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Abstract

We consider a model of dynamic nonlinear elasticity in the presence of
thermal effects, for a plate surrounded by a thin layer. This model, which
describes the nonlinear oscillations of a plate subjected to thermal effects is
reffered as ” full von Karman thermoelastic system”. We apply the formal
asymptotic expansions method to establish approximate boundary conditions
that model the effect of the thin layer. The results obtained in this paper
extend those obtained earlier in [10], [9] for a non linear model which does
not account for the thermal effects.

Mathematics subject Classification: 74K20; 35C20

Keywords: Approximate boundary conditions, von Karman thermoelastic sys-
tem, thin plate,thin layer, asymptotic expansions, multi-scale analysis

1 Introduction

The mathematical modelling of elastic bodies covered with thin layers is a problem
of outstanding practical importance. However, from a numerical point of view,
such structures require the discretisation of the thin layer, which needs very thin
meshes and may lead to very expansive and difficult computations. An alternative
approach consists in deriving approximate boundary conditions, incorporating in an
approximate way the effect of the thin layer. More precisely, we seek an approximate
problem posed on the interior domain (i.e, not including the thin layer) but taking
into account its effect via these new conditions. The idea of introducing this type
of boundary conditions which can be substituted to the thin layer has been widely
used in numerous studies (see [1], [3], [5], [8], [9], [10], [11]). The purpose of this
paper is to identify approximate boundary conditions for a non linear elastic plate
surrounded by a thin elastic layer and subjected to thermal effects. This study
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extends the results obtained by the author in [10], where a non linear model which
does not account for the thermal effects was considered.

Here, we shall briefly outline the strategy to be followed. First, we write the
problem in a variational form. Making a change of scaling along the thickness of the
thin layer, in order to have a problem posed over a set that does not depend on δ, we
obtain an equivalent variational problem for which we apply the formal asymptotic
expansions method to establish approximate boundary conditions. The idea is to
approximate the solution by the series given by its asymptotic expansion truncated
at a given order. The conditions satisfied by this approximation on the common
boundary of the plate and the layer give the desired boundary conditions. When
considering the asymptotic expansion truncated at a order 0, we obtain a model
where the effect of the thin layer is completely neglected. This approximation is not
interesting since our aim is to obtain a model that incorporates this effect. So, we
go further in the asymptotic expansion until order 1 and give a model where the
effect of the thin layer is taken into account and is completely embodied by new
boundary conditions. Indeed, these conditions depend on the layer’s elastic and
thermal characteristics and of its thickness δ.

2 Setting of the problem

Let Ω+ be a bounded open subset of R2. The boundary of Ω+ consists of two
disjoints parts, Γ0 and Γ, assumed to be smooth. For δ > 0 sufficiently small, the
elastic layer Ωδ

− derives from a uniform dilation of Γ0 in the normal direction, with
thickness δ:

Ωδ
− = {x + r ν ; x ∈ Γ0 and 0 < r < δ},

where ν denotes the normal vector at point x on Γ0, outer from Ω+; the external
boundary of the domain Ωδ

− is Γδ and the whole domain is Ωδ = Ω+ ∪ Γ0 ∪ Ωδ
− (see

figure 1). We consider the thermoelastic full von Karman system (1)-(8) for the

whole bidimensionel plate Ωδ, which consists of an elastodynamic system coupled
with the Kirchhoff-love equation and two heat equations (see [2],[7]) :

ρu
′′ − div{C[ε(u) + f(∇w)]} + λ∇φ = 0 in Ωδ × (0, T ), (1)

ρ[I − Δ]w
′′

+DΔ2w − div{C[ε(u) + f(∇w)]∇w}+ λΔθ = 0 in Ωδ × (0, T ), (2)

ρφ′ − kΔφ+ λdivu′ = 0 in Ωδ × (0, T ), (3)

ρθ′ − kΔθ − λΔw′ = 0 in Ωδ × (0, T ), (4)
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Figure 1: The plate and the thin layer

with Dirichlet conditions on Γ

u = 0, w = ∂νw = 0, θ = 0, φ = 0 on Γ × (0, T ), (5)

and free boundary conditions on Γδ × (0, T )

C[ε(u) + f(∇w)]ν = 0 ; D [Δw + (1 − μ)B1w] = 0 ,

k∂νθ + λ∂νw
′ = 0 ; k∂νφ− λu′ν = 0,

D [∂νΔw + (1 − μ)∂sB2w] − ρ∂νw
′′ − C[ε(u) + f(∇w)]ν.∇w + λ∂νθ = 0.

