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Abstract

We discuss different variants of Newton’s method for computing a
pth root of a given matrix. A suitable implementation is presented for
solving the Sylvester equation, that appears at every Newton’s iteration,
via Kronecker products. This approach is quadratically convergent and
stable, but too expensive in computational cost. In contrast we propose
and analyze some specialized versions that exploit the commutation of
the iterates with the given matrix. We establish convergence of all the
new versions under mild assumptions on the initial guess, and stabil-
ity for one of them. These versions are relatively inexpensive and can
easily be combined, at the final stages, with the Newton-Kronecker im-
plementation to avoid possible stability problems when high precision is
required. Preliminary and encouraging numerical results of the hybrid
schemes are presented for p = 3 and p = 5.
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1 Introduction

Consider the nonlinear matrix equation

F (X) = Xp − A, (1)

where A ∈ C
n×n and p is a positive integer. A solution X of (1) is called a

matrix p-th root of A. This problem appears for instance as a useful tool in
the calculation of matrix logarithms [3, 8], and also for computing the matrix
sector function [12, 16]. The problem of computing the square root (p = 2)
has received significant attention [2, 4, 5, 7, 9, 13], and the general case has
also been considered [1, 14, 15, 17]. In this work we pay special attention to
the computational issues associated with Newton’s method for computing (1).

2 Classical Newton’s method

Newton’s method for finding the roots of F : Cn×n → Cn×n is given by the
following iterative scheme

Xk+1 = Xk − F ′(Xk)
−1F (Xk), k = 0, 1, . . .

where F ′ denotes the Fréchet derivative of F , and X0 is given. In order to
obtain F ′, consider the expression for F (X + H), where H is an arbitrary
matrix

F (X + H) = (X + H)p − A

= (Xp − A) +

p−1∑
i=0

Xp−1−iHX i + O(H2).

Now, recalling the Taylor series for F about X, F (X+H) = F (X)+F ′(X)H+
R(H), where R(X) is such that

lim
‖H‖→0

‖R(H)‖
‖H‖ = 0,

we observe that F ′(X) is the linear operator given by

F ′(X)H =

p−1∑
i=0

Xp−1−iHX i.

Therefore, the classical Newton’s method, starting at X0, can be written as
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Algorithm 1 (Newton’s method for a matrix p-th root)
For k = 0, 1, 2, . . .

Solve
∑p−1

i=0 Xp−1−i
k HkX

i
k = A − Xp

k (for Hk)

Set Xk+1 = Xk + Hk

End

The classical local convergence analysis for Newton’s method guarantees that,
under standard assumptions, if X0 is sufficiently close to a p-th root of A, then
the sequence generated by Algorithm 1 converges q-quadratically to that p-th
root of A. On the negative side, we need to solve the linear matrix equation
for Hk at every iteration of algorithm 1. For that we can use the Kronecker
product and solve the following standard linear system instead[
(I ⊗ Xp−1

k ) +

p−2∑
q=1

(
(Xq

k)
T ⊗ Xp−q−1

k

)
+
(
(Xp−1

k )T ⊗ I
)]

vec(Hk) = vec(A − Xp
k),

(2)

where I represents the n×n identity matrix, and vec(X) : Cn×n → Cn2
is given

by vec(X) = (xt
1 xt

2 · · · xt
n)t where xj ∈ Cn represents the j−th column of

X. In here, we are using the well-known properties of the Kronecker product
(see [6]), vec(XBX) = (XT ⊗X)vec(B) and vec(XB +BX) = (I ⊗X +XT ⊗
I)vec(B).

The linear system (2) can be solved by means of many different well-known
iterative or direct method. However, it involves n2 equations and n2 unknowns,
and so the computational cost is very expensive. It can be simplified and the
computational cost reduced by using the Schur factorization of the matrix Xk

as described below. Instead of solving (2) we propose to solve at every k, the
following linear system[

(I ⊗ Rp−1
k ) +

p−2∑
q=1

(
(Rq

k)
T ⊗ Rp−q−1

k

)
+
(
(Rp−1

k )T ⊗ I
)]

vec(Yk) = vec(C̃k),

(3)

where Xk = QkRkQ
T
k (Schur factorization), Yk = QT

k HkQk, and C̃k = QT
k (A−

Xp
k)Qk.

The advantage of this new and equivalent formulation is that the coefficient
matrix in (3) is block lower triangular, and each block, denoted by Sk

ij , is upper
triangular. Hence, (3) can be solved using the next block forward substitution
algorithm.

Algorithm 2 (Block forward substitution)
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Figure 1: Structure of the coefficient matrix in (3)

Solve Sk
11y

k
1 = ck

1

For m = 2, 3, · · · , n do

bm = ck
m −∑m−1

j=1 Sk
mjy

k
j

Solve Sk
mmyk

m = bm by back substitution

End
where yk

j and ck
j are the j−th columns of Yk and C̃k respectively.

Consequently, using the Schur factorization of Xk, Newton’s method can
be written as

Algorithm 3 (Newton-Kronecker-Schur method)

Given X0

For k=0,1,2...

[Qk, Rk] =Schur(Xk)

Set C̃k = QT
k (A − Xp

k)Qk

Solve (3) for Yk using Algorithm 2

Set Hk = QkYkQ
T
k

Xk+1 = Xk + Hk

End

The structure of the coefficient matrix in (3) is shown in Figure 1.

