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Abstract

In this paper, a time fractional partial differential equation is consid-
ered, where the fractional derivative is defined in the Caputo sense. A
function transform and Laplace transform method along with an inter-
mediate step of Mellin transform have been applied to achieve an exact
solution in terms of the H-function and the complement error function.
A number of special cases is also considered.
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1. Introduction

Time fractional partial differential equations, obtained from the stan-

dard partial differential equations by replacing the integer order time derivative

by a fractional derivative ( of order 0 < α ≤ 1 , in Riemann-Liouville or Ca-

puto sence), have been studied and treated in different contexts by several re-

search workers. The fractional diffusion equation, the fractional wave equation,

the fractional advection-dispersion equation, the fractional kinetic equation
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and other fractional partial differential equations have been studied and ex-

plicit solutions have been achieved by Mainardi, Pagnini and Saxena[9], Lang-

lands[4], Mainardi, Pagnini and Gorenflo[8],Mainardi and Pagnini[6,7], Yu and

Zhang[16],Liu, Anh, Turner and Zhang[5], Saichev and Zaslavsky[11],Saxena,

Mathai and Haubold[12], Wyss[15] , Schneider and Wyss[13] and several other

research works can be found in the literature. In these works , the techniques of

using integral transforms ( Laplace, Fourier and Mellin transforms) were used

to maintain exact solutions of fractional partial differential equations explicitly.

In this paper, we consider the time fractional partial differential equa-

tion

∂αC(x, t)

∂tα
= a

∂2C(x, t)

∂x2
−b

∂C(x, t)

∂x
−λC(x, t) (1)

for x > 0, t > 0, m − 1 < α ≤ m ,where ∂αC(x,t)
∂tα

is the fractional derivative

with respect to time t ,a > 0, b ≥ 0 and λ ≥ 0. Subject to initial conditions

C(k)(x, 0) = Ck(x), k = 0, 1, ...,m−1 (2)

This time fractional partial differential equation contains several known

partial differential equations as special cases. For example:

(i) Setting λ = 0 and 0 < α ≤ 1, then we get the equation

∂αC(x, t)

∂tα
= a

∂2C(x, t)

∂x2
− b

∂C(x, t)

∂x
, C(x, 0) = C0(x) (3)

which is the time fractional advection-dispersion equation. Moreover if α = 1,

then the equation is the standard advection-dispersion equation.

(ii) If b = 0 in (3), then we get the equation

∂αC(x, t)

∂tα
= a

∂2C(x, t)

∂x2
, C(x, 0) = C0(x) (4)

which is the time fractional diffusion equation, and setting α = 1 yields the

standard diffusion equation.
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(iii) Setting b = 0, λ = 0 and 1 < α ≤ 2, then we get

∂αC(x, t)

∂tα
= a

∂2C(x, t)

∂x2
, C(k)(x, 0) = Ck(x), k = 0, 1 (5)

which is the fractional wave equation. For α = 2, we get the D’Alembert wave

equation

∂2C(x, t)

∂t2
= a

∂2C(x, t)

∂x2
, C(k)(x, 0) = Ck(x), k = 0, 1 (6)

In this paper, we handle in details the solution of Eqs.(1) and (2) for

the cases when 0 < α ≤ 1 and when 1 < α ≤ 2.

The fractional derivative 0D
α
t C(x, t) = ∂αC(x,t)

∂tα
is considered in the

Caputo sense and is defined for m− 1 < α ≤ m as

0D
α
t C(x, t) =

∂αC(x, t)

∂tα
=

1

Γ(m− α)

t∫
0

∂mC(x, τ)

∂tm
dτ

(t− τ)α−m+1

= J
(α−m)0
0 Dm

t C(x, t) (7)

, where Jα is the Riemann-Liouville fractional integral operator defined as

JαC(x, t) =
1

Γ(α)

t∫
0

(t−τ)α−1C(x, τ)dτ, α > 0 (8)

and

Jα
0 Dα

t C(x, t) = C(x, t)−
m−1∑
k=0

xk

k!
C(k)(x, 0), m−1 < α ≤ m. (9)

For more detailed discussion on this fractional derivative, we refer the reader

to e.g. [3,10].