(6)

We define also the transmission conditions on Γ0 ×(0, T ) by

[[u]] = [[φ]] = [[θ]] = 0, [[w]] = [[∂νw]] = 0 ;

[[C[ε(u) + f(∇w)]ν]] = 0 ; [[D[Δw + (1 − μ)B1w] ]] = 0 ;

[[ k∂νθ + λ∂νw
′]] = 0 ; [[k∂νφ− λu′ν]] = 0 ;[[

D [∂νΔw + (1 − μ)∂sB2w] − ρ∂νw
′′ − C[ε(u) + f(∇w)]ν.∇w + λ∂νθ

]]
= 0. (7)

With (1) and (4) we associate the initial conditions

u(0) = u0 , u
′
(0) = u1, w(0) = w0 , w

′
(0) = w1 θ(0) = θ0 , φ(0) = φ0 in Ωδ. (8)

The variables w and u = (u1, u2) represent respectively the vertical and in-plane
displacement of the plate, while θ and φ describe the temperature affecting the
vertical displacement and the horizontal (in-plane) displacement, respectively. By
[[ ]] we denote the jump through Γ0 of a function or distribution defined on Ωδ that
admits in some sens traces on Γ0. The fourth order tensor C belongs to S the space
of 2×2 symmetric matrices, and it is defined by
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C(ζ) =
E

(1 − μ2)
[μ(trζ)IS + (1 − μ)ζ ] ,

for any ζ in S, where IS is the identity matrix and (trζ) is the trace of ζ. Moreover,
the strain tensor is given by ε(u) = 1/2

(∇u+ ∇Tu
)
. The function f is given by

f(s) = (1/2)s⊗ s, s ∈ R2 and the boundary operators are defined by

B1w ≡ 2ν1ν2∂
2
xyw − ν2

1∂
2
yw − ν2

2∂
2
xw , B2w ≡ (ν2

1 − ν2
2)∂

2
xyw + ν1ν2(∂

2
yw − ∂2

xw).

D = E
(1−μ2)

represents the flexural rigidity of the plate ; E is the young’s modulus,
μ is the poisson ratio of the material and ρ is its mass density. k is the coefficient
of thermal conductivity and λ = D

2
(α(1 + μ)), where α denotes the coefficient of

thermal expansion. We assume that E > 0, 0 < μ < 1/2 and that the coefficients
described above are independent of δ and are piecewise constant: E = E+ in Ω+

and E− in Ωδ
− ; μ = μ+ in Ω+ and μ− in Ωδ

− ; ρ = ρ+ in Ω+ and ρ− in Ωδ
− ;

k = k+ in Ω+ and k− in Ωδ
− ; α = α+ in Ω+ and α− in Ωδ

− .
Setting

W (Ωδ) =
{
w ∈ H2(Ωδ) ; w| Γ = ∂νw |Γ= 0

}
,

V (Ωδ) =
{
w ∈ H1(Ωδ) ; w| Γ = 0

}
,

U(Ωδ) =
{
u ∈ (

H1(Ωδ)
)2

; u|Γ = 0
}
,

and denotting by 〈, 〉D the scalar product in [L2(D)]
k
, k ∈ N, the variational

formulation of the problem cited above reads :⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρ [〈u′, ϕ〉Ωδ ]

′ + 〈C[ε(u) + f(∇w)], ε(ϕ)〉Ωδ + λ 〈∇φ, ϕ〉Ωδ = 0, ∀ϕ ∈ U(Ωδ)
ρ [〈w′, ψ〉Ωδ + 〈∇w′,∇ψ〉Ωδ ]