Notice that solving (3) for Yk using Algorithm 2, as required in Algorithm
3, does not need the explicit construction of the coefficient matrix, and this
represents a significant reduction in storage. It is clear that this new formula-
tion has a lot of potential for parallel implementations. It can also be observed,
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in Figure 1, that the algorithm only needs to build the Sk
mj blocks, 1 ≤ j ≤ m,

one at a time for sequential implementations. Indeed, the Sk
ij blocks can be

dynamically built as follows

Sk
ij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

p−2∑
q=1

(rk
ji)

qRp−q−1
k + diag(tkji) if i �= j

p−2∑
q=1

(rk
ii)

qRp−q−1
k + diag(tkii) + Rp−1

k if i = j

where (rk
ji)

q represents the ij−th position Rq
k and tkij represents the ij−th

position of R
(p−1)
k for j ≥ i.

3 Specialized versions

If Xk commutes with A, then Hk commutes with Xk, and Xk+1 will also
commute with A. As we will see later, these events can be guaranteed for
some special initial choices X0. Under these circumstances the system to be
solved at every iteration, of the classical Newton’s method, can be simplified
as follows

p(Xp−1
k Hk) = A − Xp

k ,

and so,

Hk = (AX1−p
k − Xk)/p.

After some simple manipulations, where the commutativity between A and
X−1

k is also exploited, we obtain three different specialized (or simplified) ver-
sions:

(I) : Yk+1 =
1

p

[
Y

(1−p)
k A + (p − 1)Yk

]
(4)

(II) : Zk+1 =

⎧⎪⎨⎪⎩
1
p

[
Z

(1−p)/2
k AZ

(1−p)/2
k + (p − 1)Zk

]
for p odd

1
p

[
Z

−p/2
k AZ

−p/2
k + (p − 1)I

]
Zk for p even

(5)

(III) : Wk+1 =
1

p

[
AW

(1−p)
k + (p − 1)Wk

]
. (6)

We now establish an important result concerning the commutativity of the
involved matrices when the iterates are well-defined, i.e., when the Fréchet
derivative, F ′(Xk), is nonsingular at each k. It is motivated by Theorem 1 in
[4].
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Theorem 1 Consider iterations (I),(II), and (III), and also the scheme described
in Algorithm 1. Suppose that X0 = Y0 = Z0 = W0 commute with A, and that all the
Newton iterates Xk are well-defined. Then

1. XkA = AXk for all k,

2. XkSk = SkXk for all k,

3. Xk = Yk = Zk = Wk for all k.

Proof. We will prove the theorem for p odd. For p even, the arguments can
be followed almost verbatim. The first part will be established by induction. If
k = 0, AX0 = X0A by assumption. Suppose that AXk = XkA, which implies
that X−1

k A = AX−1
k . Let

Gk =
1

p

[
X

(1−p)/2
k AX

(1−p)/2
k − Xk

]
.

We have that

F ′(Xk)Gk =
p−1∑
q=0

X
(p−q−1)
k GkXq

k

=
1
p

p−1∑
q=0

X
(p−q−1)
k

[
X

(1−p)/2
k AX

(1−p)/2
k − Xk

]
Xq

k =
1
p

p−1∑
q=0

[
X

(p−2q−1)/2
k AX

(1−p)/2
k − Xp−q

k

]
Xq

k

=
1
p

p−1∑
q=0

[
X

(p−2q−1)/2
k AX

(−p+2q+1)/2
k − Xp

k

]
=

1
p

p−1∑
q=0

[
X

(p−2q−1)/2
k X

−(p−2q−1)/2
k A − Xp

k

]

=
1
p

p−1∑
q=0

[A − Xp
k ] = A − Xp

k = −F (Xk).

Hence, since all Newton iterates are well-defined, then Gk = Sk. Moreover,
Xk+1 = Xk + Sk = Xk + Gk, and so

Xk+1 = Xk +
1

p

[
X

(1−p)/2
k AX

(1−p)/2
k − Xk

]
.

Consequently

AXk+1 = AXk + 1
p

[
AX

(1−p)/2
k AX

(1−p)/2
k − AXk

]
= XkA + 1

p

[
X

(1−p)/2
k AX

(1−p)/2
k A − XkA

]
=

[
Xk + 1

p

[
X

(1−p)/2
k AX

(1−p)/2
k − Xk

]]
A

= Xk+1A.
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For the second part, since Sk = Gk then showing that XkSk = SkXk is
equivalent to showing that XkGk = GkXk. Indeed,

XkGk = Xk

[
1
p

[
X

(1−p)/2
k AX

(1−p)/2
k − Xk

]]
= 1

p

[
XkX

(1−p)/2
k AX

(1−p)/2
k − X2

k

]
= 1

p

[
X

(1−p)/2
k XkAX

(1−p)/2
k − X2

k

]
= 1

p

[
X

(1−p)/2
k AXkX

(1−p)/2
k − X2

k

]
= 1

p

[
X

(1−p)/2
k AX

(1−p)/2
k Xk − X2

k

]
= 1

p

[
X

(1−p)/2
k AX

(1−p)/2
k − Xk

]
Xk

= GkXk.

