for n ∈ C, b ∈ C \ Z−, λ ≥ 0, μ ≥ 1, 0 ≤ γ < 1 and φ ∈ P.

Proof. First, we will show that

Sn
b,λ,μ+1(γ;φ) ⊂ Sn

b,λ,μ(γ;φ).

Let f ∈ Sn
b,λ,μ+1(γ;φ) and set

p(z) =
1

1 − γ

(
z(In

b,λ,μf(z))′

In
b,λ,μf(z)

− γ

)
, (2.1)

where p analytic in U with p(0) = 1. Applying (1.5) and (2.1)

μ
In

b,λ,μ+1f(z)

In
b,λ,μf(z)

= (1 − γ)p(z) + γ + μ− 1. (2.2)

Taking the logarithmic differentiation on both sides of (2.2) and multiplying
by z, we have

1

1 − γ

(
z(In

b,λ,μ+1f(z))′

In
b,λ,μ+1f(z)

− γ

)
= p(z) +

zp′(z)
(1 − γ)p(z) + γ + μ− 1

(z ∈ U). (2.3)

Applying Lemma 2.1 to (2.3), it follows that p ≺ φ, that is f ∈ Sn
b,λ,μ(γ, φ).

To prove the second part, let f ∈ Sn
b,λ,μ(γ, φ) and put

h(z) =
1

1 − γ

(
z(In+1

b,λ,μf(z))′

In+1
b,λ,μf(z)

− γ

)
,

where h is analytic in U with h(0) = 1. Then, by using the arguments similar
to those detailed above with (1.3), it follows that h ≺ φ in U, which implies
that f ∈ Sn+1

b,λ,μ(γ;φ). Therefore, we complete the proof of Theorem 2.1.

Theorem 2.4

Sn
b,λ,μ+1(γ;φ) ⊂ Sn

b,λ,μ(γ;φ) ⊂ Sn
b,λ+1,μ(γ;φ),

for n ∈ C, b ∈ C \ Z−, λ ≥ 0, μ ≥ 1, 0 ≤ γ < 1 and φ ∈ P.
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Proof. We proved the first part in Theorem 2.3. To prove the second part let
f ∈ Sn

b,λ,μ(γ, φ) and put

p(z) =
1

1 − γ

(
z(In

b,λ+1,μf(z))′

In
b,λ+1,μf(z)

− γ

)
,

where p is analytic in U with p(0) = 1. Then, by using the arguments similar
to those detailed in Theorem 2.3 with (1.4), it follows that p ≺ φ in U, which
implies that f ∈ Sn

b,λ+1,μ(γ;φ).

Theorem 2.5 Let n ∈ C, b ∈ C \ Z
−, λ ≥ 0 and μ ≥ 1. Then

Cn
b,λ,μ+1(γ;φ) ⊂ Cn

b,λ,μ(γ;φ) ⊂ Cn+1
b,λ,μ(γ;φ) (0 ≤ γ < 1;φ ∈ P).

Proof. Applying (1.6) and Theorem 2.3, we observe that

f(z) ∈ Cn
b,λ,μ+1(γ;φ) ⇔ In

b,λ,μ+1f(z) ∈ C(γ;φ)

⇔ z(In
b,λ,μ+1f(z))′ ∈ S∗(γ;φ)

⇔ In
b,λ,μ+1(zf

′(z)) ∈ S∗(γ;φ)

⇔ zf ′(z) ∈ Sn
b,λ,μ+1(γ;φ)

⇒ zf ′(z) ∈ Sn
b,λ,μ(γ;φ)

⇔ In
b,λ,μ(zf ′(z)) ∈ S∗(γ;φ)

⇔ z(In
b,λ,μf(z))′ ∈ S∗(γ;φ)

⇔ In
b,λ,μf(z) ∈ C(γ;φ)

⇔ f(z) ∈ Cn
b,λ,μ(γ;φ),

and

f(z) ∈ Cn
b,λ,μ(γ, φ) ⇔ zf ′(z) ∈ Sn

b,λ,μ(γ;φ)

⇒ zf ′(z) ∈ Sn+1
b,λ,μ(γ;φ)

⇔ z(In+1
b,λ,μf(z))′ ∈ S∗(γ;φ)

⇔ In+1
b,λ,μf(z) ∈ C(γ;φ)

⇔ f(z) ∈ Cn+1
b,λ,μ(γ;φ),

which evidently proves Theorem 2.5.