′ + a(w, ψ)+
〈C[ε(u) + f(∇w)]∇w,∇ψ〉Ωδ − λ 〈∇θ,∇ψ〉Ωδ = 0, ∀ψ ∈W (Ωδ),

ρ 〈φ, ζ〉′Ωδ + k 〈∇φ,∇ζ〉Ωδ − λ 〈u′,∇ζ〉Ωδ = 0 ∀ζ ∈ V (Ωδ),
ρ 〈θ, η〉′Ωδ + k 〈∇θ,∇η〉Ωδ + λ 〈∇w′,∇η〉Ωδ = 0 ∀η ∈ V (Ωδ)

(9)

where:

a(w, ψ) = D

∫
Ωδ

{(
∂2

xw + μ∂2
yw

)
∂2

xψ + 2(1 − μ)∂2
xyw∂

2
xyψ +

(
∂2

yw + μ∂2
xw

)
∂2

yψ
}
dΩδ.

2.1 The scaling problem

Depending on the thickness δ, the functional setting of our problem is not suited
for giving a precise meaning to an asymptotic expansion of the solution. Hence,
the first step of the analysis is a scaling inside the thin layer in order to remove
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the dependence of the space domain on the small parameter δ. So, we perform a
dilation in the normal direction of the layer Ωδ

− (of ratio δ−1) to get a fixed geometry.
Let ν be the inner unit normal to Γ0 and τ be the tangent unit vector field to Γ0

such that the basis (τ, ν) is direct in each point of Γ0. Denote by s a curvilinear
abscissa (arc length) along Γ0 oriented according to τ. Thus, the scaling is given by
a parametrisation of the thin shell Ωδ

− by the manifold Ω− = Γ0 × (0, 1) through the
mapping {

Ω− −→ Ωδ

(s, z) −→ X = s+ δzν(s)
(10)

We identify Γ0 with Γ0 × {0} and we set Γ− = Γ0 × {1} and Ω = Ω+ ∪ Γ0 ∪ Ω−.
To each function ψ defined on Ωδ

− is associated a function ψδ defined in Ω− through
the variable change (10) by

ψδ(s, z) := ψ(X)

Denoting by R = R(s) the curvature of Γ0 at s, we have the Frenet’s relations

∂sν = −Rτ and ∂sτ = Rν.

Thus, relying on the relation x = s+ δzν(s), we obtain

∂z = ν1∂x + ν2∂y and ∂s = (1 − Rz) (ν2∂x − ν1∂y) .

In Ωδ
−, a given vector field ϕ will be decomposed into normal and tangential com-

ponents : ϕ = ϕττ + ϕνν. By the scaling (10), ϕ is transformed into

ϕδ(s, z) = ϕτ (s, δz)τ + δϕν(s, δz)ν.

Likewise, we also express the integrals involved in (9) by :

∫
Ωδ−

ψdΩδ
−=δ

∫
Σ

1∫
0

�

ψ (1 −Rδz)dsdz.

The problem (9) is then transformed into an equivalent problem posed over a
set independent of δ . The details of this transformation being otherwise too long
and very technical, are omitted (the reader is referred to [9], where explicit details
are given for the full von karman system without thermal effects).
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3 Approximate boundary conditions

The identification of the approximate boundary conditions relies on the application
of the formal asymptotic expansion method. The idea consists in approximating
the solution by the series given by its asymptotic expansion truncated at a given
order. The conditions given by this approximation on Γ0 give the desired boundary
conditions.

The standard asymptotic expansion method leads to write the solution (uδ, wδ, φδ, θδ)
of the scaled problem as a formal expansion with respect to δ :

uδ = u0 + δu1 + δ2u2 + δ3u3 + ............

wδ = w0 + δw1 + δ2w2 + δ3w3 + ............ (11)

φδ = φ0 + δφ1 + δ2φ2 + δ3φ3 + ............

θδ = θ0 + δθ1 + δ2θ2 + δ3θ3 + ............