To establish the third part it is enough to commute, in a suitable way, Xk

and Sk in the Newton iteration. �

Another specialized version (let us call it {Vk}), that we would like to
present, is based on a recent Newton type scheme discussed by Iannazzo [7]
for computing matrix square roots. It is based on the fact that Hk commutes
with Xk+1 in the three simplified Newton schemes presented above. In that
case Vk+1 = Vk + Hk, and

Hk =
1

p
(AV 1−p

k − Vk) =
1

p
(A − V p

k )V 1−p
k . (7)

Hence A − V p
k − pV p−1

k Hk = 0, and so

Hk+1 = 1
p
[A − (Vk + Hk)

p]V 1−p
k+1

=
1

p

[
A −

p∑
q=0

(
p
q

)
V q

k Hp−q
k

]
V 1−p

k+1

=
1

p

[
A − pV p−1

k Hk − V p
k −

p−2∑
q=0

(
p
q

)
V q

k Hp−q
k

]
V 1−p

k+1

=
1

p

[
−

p−2∑
q=0

(
p
q

)
V q

k Hp−q
k

]
V 1−p

k+1 .

This identity yields the following general scheme for computing {Vk+1}

(IV ) :

⎧⎪⎪⎨⎪⎪⎩
Vk+1 = Vk + Hk

Hk+1 =
1

p

[
−

p−2∑
q=0

(
p
q

)
V q

k Hp−q
k

]
V 1−p

k+1 ,



2408 B. De Abreu, M. Monsalve and M. Raydan

where V0 is given and H0 = 1
p
[A − V p

0 ] V 1−p
0 .

Based on the previous results, it follows that the Newton iteration {Xk}
and the four simplified versions {Yk}, {Zk}, {Wk}, and {Vk} produce the
same iterates provided the initial guess X0 = Y0 = Z0 = W0 = V0 commutes
with A, and F ′(Xk) is nonsingular at each k. We now discuss briefly the
convergence of these sequences when the matrix A is diagonalizable. Following
the arguments in Smith [15] (see also Higham [4]), we can in theory diagonalize
the iterates, and uncouple the process into n scalar Newton iterations for the
pth root of the eigenvalues, λi, of A. According to the standard analysis for
the scalar Newton’s method, these scalar sequences converge to λ

1/p
i provided

the eigenvalues of the initial guess are close enough to the eigenvalues at the
solution. Therefore, in particular, if the matrix A is symmetric and positive
definite, and the initial guess is chosen as a symmetric and positive definite
matrix that commutes with A (e. g., A or I), then the four simplified versions
converge to the unique symmetric and positive definite pth root of A. Notice
that in this case we are guaranteeing convergence to the so-called principal pth
root of A [16].

Concerning the stability issue, it is well-known that under standard as-
sumptions, the classical Newton’s method is a stable algorithm for finding
roots of nonlinear maps. Since the Schur factorization of a given matrix is also
a stable process, then Algorithm 3 for computing a p-th root of a matrix is
stable. On the other hand, as discussed by Smith [15], the simplified versions
that generate the sequences {Yk} and {Wk} are unstable. The version that
generates {Zk} belongs to the same family and, as we will see in practice, it is
also unstable although in general it reduces the loss of numerical commutativ-
ity, and as a consequence it has a better behavior than the other two simplified
versions. On the other hand, as we will establish later, the sequence {Vk} has
a stable behavior.

To illustrate the discussed behavior of the sequences {Yk}, {Zk}, {Wk}, and
{Vk} we apply them to the specific problem of finding the cubic root (p = 3)
of the 5 × 5 Hilbert matrix. In that case, the three simplified versions {Yk},
{Zk}, {Wk} can be written as

Yk+1 = 1
3

[
Y −2

k A + 2Yk

]
Zk+1 = 1

3

[
Z−1

k AZ−1
k + 2Zk

]
Wk+1 = 1

3

[
AW−2

k + 2Wk

]
.

For the sequence {Vk}, when p = 3, we present the following expression to
compute Hk+1 obtained from Algorithm (IV). Computing the cubic root of ma-
trices has been recently associated with the calculation of fractional derivatives
that appear in high energy physics [10, 11].
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Hk+1 = 1
3
(−H3

k − 3VkH
2
k)V −2

k+1

= 1
3
(−3Vk − Hk)H

2
kV

−2
k+1

= 1
3
(−3Vk+1 + 2Hk)H

2
kV

−2
k+1

[2mm] = 1
3
HkV

−1
k+1Hk(2V

−1
k+1Hk − 3I).

This identity produces the following simplified version of Algorithm (IV) for
computing the cubic root of A.

Algorithm 4 Given V0 such that AV0 = V0A

Set H0 = 1
3
(V −1

0 AV −1
0 − V0)

For k=0,1,2...

Vk+1 = Vk + Hk

Tk+1 = V −1
k+1Hk

Hk+1 = 1
3
HkTk+1(2Tk+1 − 3I)

End

Repeating the same arguments for p = 5, it follows from Algorithm (IV)
that

Hk+1 =
1

5
HkV

−1
k+1Hk(4V

−3
k+1H

3
k − 15V −2

k+1H
2
k + 20V −1

k+1Hk − 10I),

and the following algorithm for computing the fifth root of A is obtained

Algorithm 5 Given V0 such that AV0 = V0A

Set H0 = 1
5
(V −2

0 AV −2
0 − V0)

For k=0,1,2...