The method used to achieve the exact solution of (1) and (2) depends

on the Laplace transform defined by
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∼
f(p) = L{f(t); p} =

∞∫
0

e−ptf(t)dt, (10)

and on the Mellin transform defined by

f ∗(s) = M{f(t); s} =

∞∫
0

ts−1f(t)dt. (11)

For detailed properties and tables of Laplace and Mellin transforms, one can

refer to [2].

2. The Green function

Using Eq.(9), then Eq.(1) can be expressed as the following integral

equation

C(x, t) =
m−1∑
k=0

Ck(x)
xk

k!
+

1

Γ(α)

t∫
0

(t− τ)α−1

[
a
∂2C(x, τ)

∂x2
− b

∂C(x, τ)

∂x
− λC(x, τ)

]
dτ (12)

for m−1 < α ≤ m . Assume C(x, t) = u(ξ, t) exp(µξ), µ =
b

2
√

a
and ξ =

x√
a
,

then Eq.(12) becomes

u(ξ, t) =
m−1∑
j=0

gj(ξ)
tj

j!
+

1

Γ(α)

t∫
0

(t−τ)α−1

[
∂2u(ξ, τ)

∂ξ2
− θ2u(ξ, τ)

]
dτ (13)

,where gj(ξ) = u(j)(ξ, 0) ,j = 1, 2 and θ2 = µ2 + λ .

The Laplace transform of Eq.(13) with respect to t can be written for p > 0

as
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∼
u(ξ, p) =

m−1∑
j=0

gj(ξ)p
−j−1+p−α

[
∂2∼u(ξ, p)

∂ξ2
− θ2∼u(ξ, p)

]
(14)

or

∂2∼u(ξ, p)

∂ξ2
−ω2∼u(ξ, p) = −

m−1∑
j=0

pα−j−1gj(ξ) (15)

,where ω2 = θ2 + pα.

According to Schneider and Wyss [8], Eq.(15) has the solution

∼
u(ξ, p) =

m−1∑
j=0

∞∫
0

∼
G

α,j

θ (| ξ−y |, p)gj(y)dy (16)

,where the Green function is

∼
G

α,j

θ (r, p) = pα−j−1
( r

2πω

)1/2

k1/2(ωr)

= pα−j−1
( r

2π

)1/2

(θ2+pα)−1/4k1/2(r
√

θ2 + pα) , j = 0, 1 (17)

where k1/2(z) is the modified Bessel function of the third kind [1].

A direct transition to the time domain (i.e. inverting the Laplace

transform) does not seem to be feasible. This difficulty is circumvented by

passing through the intermediate step of the Mellin transform (11) which is

connected to the Laplace transform by the relation

f ∗(s) =
1

Γ(1− s)

∞∫
0

p−s
∼
f(p)dp (18)

Then we get

G∗α,j
θ (r, s) =

1

Γ(1− s)

∞∫
0

p−s
˜

G
α,j

θ (r, p)dp , j = 0, 1 (19)
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or

G∗α,j
θ (r, s) =

( r

2π

)1/2 1

Γ(1− s)

∞∫
0

p−s+α−j−1(θ2+pα)−1/4k1/2

(
r
√

θ2 + pα
)

dp , j = 0, 1 (20)

Let q = pα/2, then for j = 0, 1 Eq.(18) yields

G∗α,j
θ (r, s) =

2

α

( r

2π

)1/2 1

Γ(1− s)

∞∫
0

q(2− 2s
α
− 2j

α )−1
(
θ2 + q2

)−1/4
k1/2

(
r
√

θ2 + q2
)

dq (21)

Now, using the formula [2]

M
{(

t2 + b2
)−1/2ν

kν

[
a
(
t2 + b2

)1/2
]
; s
}

= a
−s
2 2

s
2
−1b

s
2
−νΓ(s/2)kν− s

2
(ab) (22)

min {Re(a), Re(b), Re(s)} > 0, we get

G∗α,j
θ (r, s) =

1

α
√

π

(
2θ

r

)1/2−s/α−j/α
Γ(1− s/α− j/α)