Hereafter, we will use the index + (resp. −) to denote the restriction of the different
terms of the asymptotic expansion or the data to Ω+ (resp.Ω−). Moreover, we make
the following assumption on the data : we suppose that there exists smooth enough
functions w∗

+, w
∗∗
+ , w

∗∗∗
+ , u∗+, u

∗∗
+ , u∗∗∗+ , θ∗+ et φ∗

+ independent of δ, such that :

wδ
0+ = w∗

+, w
δ
0− = w∗

+ |Γ0, w
δ
1+ = w∗∗

+ , w
δ
1− = w∗∗

+ |Γ0, ∂zw
δ
1− = δ

∗∗∗
w +,

uδ
0+ = u∗+, (u

δ
0τ)− = (u∗τ)+ |Γ0, (u

δ
0ν)− = 0, uδ

1+ = u∗∗+ ,
(

(uδ
1τ)−,

1

δ
(uδ

1ν)−

)
= u∗∗∗+ ,

θδ
0+ = θ∗+, φ

δ
0+ = φ∗

+ , θδ
0− = θ∗+ |Γ0, φ

δ
0− = φ∗

+ |Γ0 .

According to the basic Ansatz of the method of formal asymptotic expansions, we
expand the forms involved in the variational scaled problem in powers of δ and insert
the expansions (11) into the equations obtained. We then identify the successive
terms (up, wp, φp, θp), p � 0 by equating to zero the factors of the successive powers
of δ. In so doing, we obtain a hierarchy of variational equations. This leads to the
identification of the problem solved by the first term of the asymptotic expansion
(u0, w0, φ0, θ0), that is :⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ+

[〈
(u0

+)′, ϕ
〉
Ω+

]′
+ ρ+

[〈
(w0

+)′, ψ
〉
Ω+

]′
+ ρ+

[〈
(∇w0

+)′,∇ψ〉
Ω+

]′
+

a+

(
w0

+, ψ
)

+ λ+

〈∇φ0
+, ϕ

〉
Ωδ +N+(u0

+, w
0
+, ϕ, ψ) − λ+

〈∇θ0
+,∇ψ

〉
Ωδ

+ρ+

〈
φ0

+, ζ
〉′
Ωδ + k+

〈∇φ0
+,∇ζ

〉
Ωδ − λ+

〈
(u0

+)′,∇ζ〉
Ωδ + ρ+

〈
θ0
+, η

〉′
Ωδ

+k+

〈∇θ0
+,∇η

〉
Ωδ + λ+

〈
(∇w0

+)′,∇η〉
Ωδ = 0,

(12)

∀(ϕ, ψ, ζ, η) ∈ U δ(Ω+) ×W δ(Ω+) × V δ(Ω+) × V δ(Ω+), with initial conditions

u0
+(0) = u∗+, (u

0
+)′(0) = u∗∗+ , w

0
+(0) = w∗

+, (w
0
+)′(0) = w∗∗

+ , φ0
+(0) = φ∗

+, θ
0
+(0) = θ∗+ in Ω+
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where

N+(u0
+, w

0
+, ϕ, ψ) =

∫
Ω+

{
C[ε(u0

+) + f(∇w0
+)].ε(ϕ) + C[ε(u0

+) + f(∇w0
+)]∇w0

+.∇ψ
}
dΩ+.

Remark. The problem (12) solved by the first term (u0, w0, φ0, θ0) which cor-
responds to the approximate problem of order 0, is nothing but the variational
form of the full von Karman thermoelastic system posed over the set Ω+. This
model is simply obtained by omitting the thin layer. In other words, the effect
of the thin layer is not seen at order 0. Since our aim is to obtain an approxi-
mate problem that incorporates this effect, we must go further in the asymptotic
expansion and derive the conditions of order 1. To this end, we keep the first
two terms of the expansions and define w[1], u[1], θ[1], φ[1], as w[1] = w0 + δw1,
u[1] = u0 + δu1, θ[1] = θ0 + δθ1, φ[1] = φ0 + δφ1.