By applying (1.6) and Theorem 2.4 and using the same methods to prove
Theorem 2.5 we can prove the follow:

Theorem 2.6 Let n ∈ C, b ∈ C \ Z−, λ ≥ 0 and μ ≥ 1. Then

Cn
b,λ,μ+1(γ;φ) ⊂ Cn

b,λ,μ(γ;φ) ⊂ Cn
b,λ+1,μ(γ;φ) (0 ≤ γ < 1;φ ∈ P).
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Taking

φ(z) =
(1 + Az

1 +Bz

)α

(−1 ≤ B < A ≤ 1; 0 < α ≤ 1; z ∈ U) (2.4)

in Theorem 2.3 and Theorem 2.5, we have the following

Corollary 2.7 Let n ∈ C, b ∈ C \ Z−, λ ≥ 0 and μ ≥ 1. Then

Sn
b,λ,μ+1(γ;A,B;α) ⊂ Sn

b,λ,μ(γ;A,B;α) ⊂ Sn+1
b,λ,μ(γ;A,B;α)

(0 ≤ γ < 1; −1 ≤ B < A ≤ 1; 0 < α ≤ 1),

and

Cn
b,λ,μ+1(γ;A,B;α) ⊂ Cn

b,λ,μ(γ;A,B;α) ⊂ Cn+1
b,λ,μ(γ;A,B;α)

(0 ≤ γ < 1; −1 ≤ B < A ≤ 1; 0 < α ≤ 1).

Also, by taking (2.4) in Theorem 2.4 and Theorem 2.6, we have the following

Corollary 2.8 Let n ∈ C, b ∈ C \ Z−, λ ≥ 0 and μ ≥ 1. Then

Sn
b,λ,μ+1(γ;A,B;α) ⊂ Sn

b,λ,μ(γ;A,B;α) ⊂ Sn
b,λ+1,μ(γ;A,B;α)

(0 ≤ γ < 1; −1 ≤ B < A ≤ 1; 0 < α ≤ 1),

and

Cn
b,λ,μ+1(γ;A,B;α) ⊂ Cn

b,λ,μ(γ;A,B;α) ⊂ Cn
b,λ+1,μ(γ;A,B;α)

(0 ≤ γ < 1; −1 ≤ B < A ≤ 1; 0 < α ≤ 1).

Next, by using Lemma 2.2, we obtain the following inclusion relation for the
class Kn

b,λ,μ(γ, δ;φ, ψ).

Theorem 2.9 Let n ∈ C, b ∈ C \ Z−, λ > −1 and μ ≥ 1. Then

Kn
b,λ,μ+1(γ, δ;φ, ψ) ⊂ Kn

b,λ,μ(γ, δ;φ, ψ) ⊂ Kn+1
b,λ,μ(γ, δ;φ, ψ)

(0 ≤ γ, δ < 1;φ, ψ ∈ P).

Proof. We begin by proving that

Kn
b,λ,μ+1(γ, δ;φ, ψ) ⊂ Kn

b,λ,μ(γ, δ;φ, ψ).

Let f ∈ Kn
b,λ,μ+1(γ, δ;φ, ψ). Then, in view of the definition of the class

Kn
b,λ,μ+1(γ, δ;φ, ψ), there exists a function g ∈ Sn

b,λ,μ+1(γ;φ) such that

1

1 − δ

(
z(In

b,λ,μ+1f(z))′

In
b,λ,μ+1g(z)

− δ

)
≺ ψ(z) (z ∈ U).
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Now let

p(z) =
1

1 − δ

(
z(In

b,λ,μf(z))′

In
b,λ,μg(z)

