
Applied Mathematical Sciences, Vol. 2, 2008, no. 51, 2549 - 2555

Generalized RTS with Discretionary and

Nondiscretionary Inputs and Outputs

Sh. Razavyana, Gh. Tohidib,1 and Kh. Hoseinib

a Department of Mathematics, Islamic Azad University

Tehran-South Branch, Tehran, Iran

Department of Mathematics, Islamic Azad University

Tehran-Central Branch, Tehran, Iran

Abstract

In some situations, some inputs and outputs are nondiscretionary.
Therefore, following Zarepisheh and Soleimani-damaneh [Euro. J. Opera.
Res. (2007)], which uses the linear programming problem for determin-
ing RTS with discretionary data, in this paper we introduce a procedure
for determining RTS with discretionary and nondiscretionary inputs and
outputs.
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1 Introduction

Returns to scale (RTS) is an important topic in performance analysis, which

helps managers to make decisions about the expansion or contraction of the

operation of the Decision Making Unit (DMU) under assessment. RTS can

provide useful information on the optimal size of DMUs, or on whether small

in size DMUs over- or under-perform larger ones, and vice versa, i.e., it is used

to determine whether a technically efficient DMU can improve its productivity

by resizing the scale of its operations. In economics, RTS are sometimes defined

using the notion of elasticity (Starrett [3]). If elasticity is greater than one,

then increasing returns to scale prevail for that particular DMU; if it is equal
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to one, then constant returns to scale prevail for that particular DMU; and if

it is less than one, then decreasing returns to scale prevail for that particular

DMU. In fact, the elasticity measure exhibits the rate of proportional variation

of outputs with respect to the proportional variation of inputs in a local sense;

i.e., in a sufficiently small interval of variations Hadjicostas and Soteriou [2].

Zarepisheh and Soleimani-damaneh [4] propose a procedure for generalized

RTS of DMUs with discretionary data, in this paper we introduce a method for

determining generalized RTS with discretionary and nondiscretionary inputs

and outputs. The rest of this paper organized as follows: in Section 2 we

propose a method for determining RTS of DMUS with nondiscretionary inputs

and outputs by BCC model. Sections 3 contain a numerical example. Finally

Section 3 includes some conclusions.

2 Estimation of the rate of variation

In some situations, some inputs and outputs are nondiscretionary. These data

are beyond of the control of a DMU’s management, which also need to be

considered for efficiency evaluation. The BCC model[1] in input oriented with

nondiscretionary is as follows:

β∗
o = min βo

s.t.
∑n

j=1 λjxij ≤ βox
D
io, i ∈ D∑n

j=1 λjxij ≤ βox
ND
io , i ∈ ND∑n

j=1 λjyrj ≥ yro, r = 1, . . . , s,∑n
j=1 λj = 1, λj ≥ 0, j = 1, . . . , n.

(1)

where, D and ND represent the associated sets containing discretionary and

nondiscretionary inputs, respectively.

Assume that Increasing Returns to Scale (IRS) prevail at DMUo(x
D
o , xND

o , yo).

The Right Hand Side (RHS) vector of model (1) is (0, xND
o , yo, 1). Now in the

optimal simplex tableau of (1) we perturb the RHS vector in the direction of

(0, 0, yo, 0) , and this leads to (0, xND
o , yo, 1)+δ(0, 0, yo, 0) = (0, xND

o , (1+δ)yo, 1)

(δ ≥ 0) as the new RHS vector. Now using the parametric analysis, we can

obtain an interval, δ ∈ [0, δ1], such that the optimal value of the perturbed

problem is a linear function with respect to δ ∈ [0, δ1]. Regarding model (1)

the optimal value exhibits the minimum proportional increase in the (D) in-

puts of DMUo when all outputs of this DMU are multiplied by (1 + δ)(for

δ ∈ [0, δ1]). In fact the optimal value of the perturbed problem is β(1 + δ) for

δ ∈ [0, δ1].
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3 Numerical example

Cosider 6 DMUs with 2 inputs and 1 output as Table 1, where 2th input is

nondiscretionary.