Setting

Ũ(Ω+) =
{
u ∈ (

H1(Ω+)
)2

; u|Γ = 0, uτ |Γ0
∈ H1(Γ0)

}
,

Ṽ (Ω+) =
{
w ∈ H1(Ω+) ; w|Γ = 0 ; w|Γ0 ∈ H1(Γ0)

}
,

W̃ (Ω+) =
{
w ∈ H2(Ω+) ;w|Γ = ∂νw |Γ= 0 ; w|Γ0

∈ H2(Γ0), ∂νw |Γ0∈ H1(Γ0)
}

and denoting γT (ψ) = ∂2
sψ − R(s)∂νψ, γS(ψ) = −∂s∂νψ − R(s)∂sψ , NT (ϕ, ψ) =

∂sϕτ −R(s)ϕν + 1
2
(∂sψ)2, we obtain that (u

[1]

+ , w
[1]

+ , φ
[1]

+ , θ
[1]

+ ) solves the following prob-
lem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ+

[〈
(u

[1]

+ )′, ϕ
〉

Ω+
+

〈
(w

[1]

+ )′+, ψ
〉

Ω+
+ b+

(
(w

[1]

+ )′, ψ
)

+
〈
φ

[1]

+ , ζ
〉

Ω+
+

〈
θ

[1]

+ , η
〉

Ω+

]′
+

N+

(
u

[1]

+ , w
[1]

+ , ϕ, ψ
)

+ a+

(
w

[1]

+ , ψ
)

+ k+

〈
∇φ[1]

+ ,∇ζ
〉

Ω+
+ k+

〈
∇θ[1]

+ ,∇η
〉

Ω+
+

λ+

[〈
∇φ[1]

+ , ϕ
〉

Ω+
+

〈
∇θ[1]

+ ,∇ψ
〉

Ω+
−

〈
(u

[1]

+ )′,∇ζ
〉

Ω+
+

〈
(∇w[1]

+ )′,∇η
〉

Ω+

]
+

δ

{
ρ−

[〈
(u

[1]

+ )′, ϕ
〉

Γ0

+
〈
(w

[1]

+ )′+, ψ
〉

Γ0

+ bΓ0

(
(w

[1]

+ )′, ψ
)

+
〈
φ

[1]

+ , ζ
〉

Γ0

+
〈
θ

[1]

+ , η
〉

Γ0

]′
+

aΓ0(w
[1]

+ , ψ) +NΓ0(u
[1]

+ , w
[1]

+ , ϕ, ψ) − λ−
〈
∂sφ

[1]

+ , ϕτ

〉
Γ0

+
λ2
−

k−

〈(
u

[1]

+ν

)′
, ϕν

〉
Γ0

−λ−
〈
∂sθ

[1]

+ , ∂sψ
〉

Γ0

+ k−
〈
∂sφ

[1]

+ , ∂sζ
〉

Γ0

+
λ2
−

k−

〈(
∂νw

[1]

+

)′
, ∂νψ

〉
Γ0

+

k−
〈
∂sθ

[1]

+ , ∂sη
〉

Γ0

+ λ−

〈
∂s

(
w

[1]

+

)′
, ∂sη

〉
Γ0

+ λ−

〈(
u

[1]

+τ

)′
, ∂sζ

〉
Γ0

}
= O(δ2),

(13)
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∀(ϕ, ψ, ζ, η) ∈ Ũ(Ω+) × W̃ (Ω+) × Ṽ (Ω+) × Ṽ (Ω+), where

aΓ0(w, ψ) =

∫
Γ0

E−

(
γT (w)γT (ψ) +

1

(1 + μ−)
γS(w)γS(ψ)

)
ds,

bΓ0(w, ψ) =

∫
Γ0

(∂sw∂sψ + ∂νw∂νψ) ds,

NΓ0(u, w, ϕ, ψ) = E−

∫
Γ0

NT (u, w)(∂sϕτ − R(s)ϕν + ∂sw∂sψ)ds.