− δ

)

where p is analytic in U with p(0) = 1. Using (1.5), we obtain

[(1 − δ)p(z) + δ]In
b,λ,μg(z) + (μ− 1)In

b,λ,μf(z) = μIn
b,λ,μ+1f(z). (2.5)

Differentiating (2.5) and multiplying by z, we have

(1 − δ)zp′(z)In
b,λ,μg(z) + [(1 − δ)p(z) + δ]z(In

b,λ,μg(z))
′

= μz(In
b,λ,μ+1f(z))′ − (μ− 1)z(In

b,λ,μf(z))′. (2.6)

Since g ∈ Sn
b,λ,μ+1(γ;φ), by Theorem 2.3, we know that g ∈ Sn

b,λ,μ(γ;φ). Let

q(z) =
1

1 − γ

(
z(In

b,λ,μg(z))
′

In
b,λ,μg(z)

− γ

)
.

Then, using (1.5) once again, we have

μ
In

b,λ,μ+1g(z)

In
b,λ,μg(z)

= (1 − γ)q(z) + μ+ γ − 1. (2.7)

¿From (2.6) and (2.7), we obtain

1

1 − δ

(
z(In

b,λ,μ+1f(z))′

In
b,λ,μ+1g(z)

− δ

)
= p(z) +

zp′(z)
(1 − γ)q(z) + μ+ γ − 1

.

Since μ ≥ 1 and q ≺ φ in U,

Re {(1 − γ)q(z) + μ+ γ − 1} > 0 (z ∈ U).

Hence applying Lemma 2.2, we can show that p ≺ φ, so that f ∈ Kn
b,λ,μ(γ, δ;φ, ψ).

For the second part, by using the arguments similar to those detailed above
with (1.3), we obtain

Kn
b,λ,μ(γ, δ;φ, ψ) ⊂ Kn+1

b,λ,μ(γ, δ;φ, ψ).

Therefore, we complete the proof of Theorem 2.9.

Theorem 2.10 Let n ∈ C, b ∈ C \ Z−, λ ≥ 0 and μ ≥ 1. Then

Kn
b,λ,μ+1(γ, δ;φ, ψ) ⊂ Kn

b,λ,μ(γ, δ;φ, ψ) ⊂ Kn
b,λ,μ+1(γ, δ;φ, ψ)

(0 ≤ γ, δ < 1;φ, ψ ∈ P).

Proof. We proved the first part in Theorem 2.9. For the second part, by using
the arguments similar to those detailed in Theorem 2.9 with (1.4).
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3 Inclusion properties involving the integral

operator Fc

In this section, we consider the generalized Libera integral operator Fc [8] (see
also [9] and [10]) defined by

Fc(z) = Fc(f)(z) =
c+ 1

zc

z∫
0

tc−1f(t)dt (f ∈ A; c > −1). (3.1)

¿From the definition of Fc defined by (3.1), we observe that

z(In
b,λ,μFc(z))

′ = (c+ 1)In
b,λ,μf(z) − cIn

b,λ,μFc(z). (3.2)

Theorem 3.1 Let c ≥ 0, n ∈ C, b ∈ C \ Z−, λ > −1 and μ > 0. If f ∈
Sn

b,λ,μ(γ;φ), (0 ≤ γ < 1;φ ∈ P), then Fc(z) ∈ Sn
b,λ,μ(γ;φ), (0 ≤ γ < 1;φ ∈ P).

Proof. Let f ∈ Sn
b,λ,μ(γ;φ) and set

p(z) =
1

1 − γ

(
z(In

b,λ,μFc(z))
′

In
b,λ,μFc(z)

− γ

)
, (3.3)

where p is analytic in U with p(0) = 1.
By using (3.2)and (3.3), we obtain

(c+ 1)
In

b,λ,μf(z)

In
b,λ,μFc(z)

= (1 − γ)p(z) + c+ γ (3.4)

Taking the logarithmic differentiation on both sides of (3.4) and multiplying
by z, we have

1

1 − γ

(
z(In

b,λ,μf(z))′

In
b,λ,μf(z)

− γ

)
= p(z) +

zp′(z)
(1 − γ)p(z) + c+ γ

(z ∈ U).

