
Applied Mathematical Sciences, Vol. 2, 2008, no. 52, 2557 - 2568

Adaptive Nonlinear Control of an Electric Motor

A. Kaddouri 1, O. Akhrif 2, M. Ghribi 1 and H. Le-Huy 3

1 Department of electrical engineering, University of Moncton,
Moncton (NB), Canada

azeddine.kaddouri@umoncton.ca

2 Department of electrical engineering, Ecole de technologie
superieure, Montreal (PQ), Canada

3 Department of electrical and Computer engineering
Laval University, St-Foy, (PQ), Canada

Abstract

This paper presents an adaptive nonlinear controller applied to a
three-phase permanent-magnet synchronous motor. The designed con-
troller combines the nonlinear Input-Output linearization technique with
linear adaptive control techniques. It takes into account the uncertain-
ties in the stator inductance and the rotor moment of inertia which are
difficult to measure with accuracy in practice.
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1 Introduction

Nonlinear control system design has traditionally relied on linearized approx-
imations of models treated by linear control methods. However, when the
system in question is inherently nonlinear and/or operates over a large dynam-
ical regime, linear approximations may be uninformative and designs based on
them will exhibit unsatisfactory performance. This is the case in large angle,
rapid slewing attitude control problems, high performance flight control sys-
tems, robot manipulator design, and certain chemical processes. The design
approach used in this work is based on the geometric theory of nonlinear sys-
tems. A comprehensive geometric theory for linear systems was developed by
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W.M. Wonham [16] and others. In recent years, a geometric theory of nonlin-
ear control systems has been developed which retains much of the conceptual
and technical flavor of the linear geometric theory. The work of R. Hermann
[18] and C. Lobry [17] mainly used the language of differential geometry. From
this, the interaction between mathematicians and engineers working in nonlin-
ear control theory produced numerous results, first on qualitative concepts such
as controllability, observability and realizability. Subsequent design methods
of significant power were developed for control problems such as disturbance
decoupling, input-output decoupling and feedback linearization. The tech-
nique of input-output feedback linearization is known by now. It gives a good
solution for tracking control problems. Several accessible references ([1], [2],[4]
and [11]) which describe its constructions are available. This nonlinear control
technique has been successfully applied to the control of AC motors that are
known to have highly nonlinear models and are, therefore, difficult to control
(synchronous motors [7],[13], [14], [15], induction motors [9], and switched re-
luctance motors [10]). It has been shown that the nonlinear controller can
handle the nonlinearities of the motor’ model and gives good results as long
as the PMSM parameters are known with high accuracy and remain constant.
When these parameters are not well known, adaptive techniques are consid-
ered. An important line of research that appeared in the last decades is the
development of an adaptive nonlinear methodology which combines feedback
linearization techniques with linear adaptive control techniques [4], [11] and
has been applied to several types of motors with uncertainty on the parameters
([9], [10], [11], [12], and [14]). The nonlinear adaptive technique used in this
paper follows the results given in [3] and [11]. It shows some results in the case
when the parameters uncertainty concerns mainly the stator inductance Land
the rotor moment of inertia J which are, in fact, difficult to measure exactly.

2 Design of the adaptive nonlinear controller

In this paper we develop an adaptive nonlinear controller which combines feed-
back linearization with adaptive control. Several results on this adaptive non-
linear control have also appeared. The nonlinear systems treated are subject to
uncertainties parameterized by fixed but unknown parameters. Our objective
is to design an adaptive nonlinear controller for use with a PMSM having con-
stant but unknown L and J. We start by designing a nonlinear input-output
linearizing controller for the nominal model of the PMSM. We can rewrite
the system of equations in a form that suggests an adaptive scheme for the
estimation of L and J:
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x′ = f0(x) +
2∑

i=1

gi(x)ui +
2∑

j=1

δjfδj
(x) +

2∑
k=1

δ1ℵδk
(x) (1)

where:

f0(x) =

⎡
⎣ − R

Ln
x1 + px2x3

− R
Ln

x2 − px1x3 − pΦv

Ln
x3

1
J
(kT x2 − Bx3 − TL)

⎤
⎦ =

⎡
⎣ f1(x)

f2(x)
f3(x)