Vk+1 = Vk + Hk

Tk+1 = V −1
k+1Hk

Hk+1 = 1
5
HkTk+1(4T

3
k+1 − 15T 2

k+1 + 20Tk+1 − 10I)

End

In Figure 2 we can see the behavior of the four simplified versions of New-
ton’s method for finding the cubic root of the 5×5 Hilbert matrix. As expected,
the versions that produce the sequences {Zk}, {Wk} and {Yk} are unstable,
whereas the one that produces the sequence {Vk} is not. However, the se-
quence {Vk} shows stagnation below the required accuracy. Moreover, it is
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worth noticing that the sequence {Zk} achieves a better approximation be-
fore blowing up. This behavior has been observed in several experiments for
different test matrices with different dimensions. This is precisely the charac-
teristic that motivates us to introduce, later in this paper, hybrid techniques
that combine the sequences {Zk} and {Vk} with Algorithm 3 and a suitable
alternating projection scheme. First, in our next section we study the stability
of the sequence {Vk}.
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Figure 2: Behavior of simplified versions of Newton’s method for finding the
cubic root of the 5 × 5 Hilbert matrix.

4 Stability of the sequence {Vk}
In this section we establish that the sequence {Vk} is stable for any p. As
described before for p = 3 and p = 5, Hk+1 can be written as a polynomial
expression involving Tk+1 = V −1

k+1Hk multiplied by Hk, and so Hk+1 depends
only on Hk and Vk+1. For that we need to establish the following useful result.

Proposition 1 Let X, Y be any two matrices in IRn×n such that XY = Y X.
Then



Specialized hybrid Newton schemes 2411

∀βq ∈ IR : ∃λq ∈ IR :

m∑
q=0

βqX
qY m−q =

m∑
q=0

λq(X + Y )qY m−q (8)

where m ≥ 0.

Proof. We proceed by induction on m. For m = 0, if we take λ0 = β0 the
result clearly holds. Let us assume that the result is true for m = k. We need
to show that it holds for m = k + 1. For that let β̂q ∈ IR be any real scalars

for each 0 ≤ q ≤ k +1, and let us consider the matrix
∑k+1

q=0 β̂qX
qY k+1−q, that

can be written as

k+1∑
q=0

β̂qX
qY k+1−q =

k∑
q=0

β̂qX
qY k+1−q + β̂k+1X

k+1. (9)

Using now Newton’s binomial formula we obtain

(X + Y )k+1 =
k+1∑
q=0

(
k + 1

q

)
XqY k+1−q = Xk+1 +

k∑
q=0

(
k + 1

q

)
XqY k+1−q,

which implies in our setting

β̂k+1X
k+1 = β̂k+1(X + Y )k+1 −

k∑
q=0

β̂k+1

(
k + 1

q

)
XqY k+1−q. (10)

Substituting (10) in (9) it follows that

k+1∑
q=0

β̂qX
qY k+1−q =

k∑
q=0

β̂qX
qY k+1−q −

k∑
q=0

β̂k+1

(
k + 1

q

)
XqY k+1−q + β̂k+1(X + Y )k+1

=

(
k∑

q=0

[
β̂q − β̂k+1

(
k + 1

q

)]
XqY k−q

)
Y − β̂k+1(X + Y )k+1. (11)

Using the inductive hypothesis in (11) we have that there exist λ̂q for 0 ≤ q ≤ k
such that

k+1∑
q=0

β̂qX
qY k+1−q =

(
k∑

q=0

λ̂q(X + Y )qY k−q

)
Y − β̂k+1(X + Y )k+1

=

k∑
q=0

λ̂q(X + Y )qY k+1−q − β̂k+1(X + Y )k+1Y 0

=
k+1∑
q=0

λ̂q(X + Y )qY k+1−q, (12)
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where λ̂k+1 = −β̂k+1, and the result is established. �

We are now ready to write Hk+1 as a function of Hk and Vk+1. Indeed,
from Algorithm (IV ), Hk+1 can be written as

Hk+1 =
1

p

[
−

p−2∑
q=0

(
p
q

)
V q

k Hp−q−2
k

]
H2

kV
1−p
k+1 .

Using Proposition 1 and recalling that Hk commutes with Vk we obtain that

Hk+1 =
1

p

[
p−2∑
q=0

λq(Vk + Hk)
qHp−q−2

k

]
H2

kV
1−p
k+1 =

1

p
Hk

[
p−2∑
q=0

λqV
−p+q+1
k+1 Hp−q−1

k

]

=
1

p
Hk

[
p−2∑
q=0

λq(V
−1
k+1Hk)

p−q−1

]
=

1

p
Hk

[
p−2∑
q=0

λqT
p−q−1
k+1

]
(13)

where Tk+1 = V −1
k+1Hk.

Concerning equation (13), it is worth noticing that in order to have a
practical expression for a chosen p, we must know explicitly λq for each q.
Nevertheless, to establish the stability of the sequence {Vk}, we only need to
know that λq is a real number for 0 ≤ q ≤ p − 2.

Theorem 2 (Stability of the sequence {Vk}) Let us assume that A ∈ Cn×n

. If V0 is given such that V0A = AV0, and Vk → A1/p when k → ∞, then the
sequence {Vk} generated by Algorithm (IV ) is numerically stable.

Proof. Emulating the arguments used in [7, pp. 277-278], we will analyze
the effect of small perturbations at a given iteration over the forthcoming
iterations.

Let ΔVk and ΔHk be the numerical perturbations introduced at the k-th
iteration of Algorithm (IV ), and let

V̂k = Vk + ΔVk,

Ĥk = Hk + ΔHk.