Hence, by virtue of Lemma 2.1, we conclude that p ≺ φ in U, which implies
that Fc(z) ∈ Sn

b,λ,μ(γ;φ).

Next, we derive an inclusion property involving Fc, which is given by the
following.

Theorem 3.2 Let c ≥ 0, n ∈ C, b ∈ C \ Z−, λ > −1 and μ > 0. If f ∈
Cn

b,λ,μ(γ;φ), (0 ≤ γ < 1;φ ∈ P), then Fc(z) ∈ Cn
b,λ,μ(γ;φ), (0 ≤ γ < 1;φ ∈ P).
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Proof. By applying Theorem 3.1, it follows that

f(z) ∈ Cn
b,λ,μ(γ;φ) ⇔ zf ′(z) ∈ Sn

b,λ,μ(γ;φ)

⇒ Fc(zf
′(z)) ∈ Sn

b,λ,μ(γ;φ)

⇔ z(Fc(z))
′ ∈ Sn

b,λ,μ(γ;φ)

⇔ Fc(z) ∈ Cn
b,λ,μ(γ;φ),

which proves Theorem 3.2.
¿From Theorem 3.1 and Theorem 3.2, we have the following.

Corollary 3.3 Let c ≥ 0, n ∈ C, b ∈ C \ Z−, λ > −1 and μ > 0. If f belongs
to the class Sn

b,λ,μ(γ;A,B;α) (orCn
b,λ,μ(γ;A,B;α))(0 ≤ γ < 1; −1 ≤ B < A ≤

1; 0 < α ≤ 1), the Fc(z) belongs to the class Sn
b,λ,μ(γ;A,B;α) (orCn

b,λ,μ(γ;A,B;α))(0 ≤
γ < 1; −1 ≤ B < A ≤ 1; 0 < α ≤ 1).

Finally, we prove the following.

Theorem 3.4 c ≥ 0, n ∈ C, b ∈ C \ Z−, λ > −1 and μ > 0. If f ∈
Kn

b,λ,μ(γ, δ;φ, ψ), (0 ≤ γ < 1;φ ∈ P), then Fc(z) ∈ Kn
b,λ,μ(γ, δ;φ, ψ), (0 ≤

γ < 1;φ ∈ P).

Proof. Let f ∈ Kn
b,λ,μ(γ, δ;φ, ψ). Then, in view of the definition of the class

Kn
b,λ,μ(γ, δ;φ, ψ), there exists a function g ∈ Sn

b,λ,μ(γ;φ) such that

1

1 − δ

(
z(In

b,λ,μf(z))′

In
b,λ,μg(z)

− δ

)
≺ ψ(z) (z ∈ U).

Thus, we set

p(z) =
1

1 − δ

(
z(In

b,λ,μFc(z))
′

In
b,λ,μFc(g)(z)

− δ

)
.

where p is analytic in U with p(0) = 1. Since g ∈ Sn
b,λ,μ(γ;φ), we see from

Theorem 3.1 that Fc(g) ∈ Sn
b,λ,μ(γ;φ). Using (3.2), we have

(c+ 1)
z(In

b,λ,μf(z))′

In
b,λ,μFc(z)

= [(1 − δ)p(z) + δ][(1 − γ)q(z) + c+ γ] + (1 − δ)zp′(z),

where

q(z) =
1

1 − γ

(
z(In

b,λ,μFc(g)(z))
′

In
b,λ,μFc(g)(z)

− γ

)
.
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Hence, we have

1

1 − δ

(
z(In

b,λ,μf(z))′

In
b,λ,μg(z)

− δ

)
= p(z) +

zp′(z)
(1 − γ)q(z) + c+ γ

.

The remaining part of the proof in Theorem 3.4 is similar to that of Theorem
2.9 and so we omit it.
Acknowledgement The work presented here was supported by Fundamental
Research Grant Scheme: UKM-ST-01-FRGS0055-2006, Malaysia.
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