Γ(1− s)
k s

α
+ j

α
− 1

2
(rθ) (23)

Now from the H-function representation (A2), we have

Γ(1− j/α− s/α)

Γ(1− s)
= H∗1,0

1,1

(
z |(1,1)

(1−j/α,1/α)

)
(−s) (24)

Let ϕ(p) = 1
2
exp

{−1
2

θr(pα + p−α)
}

and φ(p) = p−αϕ(p)

Then, from the properties of the Mellin transform [2]

ϕ∗(s) =
1

α
ks/α(θr), φ∗(s) =

1

α
k s

α
+ j

α
− 1

2
(θr) (25)

Thus the Mellin transform G∗α
θ (r, s) can be written as
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G∗α,j
θ (r, s) =

1√
π

(
2θ

r

)1/2−j/α(
2θ

r

)−s/α

φ∗j(s)H
∗1,0
1,1(−s) (26)

Now M {ϕ(at); s} = a−sϕ∗(s) and M {ϕ(tm); s} = 1
|m|ϕ

∗(s/m), m 6= 0, and by

the Mellin convolution theorem M

{∞∫
0

h

(
t

z

)
ϕ(z)

dz

z
; s

}
= h∗(s)ϕ∗(s) ,then

we get for j = 0, 1

M


∞∫

0

φj

(
(2θ/r)

1
α

t

z

)
H1,0

1,1 (z−1)
dz

z
; s

 =

[(
2θ

r

) 1
α

]−s

φ∗j(s)H
∗1,0
1,1(−s) (27)

Let η =
1

z
,then

∞∫
0

φj

((
2θ

r

)1/α
t

z

)
H1,0

1,1 (z−1)
dz

z
=

∞∫
0

φj

((
2θ

r

)1/α

ηt

)
H1,0

1,1 (η)
dη

η
(28)

so the inverse Mellin transform leads to

Gα,j
θ (r, t) =

1√
π

(
2θ

r
)

1
2
− j

α

∞∫
0

φj

((
2θ

r

)1/α

ηt

)
H1,0

1,1 (η)
dη

η

=
1√
π

(
2θ

r
)

1
2
− j

α

∞∫
0

((
2θ

r

)1/α

ηt

)j−α
2

ϕ

((
2θ

r

)1/α

ηt

)
H1,0

1,1 (η)
dη

η

=
tj−

α
2

2
√

π

∞∫
0

ηj−α
2 exp

[
−θ2tαηα − r2

4
t−αη−α

]
H1,0

1,1 (η)
dη

η
(29)

Let σ = ηα and using the formulas (A9) and (A10) of the H-functions , then

Gα,j
θ (r, t) =

tj−
α
2

2
√

π

∞∫
0

exp

[
−θ2tασ − r2

4
t−ασ−1

]
H1,0

1,1

[
σ |(1+j−3α/2,α)

(−1/2,1)

]
dσ (30)

So the inverse Laplace transform of Eq.(16) yields
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u(ξ, t) =
m−1∑
j=0

∞∫
0

Gα,j
θ (|ξ − y| , t) gj(y)dy , j = 0, 1 (31)

3. The complete solution and special cases:

In this section, we find the exact solution of the initial problem given

in (1) and (2), Eq. (31) implies that

C(x, t) = e
µ√
a
x

m−1∑
j=0

∞∫
0

Gα,j
θ

(∣∣∣∣ x√
a
− y

∣∣∣∣ , t) gj(y)dy , j = 0, 1 (32)

1. The case 0 < α ≤ 1 :

In this case g(ξ) = u(ξ, 0) = C0 exp(−µξ), so the the solution of the frac-

tional partial differential equation is written as

C(x, t) =
C0

2
√

πtα

∞∫
0

exp(−4λt2ασ2)H1,0
1,1

[
σ |(1−3α/2,α)

(−1/2,1)

]

 ∞∫
0

exp

(
−
[ x√

a
− y − 2µtασ

2
√

tασ

])
dy

 dσ (33)

Now, let β =
2µtασ − x√

a
+ y

2
√

tασ
, then Eq.(33) yields

C(x, t) =
C0√

π

∞∫
0

exp(−4λt2ασ2)σ1/2H1,0
1,1

[
σ |(1−3α/2,α)

(−1/2,1)

] ∞∫
β1

e−β2

dβ

 dσ (34)

where β1 =
2µtασ − x√

a

2
√

tασ
.