⎤
⎦ (2)

with:

g1(x) =
[

1
Ln

0 0
]T

g1(x) =
[

0 1
Ln

0
]T

fδ1(x) =
[ −Rx1 −(Rx2 + px3Φv) 0

]T

fδ2(x) =
[

0 0 kT x2 − Bx3 − TL

]T

ℵ1(x) =
[

1 0 0
]T

ℵ2(x) =
[

0 1 0
]T

(3)

where (x =
[

x1 x2 x3

]T
) is the state vector and (x1 = id), (x2 = iq)

and (x3 = ωr) are the direct and quadrature currents and the rotor speed.
φv is the rotor fluxe, R and L are the stator resistance and inductance, TL is
the load torque, ud and uq are the stator voltages. Finally, B is the damping
coefficient and J is the rotor moment of inertia. The vector δ represents the
error between the inverse of the uncertain parameters (L and J) and their
nominal values, i.e:

δ =
[

δ1 δ2

]T
=

[
1
L
− 1

Ln

1
J
− 1

Jn

]T
(4)

where the index n denotes nominal values.

2.1. Non-adaptive version of the controller

We start by designing the non-adaptive version of the controller, where δ
is assumed to be zero. The control goal is twofold, first to regulate the rotor
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speed (x3 = ωr) and second to force the d-component of the stator currents
(x1 = id) to be zero to insure a maximum torque operation, hence the output
vector is:

⎡
⎣ y1

y2

y3

⎤
⎦ =

⎡
⎣ φ1

φ2

φ3

⎤
⎦ =

⎡
⎣ id

ωr

ω̇r

⎤
⎦ (5)

then:

⎡
⎣ ẏ1

ẏ2

ẏ3

⎤
⎦ =

⎡
⎣ Lf0φ1 + Lg1φ1ud + Lg2φ1uq

Lf0φ2 + Lg1φ2ud + Lg2φ2uq

L2
f0

φ2 + Lg1Lf0φ2ud + Lg2Lf0φ2uq

⎤
⎦ (6)

where:

Lf0φ1 = ∂φ1

∂x
f0(x) =

[
1 0 0

]
f0(x) = f1(x)

Lg1φ1 =
[

1 0 0
]
g1(x) = 1

Ln

Lg2φ1 = Lg1φ2 = Lg2φ2 = Lg1Lf0φ2 = 0
Lf0φ2 = f3(x)
L2

f0
φ2 = Lf0(Lf0φ2) = kT

Jn
f2(x) − B

Jn
f3(x)

Lg2Lf0φ2 = kT

LnJn

(7)

Recall that the Lie derivative of φ along the vector field f is defined by:

∂φ

∂x
f(x) (8)

The feedback linearization technique which uses a nonlinear change of co-
ordinates and feedback to transform the nonlinear system (1) into a decoupled
linear one is given by:

[z] =
[

z1 z2 z3

]T
=

[
id ωr ω̇r

]T
(9)

Then:

[
ż1 z̈3

]T
= ξ(x) + D(x)

[
ud

uq

]
(10)
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where

ξ(x) =

[ − R
Ln

x1 + px2x3
kT

Jn
f2(x) − B

Jn
f3(x)

]
(11)

D(x) is an invertible matrix given by:

D(x) =

[ 1
Ln

0

0 kT

JnLn

]
(12)

with its determinant satisfying the condition:

det(D(x)) =
kT

JnL2
n

�= 0 (13)

for all operation points. The linearizing control law is then:

u =

[
ud

uq

]
= D(x)−1(−ξ(x) + v̄) (14)

where v̄ is the new system input vector to be determined. Classical pole
placement scheme can be used to insure speed tracking:

[
v1

v2

]
=

[ −k1(x1 − x1ref)
ẍ3ref − k2(x3 − x3ref ) − k3(ẋ3 − ẋ3ref)

]
(15)

The matrix gain k is determined by choosing some poles which give a good
behavior to the motor.