The problem solved by
(
w[1], u[1], θ[1], φ[1]

)
suggests to approximate the interior

part of the solution of our initial problem by seeking a solution
(
ũ+, w̃+, φ̃+, θ̃+

)
to

the problem obtained by taking the right-hand side of the problem (13) equal to 0.
Hence, neglecting the O(δ2) term in (13) and using the assumptions on the initial
conditions, we are led to the approximate problem of order 1 :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ+

[
〈(ũ+)′, ϕ〉Ω+ +

〈
(w̃+)′+, ψ

〉
Ω+

+ b+ ((w̃+)′, ψ) +
〈
φ̃+, ζ

〉
Ω+

+
〈
θ̃+, η

〉
Ω+

]′
+

N+ (ũ+, w̃+, ϕ, ψ) + a+ (w̃+, ψ) + k+

〈
∇φ̃+,∇ζ

〉
Ω+

+ k+

〈
∇θ̃+,∇η

〉
Ω+

+

λ+

[〈
∇φ̃+, ϕ

〉
Ω+

+
〈
∇θ̃+,∇ψ

〉
Ω+

− 〈
ũ′+,∇ζ

〉
Ω+

+
〈∇w̃′

+,∇η
〉
Ω+

]
+

δ

{
ρ−

[
〈(ũ+)′, ϕ〉Γ0

+
〈
(w̃+)′+, ψ

〉
Γ0

+ bΓ0 ((w̃+)′, ψ) +
〈
φ̃+, ζ

〉
Γ0

+
〈
θ̃+, η

〉
Γ0

]′
+

aΓ0(w̃+, ψ) +NΓ0(ũ+, w̃+, ϕ, ψ) − λ−
〈
∂sφ̃+, ϕτ

〉
Γ0

+
λ2−
k−

〈
(ũ+ν)

′ , ϕν

〉
Γ0

−λ−
〈
∂sθ̃+, ∂sψ

〉
Γ0

+ k−
〈
∂sφ̃+, ∂sζ

〉
Γ0

+
λ2
−

k−

〈
(∂νw̃+)′ , ∂νψ

〉
Γ0

+

k−
〈
∂sθ̃+, ∂sη

〉
Γ0

+ λ−
〈
∂s (w̃+)′ , ∂sη

〉
Γ0

+ λ−
〈
(ũ+τ)

′ , ∂sζ
〉
Γ0

}
= 0,

(14)

∀(ϕ, ψ, ζ, η) ∈ Ũ(Ω+) × W̃ (Ω+) × Ṽ (Ω+) × Ṽ (Ω+), with the initial conditions :

ũ+(0) = u∗+, (ũ+)′(0) = u∗∗+ , w̃+(0) = w∗
+, (w̃+)′(0) = w∗∗

+ , φ̃+(0) = φ∗
+, θ̃+(0) = θ∗+, in Ω+

w̃+(0) = w∗
+|Γ0

, (w̃+)′(0) =
∗∗
w+|Γ0

, ũ+(0) = u∗+|Γ0
, (ũ+)′(0) =

∗∗∗
u+, on Γ0 (15)

(∂νw̃+)′(0) =
∗∗∗
w+, φ̃+(0) = φ∗

+|Γ0
, θ̃+(0) = θ∗+|Γ0

on Γ0

We can show, using the Faedo-Galerkin method that this problem have at least one

solution
(
ũ+, w̃+, φ̃+, θ̃+

)
such that:

w̃+ ∈ L∞
(
0, T ; W̃ (Ω+)

)
, (w̃+)′ ∈ L∞

(
0, T ; Ṽ (Ω+)

)
, (∂νw̃+)′ ∈ L∞ (

0, T ;L2(Γ0)
)
,

ũ+ ∈ L∞
(
0, T ; Ũ(Ω+)

)
, (ũ+)′ ∈ L∞

(
0, T ;

[
L2(Ω+)

]2
)
, (ũ+)′|Γ0

∈ L∞
(
0, T ;

[
L2(Γ0)

]2
)
,

φ̃+, θ̃+ ∈ L∞ (
0, T ;L2(Ω+)

) ∩ L2
(
0, T ; Ṽ (Ω+)

)
.
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Remark. The approximate problem written above is the variational form of the
following boundary value problem :

ρ+(ũ+)” − div{C[ε(ũ+) + f(∇w̃+)]} + λ+∇φ̃+ = 0 in Ω+ × (0, T ), (16)

ρ+[I − Δ]w̃+” +D+Δ2w̃+ − div{C[ε(ũ+) + f(∇w̃+)]∇w̃+} + λ+Δθ̃+ = 0 in Ω+ × (0, T ),
(17)