In our analysis we assume exact arithmetic, and we also assume that the second
order terms (ΔVk)

2, (ΔHk)
2, ΔVkΔHk, and ΔHkΔVk are insignificant and so

they are not taken into account. For V̂k+1 it follows that

V̂k+1 = V̂k + Ĥk = Vk+1 + ΔVk + ΔHk,
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and hence

ΔVk+1 = V̂k+1 − Vk+1 = ΔVk + ΔHk. (14)

For Ĥk+1 we have using (13) that

Ĥk+1 =
1

p
Ĥk

[
p−2∑
q=0

λqT̂
p−q−1
k+1

]
. (15)

Since T̂k+1 can be written as

T̂k+1 = V̂ −1
k+1Ĥk = (Vk+1 + ΔVk+1)

−1(Hk + ΔHk),

and using the well-known fact that for any nonsingular matrix B and any
matrix C, (B +C)−1 ≈ B−1 −B−1CB−1, up to second order terms, we obtain
that

T̂k+1 ≈ (V −1
k+1 − V −1

k+1ΔVk+1V
−1
k+1)(Hk + ΔHk)

≈ V −1
k+1Hk + V −1

k+1ΔHk − V −1
k+1ΔVk+1V

−1
k+1Hk. (16)

From equation (14) we know that ΔVk+1 = ΔVk + ΔHk, and so (16) can be
written as

T̂k+1 ≈ V −1
k+1Hk + V −1

k+1ΔHk − V −1
k+1(ΔVk + ΔHk)V

−1
k+1Hk

= V −1
k+1Hk + V −1

k+1ΔHk − V −1
k+1ΔVkV

−1
k+1Hk − V −1

k+1ΔHkV
−1
k+1Hk

= Tk+1 + Mk+1, (17)

where Mk+1 = V −1
k+1ΔHk − V −1

k+1ΔVkTk+1 − V −1
k+1ΔHkTk+1.

Substituting (17) in (15) we have that

Ĥk+1 =
1

p
Ĥk

[
p−2∑
q=0

λq(Tk+1 + Mk+1)
p−q−1

]
. (18)

Since second order terms are not taken into account, then for the polyno-
mial (Tk+1 +Mk+1)

p−q−1, in (18), we only need to consider the terms for which
Mk+1 is of degree zero or one:

(Tk+1 + Mk+1)
p−q−1 ≈ T p−q−1

k+1 +

p−q−2∑
j=0

T j
k+1Mk+1T

p−q−2−j
k+1 . (19)
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Substituting (19) in (18), and using Ĥk = Hk + ΔHk and equation (13), it
follows that

Ĥk+1 ≈ 1

p
(Hk + ΔHk)

[
p−2∑
q=0

λqT
p−q−1
k+1 +

p−2∑
q=0

λq

p−q−2∑
j=0

T j
k+1Mk+1T

p−q−2−j
k+1

]

≈ Hk+1 +
1

p
Hk

p−2∑
q=0

λq

p−q−2∑
j=0

T j
k+1Mk+1T

p−q−2−j
k+1 +

1

p
ΔHk

p−2∑
q=0

λqT
p−q−1
k+1 .

Recalling now that ΔHk+1 = Ĥk+1 −Hk+1 and that Hk commutes with Vk, we
conclude that Hk also commutes with Tk+1 = V −1

k+1Hk, and so

ΔHk+1 ≈ 1

p

p−2∑
q=0

λq

p−q−2∑
j=0

T j
k+1HkMk+1T

p−q−2−j
k+1 +

1

p
ΔHk

p−2∑
q=0

λqT
p−q−1
k+1 . (20)

Using now the definition of Mk+1 we obtain that

HkMk+1 = Hk[V
−1
k+1ΔHk − V −1

k+1ΔVkTk+1 − V −1
k+1ΔHkTk+1]

= Tk+1[ΔHk − ΔVkTk+1 − ΔHkTk+1]. (21)

Finally, substituting (21) in (20), we have the desired expression for ΔHk+1

ΔHk+1 ≈ 1

p

p−2∑
q=0

λq

p−q−2∑
j=0

T j+1
k+1ΔHkT

p−q−2−j
k+1 − 1

p

p−2∑
q=0

λq

p−q−2∑
j=0

T j+1
k+1ΔVkT

p−q−1−j
k+1

−1

p

p−2∑
q=0

λq

p−q−2∑
j=0

T j+1
k+1ΔHkT

p−q−1−j
k+1 − 1

p
ΔHk

p−2∑
q=0

λqT
p−q−1
k+1 . (22)

Applying any subordinate norm to (22), it follows that

‖ΔHk+1‖ ≤

‖ΔHk‖
[

1
p

p−2∑
q=0

|λq|(p − q − 1)‖Tk+1‖p−q−1

]
+ ‖ΔVk‖

[
1
p

p−2∑
q=0

|λq|(p − q − 1)‖Tk+1‖p−q

]

+ ‖ΔHk‖
[

1
p

p−2∑
q=0

|λq|(p − q − 1)‖Tk+1‖p−q

]
+ ‖ΔHk‖

[
1
p

p−2∑
q=0

|λq|‖Tk+1‖p−q−1

]
. (23)