2.2. Adaptive version of the controller

The dynamics of the outputs becomes in this case:

⎧⎪⎪⎨
⎪⎪⎩

ẏ1 = Lf0φ1 + Lg1φ1ud + Lg2φ1uq + δ1Lfδ1
φ1 + δ2Lfδ2

φ1 + δ1Lℵ1φ1ud + δ1Lℵ2φ1uq

ẏ2 = Lf0φ2 + Lg1φ2ud + Lg2φ2uq + δ1Lfδ1
φ2 + δ2Lfδ2

φ2 + δ1Lℵ1φ2ud + δ1Lℵ2φ2uq

ẏ3 = L2
f0

φ2 + Lg1Lf0φ2ud + Lg2Lf0φ2uq + δ1Lfδ1
Lf0φ2 + δ2Lfδ2

Lf0φ2+

+δ1Lℵ1Lf0φ2ud + δ1Lℵ2Lf0φ2uq

(16)
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with:

Lfδ2
φ1 = Lg2φ1 = Lℵ2φ1 = Lfδ1

φ2 = Lg1φ2 = 0

Lg2φ2 = Lℵ1φ2 = Lℵ2φ2 = Lg1Lf0φ2 = Lℵ1Lf0φ2 = 0
Lfδ1

Lf0φ2 = −kT

Jn
(Riq + pωrΦv)

Lfδ2
Lf0φ2 = − B

Jn
(kT iq − Bωr − TL)

Lg2Lf0φ2 = kT

JnLn

Lℵ2Lf0φ2 = kT

Jn

(17)

then:

⎧⎨
⎩

ẏ1 = Lf0φ1 + Lg1φ1ud + δ1Lfδ1
φ1 + δ1Lℵ1φ1ud

ẏ2 = Lf0φ2 + δ2Lfδ2
φ2

ẏ3 = L2
f0

φ2 + Lg2Lf0φ2uq + δ1Lfδ1
Lf0φ2 + δ2Lfδ2

Lf0φ2 + δ1Lℵ2Lf0φ2uq

(18)

Since δ is unknown, we replace it by its estimate δ̂:

δ̂ =
[

δ̂1 δ̂2

]T
=

[
1

L̂
− 1

Ln

1

Ĵ
− 1

Jn

]T
(19)

The nonlinear change of coordinates (9) becomes:

⎧⎨
⎩

ẑ1 = y1

ẑ2 = y2

ẑ3 = y3 + δ̂2Lfδ2
φ2

(20)

satisfying:

⎧⎪⎨
⎪⎩

˙ẑ1 = ẏ1

˙ẑ2 = ẏ2

˙
ẑ3 = ẏ3 +

˙
δ̂2Lfδ2

φ2 + δ̂2(Lfδ2
φ2)′

(21)

By replacing z in (9) and u in (14) by ẑ and û which depend on the pa-
rameter estimate vector (19). The nonlinear change of coordinates (20) gives:

[
˙̂z1

˙̂z3

]
= ξ(x) + ξδ(x, δ, δ̂) + D(x, δ, δ̂)

[
ûd

ûq

]
(22)
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Then, the linearizing control law becomes:[
ûd

ûq

]
= D−1(x, δ, δ̂)

{
−ξ(x) − ξδ(x, δ, δ̂) + v̂

}
(23)

where ξ(x) is given by (11) and the linearizing part introduced by parameter
uncertainties ξδ(x, δ, δ̂) is:

δ(x, δ, δ̂) =

⎡
⎣ ξδ1(x, δ, δ̂)

ξδ2(x, δ, δ̂)

⎤
⎦

ξδ1(x, δ, δ̂) = −δ̂1Rx1

ξδ2(x, δ, δ̂) = −δ̂2
B
Jn

Ξ(x) − δ̂1(
kT

Jn
) {Rx2 + px3Φv}

+
˙

δ̂2Ξ(x) + δ̂2 {kT f2(x) − Bf3(x)}

(24)

where f2(x) and f3(x) are given by (2) and Ξ(x) = (kT x2−Bx3−TL). Here,

D−1(x, δ, δ̂) is given by:

D(x, δ̂) =

[
1

Ln
+ δ̂1 0

0 kT ( 1
JnLn

+ δ̂1
JL

)

]
(25)

with its determinant is non zero if (δ̂1 �= − JL
JnLn

).