ρ+φ̃
′
+ − k+Δφ̃+ + λ+divũ

′
+ = 0 in Ω+ × (0, T ), (18)

ρ+θ̃
′
+ − k+Δθ̃+ − λ+Δw̃′

+ = 0 in Ω+ × (0, T ), (19)

with Dirichlet conditions on Γ × (0, T )

ũ+ = 0, w̃+ = ∂νw̃+ = 0, θ̃+ = 0, φ̃+ = 0 on Γ × (0, T ), (20)

and the approximate boundary conditions on Γ0 × (0, T ) :

tτ (C[ε(ũ+) + f(∇w̃+)]) ν = δ
(
−ρ−(ũτ )

′′
+ + E−∂s [NT (ũ+, w̃+)] + λ−∂sφ̃+

)
, (21)

tν (C[ε(ũ+) + f(∇w̃+)]) ν = δ

(
−ρ−(ũν)

′′
+ + E−R(s)NT (ũ+, w̃+) − λ2

−
k−

(ũν)
′
+

)
,

(22)

D+ [Δw̃+ + (1 − μ+)B1w̃+] = −δ
(
Q(w̃+) + ρ−∂νw̃

′′
+ +

λ2
−
k−

(∂νw̃+)′
)
, (23)

D+ [∂νΔw̃+ + (1 − μ+)∂sB2w̃+] − ρ+∂νw̃
′′
+ − C[ε(ũ+) + f(∇w̃+)]ν.∇w̃+ + λ+∂ν θ̃+ =

δ
(
ρ−

[
w̃+ − ∂2

s w̃+

]′′
+ P (w̃+) −E−∂s [NT (ũ+, w̃+) ∂sw̃+] + λ−∂2

s θ̃+

)
, (24)

k+∂ν θ̃+ + λ+∂νw̃
′
= δ

(
−ρ−θ̃′+ + k−∂2

s θ̃+ + λ−∂2
s w̃

′
+

)
, (25)

k+∂ν φ̃+ − λ+ũ
′
+ν = δ

(
−ρ−φ̃′

+ + k−∂2
s φ̃+ + λ−∂s(ũτ )

′
+

)
, (26)

where tν ( resp. tτ ) is the transposed vector ( resp. matrix) of ν (resp. τ ).
With the system above, we associate the initial conditions (15). The operators P
and Q are defined by :

P (w̃) = E−

[
∂2

sγT (w̃) +
2

1 + μ−
∂s (R(s)γS(w̃))

]
,

Q(w̃) = E−

[
2

1 + μ−
∂sγS(w̃) −R(s)γT (w̃)

]
.
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As it can be seen, the approximate problem of order 1 differs from that of order
0 by the appearance of new additive terms in the right-hand sides of the boundary
conditions (21)-(26) posed on Γ0: the effect of the layer is now seen at order1.

We have, thus, obtained a coupled nonlinear problem posed only over the set Ω+

, which is nothing but the domain occupied by the plate. However, the effect of the
thin layer is taken into account and is completely embodied by the additive terms
that are involved in the right hand sides of the boundary conditions imposed along
the boundary Γ0, which is the common portion of the boundaries of the plate and
the layer. Indeed, one observes that these terms depend solely on the thickness of
the layer and on its elastic and thermal characteristics E− , μ−, ρ−, k− and λ−.
Moreover, the effect of the thin body is also expressed by means of the new initial
conditions imposed on Γ0.

It is worth noticing that the approximate boundary conditions obtained in this
paper are not standard since they involve tangential and time derivatives of order
equal to that of the interior differential operator. This type of boundary conditions
is called in the Russian literature a Ventcel’s condition and the related boundary-
value problem is called Ventcel’s problem. Here, they model the presence of the
layer and express the influence of this latter on the oscillations and the propagation
of heat inside the plate.

Finally, let us mention that it is a question of interest to give an estimate for the
error between the solution of the approximate problem and the one of the original
problem. Because of the nonlinearity and the complexity of the two problems, this
question is very delicate and remains to be seen.
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