Setting now, for simplicity, αk = ‖Tk+1‖, c1 = 1
p

∑p−2
q=0 |λq|(p − q − 1)‖Tk+1‖p−q−1

and c2 = 1
p

∑p−2
q=0 |λq|‖Tk+1‖p−q−1, (23) can be written in a compact form as

‖ΔHk+1‖ ≤ c1‖ΔHk‖ + c1‖ΔVk‖‖Tk+1‖ + c1‖ΔHk‖‖Tk+1‖ + c2‖ΔHk‖
= [c1αk]‖ΔVk‖ + [c1 + c1αk + c2]‖ΔHk‖. (24)
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Moreover, (7) implies that

Hk =
1

p
(AV 1−p

k − Vk) =
1

p
[A − V p

k ]V 1−p
k ,

and hence

αk = ‖Tk+1‖ =
1

p
‖V −1

k+1(AV 1−p
k − Vk)‖ =

1

p
‖(AV −p

k − I)VkV
−1
k+1‖,

which in turn implies that

αk ≤ 1

p
‖AV −p

k − I‖ ‖Vk‖ ‖Vk+1‖−1.

Consequently, for k large enough, if Vk is close to a p-th root of A, ‖Vk+1‖ ≈
‖Vk‖ and ‖AV −p

k − I‖ ≈ 0. Therefore, 0 < αk  1. Furthermore, since c1

and c2 are polynomial expressions in the variable αk = ‖Tk+1‖, they both
tend to zero when k goes to infinity. Hence, using (24), for k large enough
‖ΔHk+1‖  ‖ΔHk‖ and ‖ΔVk+1‖ ≈ ‖ΔVk‖, i.e., the error at iteration k does
not amplify and the sequence {Vk} is numerically stable. �

5 Hybrid versions

Summing up, we have two interesting simplified Newton versions for computing
a p-th root of a given matrix A. The sequence {Zk} that tends to achieve
a much better approximation of the p-th root of A than most previously-
known simplified schemes, but that could show an unstable behavior; and the
sequence {Vk} for which we have established stability for any p, but that tends
to stagnate before reaching a highly accurate approximation. In this section
we discuss some simple schemes to combine these two promising schemes with
a few Newton-Kronecker-Schur final steps, to improve their performance.

We can combine the algorithm that generates the sequence {Zk} with Al-
gorithm 3 as follows. Generate the sequence {Zk}, monitoring the size of the
residual, and change to Algorithm 3 at the first iteration k̄ for which

‖F (Zk̄+1)‖F ≥ δ ∗ ‖F (Zk̄)‖F ,

for 1 < δ  2, using X0 = Zk̄ as its initial guess. i. e., when the residual
associated with the sequence {Zk} shows an unstable behavior. This hybrid
scheme makes sense, since the sequence {Zk} tends to achieve good accuracy
before showing an unstable behavior, and so, the number of Newton-Kronecker-
Schur steps required should be very small. Consequently, the expensive final
steps would be performed very few times.
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A similar hybrid scheme can be defined combining the sequence {Vk} with
Algorithm 3. In this case, the decision to start the Newton-Kronecker-Schur
iterations is based on the possible stagnation of the sequence {Vk}, described in
the previous section. Therefore, we proceed as follows. Generate the sequence
{Vk}, monitoring the size of the residual, until

‖Vk̄+1 − Vk̄‖F ≤ 1.D − 15,

and continue with Algorithm 3 otherwise, using X0 = Vk̄ as its initial guess.
Another possible hybrid schemes can be constructed based on the lack of

commutativity when using the simplified versions. This fact motivates us to
propose the following combinations. Generate the sequence {Zk} (or {Vk}),
monitoring ρk = ‖AZk −ZkA‖F (or ρk = ‖AVk −VkA‖F ). If ρk ≥ 1.D−8 then
project the iterate Zk (or Vk) onto the subspace of matrices X that satisfy AX−
XA = 0, and continue with the sequence {Zk} (or {Vk}) from the projected
matrix. There is a straightforward implementation of this projection process
in MATLAB using the SVD factorization of Zk (or Vk) that, unfortunately, is
very expensive as we will see in our numerical experiments. Nevertheless, if
a suitable and less expensive projection is available, then this combination of
ideas is a promising one.

In this work, we are using the following MATLAB code to perform a pro-
jection onto the subspace of matrices that commute with A:

function [P]=projSCA(A,B,I,n)

C=kron(I,A)-kron(A’,I);

b=reshape(B,n*n,1);

invC=pinv(C*C’);

pb=b-C’*invC*C*b;

P=reshape(pb,n,n);

6 Numerical Experiments

In the implementation of our hybrid schemes we proceed as follows:

• We stop all considered algorithms when the Frobenius norm of the resid-
ual is less than 0.5D − 12.

• We consider that an algorithm fails when the number of iterations ex-
ceeds 100.

• The initial guess for all algorithms is the matrix A.

• We fix the parameter δ = 1.2
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All experiments were run on a Pentium IV, 3.4GHz, using Matlab 7. We re-
port the number of required iterations (Iter), the CPU time in seconds (CPU),
and the norm of the residual (‖F (Xk)‖F ) when the process is stopped. We use
the symbol (**) to report a failure. The algorithms that generate the sequence
{Zk} in (5) can be written in a compact form as follows:

Algorithm 6 For p odd
Given Z0 = I, T0 = A
For k=0,1,2...

Zk+1 = 1
p
[Tk + (p − 1)Zk]

Uk+1 = Z−1
k+1Zk

Tk+1 = U
(p−1)/2
k+1 Tk U

(p−1)/2
k+1

End

Algorithm 7 For p even
Given Z0 = I, T0 = A
For k=0,1,2...