The new system inputs:

v̂ =
[

˙̂z1
˙̂z3

]T
=

[
v̂1 v̂2

]T
(26)

are designed exactly as (15) where z3 = ω̇r is replaced by ẑ3. In closed
loop, the system (22) becomes:

˙
ẑ = ξ(x) + ξδ(x, δ, δ̂) − D(x, δ)D(x, δ, δ̂)−1

{
ξ(x) + ξδ(x, δ, δ̂)

}
+D(x, δ)D(x, δ, δ̂)−1v̂

(27)
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or in a compact form:

˙
ẑ = Az + W1∆δ + W2

˙̂
δ (28)

2.3. Model Reference Adaptive Scheme

A standard adaptive law can be designed to insure that the augmented error
approaches zero. In the design of the model reference adaptive controller, the
reference model must be asymptotically stable and with relative degree larger
than or equal to that of the dynamic systems (Electric motor).

We consider the following linear (linearized) model:

żref = Ar zr + br r zr(0) = zr0 (29)

The signal r(t) is a uniformly bounded reference input and zr is a prescribed
reference trajectory we wish the state z to track. The spectrum of Ar lies in the
negative left half plane and the pair (Ar, br) is assumed to be in controllable
form. We define the vector of the states error by:

e = ẑ − zr =
[

ẑ1 − z1r ẑ3 − z3r
˙ẑ3 − ż3r

]T
(30)

The design objective is to find an adaptation law independent of the initial
conditions, which assures asymptotic adaptation characterized by lim

x→∞
e(t) = 0

and a bounded parameter error (∆δ). The error signal e satisfies:

ė =
˙

ẑ − żr = Az + bv − Arzr + W1∆δ + W2
˙̂
δ (31)

where ∆δ is the vector of the error estimates, given by:

∆δ̂ =
[

∆δ1 ∆δ2

]T
=

⎡
⎣ 1

L
− 1

L̂

1
J
− 1

Ĵ

⎤
⎦ (32)

and:
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W1 =

⎡
⎣ L̂(v̂1 − px3x2) 0

0 Ξ(x)
Υ(x) B

Jn
Ξ(x)

⎤
⎦

W2 =

⎡
⎢⎣

0 0
0 0

0 Ξ(x)
{

1 + δ̂L̂
}

⎤
⎥⎦

(33)

with:

Υ(x) = Υ1(x) + Υ2(x) + Υ3(x) + Υ4(x) + L̂v̂2

Υ1(x) = −L̂
{

(kT

Jn
)f2(x) − ( B

Jn
)f3(x)

}
Υ2(x) = −(kT

Jn
)( L̂(Rx2+px3Φv

Ln
)

Υ3(x) = δ̂2Ξ(x)L̂B
Jn

Υ4(x) = −{kT f2(x) − Bf3(x)} δ̂2L̂

(34)

The form (31) without the term W2 is familiar in the linear adaptive control
literature [19], [20]. The quantity multiplying the parameter error (∆δ,W1)
is often referred to as the regressor. The existence of the nonlinear term W2

suggests the use of the concept of augmented error, defined in linear adaptive
control [20,21, 22,23], to put the equation (31) into a more familiar form. A
standard adaptive law can be designed to insure that the augmented error
approaches zero.

We introduce the signal ε satisfying

ε̇ = kε + W2
˙̂
δ (35)

and the augmented error η by (η = e − ε) which satisfies

η̇ = kη + W1∆δ (36)

We choose the candidate Lyapunov function V as:

V = ηT Pη + (∆δ)T Γ(∆δ) (37)

Differentiating V we have:
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V̇ = ηT (kT P + Pk)η + 2(∆δ)T
{

W T
1 Pη + Γ(∆δ̇)

}
(38)

In defining the parameter update law under the form:

˙
δ̂ = −Γ−1W T

1 Pη (39)

we can guarantee that (V̇ = −ηT Qη ≤ 0), where (P = P T > 0) is the
solution of Lyapunov equation:

kT P + Pk = −Q (40)

where Q is a positive definite matrix and Γ represents a positive-definite
adaptation gains matrix.

Finally, by using Theorem 4.1 ([19]), one can proof that:

lim
t→∞

‖e(t)‖ = lim
t→∞

‖ẑ(t) − zr(t)‖ = 0 (41)

3 Conclusion

This work concerns the construction of an adaptive nonlinear controller mainly
for some nonlinearities cancelation of an electric motor. The method used
considers parametric uncertainties and combine exact linearization techniques
with adaptive linear techniques. This method assumes that the unknown pa-
rameters appear linearly in the nonlinear model and that the nonlinear system
satisfies the linearizability conditions for all possible values of the unknown
parameters.
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