DMUs DMUA DMUB DMUC DMUD DMUE DMUF

input1 3 4 7 9 13 7

input2 2 1 2 1 3 3

output 1 3 7 8 9 2

We consider DMUA as unit under assessment. Model (1) corresponding to

this DMU is as follows:

β∗
A = min β

s.t. 3λ1 + 4λ2 + 7λ3 + 9λ4 + 13λ5 + 7λ6 ≤ 3β,

2λ1 + λ2 + 2λ3 + λ4 + 3λ5 + 3λ6 ≤ 2,

λ1 + 3λ2 + 7λ3 + 8λ4 + 9λ5 + 2λ6 ≥ 1,∑6
j=1 λj = 1, λj ≥ 0, j = 1, . . . , 6.

(2)

An optimal tableau for this problem is as,

z λ1 λ2 λ3 λ4 λ5 λ6 β s1 s2 R3 R4 RHS
z 1 0 0 -0.33 -0.83 -2 -1.16 0 -0.33 0 0.16 0.83 1
λ2 0 0 1 3 3.5 4 0.5 0 0 0 0.5 -0.5 0
s2 0 0 0 3 2.5 5 1.5 0 0 1 0.5 -2.5 0
β 0 0 0 -0.33 -0.83 -2 -1.16 1 -0.33 0 0.16 0.83 1
λ1 0 1 0 -2 -2.5 -3 -0.5 0 0 0 -0.5 1.5 1

where s1 and s2 are the slack variables of the first and the second constraints,
respectively. Also R3 and R4 are the artificial variables of the third and fourth
constraints. Now we do the parametric analysis, when the RHS vector of the
problem is perturbed of

b′ =

⎛
⎜⎜⎝

0
0
−1
0

⎞
⎟⎟⎠ , b̄ =

⎛
⎜⎜⎝

0
0
1
1

⎞
⎟⎟⎠ , b̄′ = B−1b′ =

⎛
⎜⎜⎝

0 0 0.5 −0.5
0 1 0.5 −2.5

−0.33 0 0.16 0.83
0 0 −0.5 1.5

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0
−1
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−0.5
−0.5
−0.16
0.5

⎞
⎟⎟⎠ .

Since b̄′1 < 0 and b̄1 = 0, then using the algorithm of the parametric analysis
in linear programming, λ2 leaves the basis and since ∀j y1j > 0 then δ−1 =0.
(perturbed problem is infeasible for any δ > 0). Hence there isn’t decreasing
in output, we now do the parametric analysis, when the RHS vector of the
problem is perturbed in the direction of

b′ =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠ , b̄ =

⎛
⎜⎜⎝

0
0
1
1

⎞
⎟⎟⎠ , b̄′ = B−1b′ =

⎛
⎜⎜⎝

0 0 0.5 −0.5
0 1 0.5 −2.5

−0.33 0 0.16 0.83
0 0 −0.5 1.5

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.5
0.5
0.16
−0.5

⎞
⎟⎟⎠ .
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δ+
1 =

1
−(−0.5)

= 2, β(δ) = cB b̄+δcB b̄′ = 1+δ(0, 0, 1, 0)

⎛
⎜⎜⎝

0.5
0.5
0.16
−0.5

⎞
⎟⎟⎠ = 1+0.16δ =⇒ m+

1 = 0.16.

Since 1
m+

1

=6.25> 1, IRS prevail at DMUA. The optimal table for δ = δ+
1 is

as follows:

z λ1 λ2 λ3 λ4 λ5 λ6 β s1 s2 R3 R4 RHS
z 1 0 0 -0.33 -0.83 -2 -1.16 0 -0.33 0 0.16 0.83 1.32
λ2 0 0 1 3 3.5 4 0.5 0 0 0 0.5 -0.5 1
s2 0 0 0 3 2.5 5 1.5 0 0 1 0.5 -2.5 1
β 0 0 0 -0.33 -0.83 -2 -1.16 1 -0.33 0 0.16 0.83 1.32
λ1 0 1 0 -2 -2.5 -3 -0.5 0 0 0 -0.5 1.5 0

The above table is optimal for (xD
A , xND

A , (1 + δ+
1 )yA) = (3, 2, 3).