Zk+1 = 1
p
[Tk + (p − 1)I ]Zk

Uk+1 = Z−1
k+1Zk

Tk+1 = U
p/2
k+1 Tk U

p/2
k+1

End

We compare the following list of hybrid Newton algorithms with the Newton-
Kronecker-Schur method (NKS), based on Algorithm 3, and the simplified
versions that generate the sequences Zk (NZ) and Vk (NV):

• Zk + Newton-Kronecker-Schur (NKS)

• Vk + Newton-Kronecker-Schur (NKS)

• Zk + Projections (P) (at most 3)

• Vk + Projections (P) (at most 3)

• Zk + one Projection (P) + Newton-Kronecker-Schur (NKS).

We test the algorithms with the following matrices from the Matlab gallery:

• hilb: Hilbert matrix.

• kahan: an upper trapezoidal matrix. We set θ = 2.3.

• fiedler: Symmetric. We set c = 1
n
(1, 2, · · · , n)t.

• lehmer: Symmetric and positive definite.

• parter: It possesses complex eigenvalues. We use X0 = A+(1.D−16)∗i.
• pei: Symmetric. We set α = −3 such that the matrix is indefinite.

Since the Hilbert and the lehmer matrices are positive definite and our
initial guess is the matrix A, then in case of successful convergence, the as-
sociated sequence converges to the principal p-th root of them. In our first
experiment, we show the performance of the different algorithms for finding
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the principal cubic root of the 5× 5 Hilbert matrix. For the sequence {Vk} we
use Algorithm 4. The results are in Table 1 and we can see in this table that
the pure sequences NZ and NV do not converge, and for this reason we do not
report those options in the forthcoming tables.

In Figure 3 we compare the residual norms of pure sequences with the resid-
ual norms of hybrid versions. We can observe that the norm of the residual,
for the sequence Zk, was approximately 10−5 before changing to NKS, while
the norm of the residual, for the sequence Vk, was approximately 102 before
changing to NKS. This significant difference explains why Zk + NKS requires
fewer iterations than Vk + NKS.

Scheme Iter CPU ‖F (Xk)‖F

Zk + NKS 46(40+6) 0.046875 1.7609e-016

Vk + NKS 52(31+21) 0.03125 2.7195e-016

Zk + P 46(2) 0.03125 2.1302e-013

Vk + P 55(2) 0.03125 2.1394e-013

Zk + P + NKS 46(40+1+6) 0.0412 1.7609e-016

NKS 45 0.0625 3.8858e-016

NZ ** ** **

NV ** ** **

Table 1: Performance of Hybrid versions of Newton’s method, simplified ver-
sions of Newton’s method and Newton’s method for finding the principal cubic
root of the 5 × 5 Hilbert matrix.

In Table 2 we show the performance of the different algorithms for finding a
cubic root of the 25× 25 Kahan matrix and we observe that when n increases
the projection onto the subspace of matrices that commute with A takes a
significant amount of CPU time. For that reason we do not report those
options in the forthcoming tables.

From Table 3 to Table 5 we observe once again that for all values of n,
small or large, the hybrid versions required less CPU time than the Newton-
Kronecker-Schur method. It is also clear that the advantage of using the hybrid
versions increases when n increases.

In Table 6 we observe that the hybrid version Zk + NKS required more
NKS iterations than the version Vk + NKS. This behavior could be explained
as follows. The criterion used in the hybrid version Zk+ NKS, for changing
to NKS, does not guarantee that ‖F (Zk+1)‖ has reached the smallest possi-
ble value, whereas in the hybrid version Vk + NKS we can guarantee that
‖F (Vk+1)‖ can not decrease any more.
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Figure 3: Behavior of simplified and hybrid versions of Newton’s method for
finding the principal cubic root of the 5 × 5 Hilbert matrix.

Scheme Iter CPU ‖F (Xk)‖F

Zk + NKS 30(28+2) 0.11938 6.2156e-016

Vk + NKS 29(27+2) 0.09375 8.5677e-016

Zk + P 30(3) 12.5625 2.6393e-015

Vk + P 29(1) 4.2344 2.5872e-015

Zk + P + NKS 30(28+1+2) 4.3125 6.2156e-016

NKS 27 0.67188 7.3154e-016

Table 2: Performance of Hybrid versions of Newton’s method finding a cubic
root of the 25 × 25 Kahan matrix.

In Tables 7, 8 and 9 we show the performance of the different hybrid ver-
sions of Newton’s method for finding fifth roots of several matrices. For the
sequence {Vk} we use Algorithm 5. As in the previous experiments, the re-
quired CPU time for the NKS option is very high and we do not report it
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Zk + NKS Vk + NKS NKS
iter 13(13+0) 13(13+0) 13

n = 10 CPU 0.03125 0.03125 0.036875
‖F (Xk)‖F 5.6203e-013 1.05e-013 8.758e-013

iter 21(19+2) 21(19+2) 19
n = 50 CPU 0.48438 0.48438 4.3125

‖F (Xk)‖F 6.637e-015 6.4122e-015 6.4e-015

iter 22(20+2) 23(21+2) 21
n = 90 CPU 7.1406 7.1719 76.7344

‖F (Xk)‖F 1.5339e-014 1.4756e-014 1.4855e-014

Table 3: Performance of Hybrid versions of Newton’s method for finding a
cubic root of the fiedler matrix for different values of n.