Regarding the algorithm cost row and the β-row (except for the β-column

) are multiplied by 1
β(δ+

1 )
= 1

1.32
. The following tableau is obtained:

z λ1 λ2 λ3 λ4 λ5 λ6 β s1 s2 R3 R4 RHS
z 1 0 0 0.25 0.62 1.51 0.87 0 0.25 0 -0.12 -0.62 1
λ2 0 0 1 3 3.5 4 0.5 0 0 0 0.5 -0.5 1
s2 0 0 0 3 2.5 5 1.5 0 0 1 0.5 -2.5 1
β 0 0 -0.25 -0.62 -1.51 -0.87 1 -0.25 0 0.12 0.62 1
λ1 0 1 0 -2 -2.5 -3 -0.5 0 0 0 -0.5 1.5 0

The above table is optimal for (β(δ+
1 )xD

A , xND
A , (1 + δ+

1 )yA)=(4,2,3). Now, we
do the parametric analysis in the direction of

b′ =

⎛
⎜⎜⎝

0
0
3
0

⎞
⎟⎟⎠ , b̄ =

⎛
⎜⎜⎝

1
1
1
0

⎞
⎟⎟⎠ , b̄′ = B−1b′ =

⎛
⎜⎜⎝

0 0 0.5 −0.5
0 1 0.5 −2.5

−0.25 0 0.12 0.62
0 0 −0.5 1.5

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0
3
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1.5
1.5
0.36
−1.5

⎞
⎟⎟⎠ .

Since b̄′3 < 0 and b̄3= 0 , then using the algorithm of the parametric analysis

in linear programming, λ1 leaves the basis and λ3 enters the basis by a dual-

simplex iteration. And hence the tableau changes to:

z λ1 λ2 λ3 λ4 λ5 λ6 β s1 s2 R3 R4 RHS
z 1 -0.12 0 0 -0.3 -1.13 -0.8 0 -0.25 0 0.18 0.43 1
λ2 0 -3 1 0 -0.25 -0.5 -0.25 0 0 0 -0.25 1.75 1
s2 0 -3 0 0 -1.25 0.5 0.75 0 0 1 -0.25 -0.25 1
β 0 -0.12 0 0 -0.3 -1.13 -0.8 1 -0.25 0 0.18 0.43 1
λ3 0 -0.5 0 1 1.25 1.5 0.25 0 0 0 0.25 -0.75 0
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b̄′ = B−1b′ =

⎛
⎜⎜⎜⎜⎝

0 0 −0.25 1.75

0 1 −0.25 −0.25

−0.25 0 0.18 0.43

0 0 0.25 −0.75

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0

0

3

0

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

−0.75

−0.75

0.54

0.75

⎞
⎟⎟⎟⎟⎠

.

Hence,

δ+
2 =

1

−(−0.75)
= 1.33, β(δ) = cB b̄+δcB b̄′ = 1+δ(0, 0, 1, 0)

⎛
⎜⎜⎜⎜⎝

−0.75

−0.75

0.54

0.75

⎞
⎟⎟⎟⎟⎠

= 1+0.54δ.

Therefor, m+
2 = 0.54 and 1

m+
2

= 1.85. The optimal table for δ = δ+
2 is as follows:

z λ1 λ2 λ3 λ4 λ5 λ6 β s1 s2 R3 R4 RHS
z 1 -0.12 0 0 -0.3 -1.13 -0.8 0 -0.25 0 0.18 0.43 1.72
λ2 0 -1.5 1 0 -0.25 -0.5 -0.25 0 0 0 -0.25 1.75 0
s2 0 -1.5 0 0 -1.25 0.5 0.75 0 0 1 -0.25 -0.25 0
β 0 -0.12 0 0 -0.3 -1.13 -0.8 1 -0.25 0 0.18 0.43 1.72
λ3 0 -0.5 0 1 1.25 1.5 0.25 0 0 0 0.25 -0.75 1

(β(δ+
1 )xD

A , xND
A , (1 + δ+

1 )(1 + δ+
2 )yA)=(4,2,7). Regarding the algorithm cost

row and the β-row (except for the β-column )are multiplied by 1
β(δ+

2 )
= 1

1.72
.