Zk + NKS Vk + NKS NKS
iter 15(13+2) 14(12+2) 12

n = 50 CPU 1.9219 1.9219 10.7188
‖F (Xk)‖F 1.6735e-014 1.7466e-014 1.5328e-014

iter 16(14+2) 15(13+2) 13
n = 150 CPU 48.1875 48.2813 312.7188

‖F (Xk)‖F 8.3214e-014 9.5548e-014 1.3116e-013

Table 4: Performance of Hybrid versions of Newton’s method for finding a
cubic root of the pei matrix for different values of n.

anymore. We can observe that the hybrid version Zk + NKS does not require
NKS iterations, while Vk + NKS in all cases requires NKS iterations. This
happens because the sequence Vk is stabilized when the residual still has a
large norm value.
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Zk + NKS Vk + NKS NKS
iter 22(20+2) 21(19+2) 19

n = 60 CPU 1.0313 1.037 9.25
‖F (Xk)‖F 9.6909e-015 9.9393e-015 1.0116e-014

iter 22(20+2) 22(20+2) 20
n = 80 CPU 3.6094 3.5938 35.1094

‖F (Xk)‖F 1.5194e-014 1.5074e-014 1.5336e-014

iter 23(21+2) 23(21+2) 21
n = 100 CPU 11.3906 11.3906 118.625

‖F (Xk)‖F 2.1076e-014 2.0934e-014 2.1402e-014

iter 23(21+2) 24(22+2) 21
n = 120 CPU 26.5781 26.625 277.2656

‖F (Xk)‖F 2.76e-014 2.7636e-014 2.7719e-014

Table 5: Performance of Hybrid versions of Newton’s method for finding the
principal cubic root of the lehmer matrix for different values of n.

Zk + NKS Vk + NKS NKS
iter 12(7+5) 12(11+1) 11

n = 10 CPU 0.03125 0.03125 0.046875
‖F (Xk)‖F 1.4954e-015 1.9252e-015 1.6216e-015

iter 13(5+8) 13(12+1) 12
n = 20 CPU 0.29688 0.0625 0.32813

‖F (Xk)‖F 4.3693e-015 5.0361e-015 5.1429e-015

iter 20(5+15) 21(19+2) 19
n = 50 CPU 13.7969 2.0156 17.3438

‖F (Xk)‖F 9.6557e-015 9.9789e-015 9.5033e-015

Table 6: Performance of Hybrid versions of Newton’s method for finding a
cubic root of the parter matrix for different values of n.

Scheme Iter CPU ‖F (Xk)‖F

Zk + NKS 15(15+0) 0 1.7299e-013

Vk + NKS 23(17+6) 0.015625 8.5898e-014

Table 7: Performance of Hybrid versions of Newton’s method for finding a fifth
(p = 5) root of the 5 × 5 Kahan matrix.
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Scheme Iter CPU ‖F (Xk)‖F

Zk + NKS 25(25+0) 0.0133 1.1974e-015

Vk + NKS 54(26+28) 0.95313 2.2748e-013

Table 8: Performance of Hybrid versions of Newton’s method for finding the
principal fifth root of the 5 × 5 lehmer matrix.

Zk + NKS Vk + NKS
iter 12(12+0) 20(13+7)

n = 10 CPU 0.001 0.0625
‖F (Xk)‖F 1.9817e-014 2.7559e-013

iter 14(14+0) 15(15+14)
n = 15 CPU 0.015625 0.21875

‖F (Xk)‖F 2.2914e-014 3.4695e-013

Table 9: Performance of Hybrid versions of Newton’s method for finding a fifth
root of the pei matrix for different values of n.

7 Conclusions

We present several specialized (or simplified) versions of Newton’s Method
for computing p-th roots of a given matrix A. We also discuss an efficient
implementation, called the Newton-Kronecker-Schur scheme, for solving the
Sylvester equation that appears at every Newton’s iteration using the Kro-
necker product.

All the specialized versions are based on the commutativity of the iterates
with the matrix A. Among the new specialized versions, we pay special atten-
tion to the one that produces the sequence Zk. The Zk scheme is not always
stable, but it tends to achieve a much better approximation of the p-th root
of A than the previously-known simplified schemes (denoted as Yk and Wk),
before the unstable behavior is observed. The unstable behavior appears when
the commutativity between A and Zk is lost.

Another specialized version that we present is the one denoted as Vk. We
establish that the Vk scheme is stable for any p. Unfortunately, in some cases,
the Vk scheme tends to stagnate before reaching an accurate approximation of
the p-th root of A. This phenomenon is also due to the lack of commutativity
between A and the iterates Vk, and appears in most specialized Newton versions
known in the literature.

We also present some hybrid schemes that try to avoid the lack of commu-
tativity combining the simplified methods with the Newton-Kronecker-Schur
scheme. Although more experiments are needed to assess the effectiveness of
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these hybrid schemes, the initial results on several matrices are encouraging.
Current work includes the search of a smoother and automatic way of

combining the Zk scheme with the Newton-Kronecker-Schur method. In this
work we change from the Zk scheme to the Newton-Kronecker-Schur method
using a parameter δ, chosen ad-hoc. Future work should also include the study
of an inexpensive way of projecting onto the set of matrices that commute with
a given one. As observed in our experiments, an inexpensive projection of that
kind could lead to very powerful hybrid schemes for the calculation of a p-th
root of a given matrix.
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