The following tableau is obtained:

z λ1 λ2 λ3 λ4 λ5 λ6 β s1 s2 R3 R4 RHS
z 1 -0.07 0 0 -0.17 -0.64 -0.5 0 -0.14 0 0.1 0.25 1
λ2 0 -1.5 1 0 -0.25 -0.5 -0.25 0 0 0 -0.25 1.75 0
s2 0 -1.5 0 0 -1.25 0.5 0.75 0 0 1 -0.25 -0.25 0
β 0 -0.07 0 0 -0.17 -0.64 -0.5 1 -0.14 0 0.1 0.25 1
λ3 0 -0.5 0 1 1.25 1.5 0.25 0 0 0 0.25 -0.75 1

The above table is optimal for β(δ+
1 )β(δ+

2 )xND
A , xD

A , (1+δ+
1 )(1+δ+

2 )yA)=(7,2,7).
Now, we do the parametric analysis in the direction of

b′ =

⎛
⎜⎜⎝

0
0
7
0

⎞
⎟⎟⎠ , b̄ =

⎛
⎜⎜⎝

0
0
1
1

⎞
⎟⎟⎠ , b̄′ = B−1b′ =

⎛
⎜⎜⎝

0 0 −0.25 1.75
0 1 −0.25 −0.25

−0.14 0 0.1 0.25
0 0 −0.25 −0.75

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0
7
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−1.75
−1.75
0.7
1.75

⎞
⎟⎟⎠ .

Since b̄′1 < 0 and b̄1= 0 , then using the algorithm of the parametric analysis

in linear programming, λ2 leaves the basis and λ4 enters the basis by a dual-

simplex iteration. And hence the tableau changes to:
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z λ1 λ2 λ3 λ4 λ5 λ6 β s1 s2 R2 R3 RHS

z 1 -1.09 -0.68 0 0 -0.3 -1.35 0 -0.14 0 0.27 0.94 1

λ4 0 -6 -4 0 1 2 -5 0 0 0 1 -7 0

s2 0 -6 -5 0 0 3 -4 0 0 1 1 -9 0

β 0 -1.09 -0.68 0 0 -0.3 -1.35 1 -0.14 0 0.27 0.94 1

λ3 0 7 5 1 0 -1 6 0 0 0 -1.5 8 1

b̄′ = B−1b′ =

⎛
⎜⎜⎜⎜⎝

0 0 1 −7

0 1 1 −9

−0.14 0 0.27 0.94

0 0 −1.5 8

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0

0

7

0

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

7

7

1.89

−10.57

⎞
⎟⎟⎟⎟⎠

.

Hence δ+
3 = 1

−(−10.5)
, β(δ) = cB b̄ + δcB b̄′ = 1 + δ(0, 0, 1, 0)

⎛
⎜⎜⎜⎜⎝

7

7

1.89

−10.5

⎞
⎟⎟⎟⎟⎠

=

1 + 1.89δ =⇒ m+
3 = 1.89 and 1

m+
2

= 0.53.

Since 1
m+

3

< 1, then the algorithm terminates and the results can be inter-

preted as follows:

1. If the outputs increase from 1 to (1 + δ+
1 )(1)=3, then the increase rate is

equal to 1
m+

1

=6.25.

2. If the outputs increase from 3 to (1+δ+
1 )(1+δ+

2 )(1)=7, then the increase

rate is equal to 1
m+

2

= 1.85.

3. β(δ+
1 )β(δ+

2 )xD
A , xND

A , (1 + δ+
1 )(1 + δ+

2 )yA)=(7,2,7) is an most productive

scale size and increasing its outputs is not beneficial.

4 Conclusion

In this paper, we introduced RTS of DMUs with nondiscretionary data. The

proposed model uses the parametric analysis for determining RTS of DMUs

with nondiscretionary data and determines the global variation of outputs with

respect to the variation of inputs.
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