And using the property of the H-function ( A9), we get
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C(x, t) =
C0

2

∞∫
0

exp(−4λt2ασ2)H1,0
1,1

[
σ |(1−α,α)

(0,1)

]
(erfc (β1)) dσ (35)

, where erfc(β1) =
2√
π

∞∫
β1

exp (−β2) dβ

2. The case 1 < α ≤ 2 :

Let C0(x) = C0 and C1(x) = C1, then g1(y) = C0 exp(−µy) and g2(y) =

C1 exp(−µy) then the solution is

C(x, t) =
C0

2

∞∫
0

exp
(
−4λt2ασ2

)
H1,0

1,1‘

[
σ |(1−α,α)

(0,1)

]
(erfc(β1))dσ +

C1t

2

∞∫
0

exp
(
−4λt2ασ2

)
H1,0

1,1‘

[
σ |(2−α,α)

(0,1)

]
(erfc(β1))dσ (36)

3. Let λ = 0 and 0 < α ≤ 1, and assuming C0(x) = C0, then the solution of

Eq.(3) is given by

C(x, t) =
C0

2

∞∫
0

H1,0
1,1

[
σ |(1−α,α)

(0,1)

]
(erfc(β1)) dσ (37)

which is the result obtained in [5]

4. Moreover let b = 0, and C0(x) = C0, then the solution of the time fractional

diffusion Eq.(4) is

C (x, t) =
C0

2

∞∫
0

H1,0
1,1

[
σ |(1−α,α)

(0,1)

](
erfc

(
−x

2
√

tασ

))
dσ (38)

5. If λ = b = 0, a = 1, 1 < α ≤ 2, we get the time fractional wave equation

subject to the initial conditions C(x, 0) = C0(x) and
∂C(x, t)

∂t
= C1(x), then

iff C0(x) = C0 and C1(x) = C1, we get the solution of Eq.(5) as
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C(x, t) =
C0

2

∞∫
0

H1,0
1,1

[
σ |(1−α,α)

(0,1)

](
erfc

(
−x

2
√

tασ

))
dσ

+
C1t

2

∞∫
0

H1,0
1,1

[
σ |(2−α,α)

(0,1)

](
erfc

(
−x

2
√

tασ

))
dσ (39)

4. Conclusion

The time fractional partial differential equation is obtained from the

classical partial differential equation by replacing the first order time dera-

vative by a fractional derivative of order (m− 1 < α ≤ m). Using variable

transformation, the intermediate steps of Mellin and Laplace transforms, we

derive the complete solution of this time fractional partial differential equa-

tion. Also special cases have been obtained for 0 < α ≤ 1 and 1 < α ≤ 2.

Appendix: The H-function

An H-function is defined in terms of a Mellin-Bernes type integral as

follows [14]:

Hm,n
p,q (z) = Hm,n

p,q [z|(a1,α1)...(ap,αp)

(b1,β1)...(bq ,βq) ] =
1

2πi

∫
L

H∗m,n
p,q (s)z−sds (A1)

wherem, n, p and q are nonnegative integeres such that 0 ≤ n ≤ p, 1 ≤ m ≤ q

and empty products are interpreted as unity. The parameters α1, ..., αp and

β1, ..., βq are positive real numbers, whereas a1, ..., ap and b1, ..., bq are complex

numbers.The Fox or H-function is characterized by its Mellin transform:

H∗m,n
p,q (s) = H∗m,n

p,q

[
z |(aj ,αj)j=1,...,p

(bi,βj)i=1,...,q

]
(s) =

A(s)B(s)

C(s)D(s)
(A2)

where

A(s) =
m∏

j=1

Γ (bj + βjs) , B(s) =
m∏

j=1

Γ (1− aj − αjs) ,

C(s) =
q∏

j=m+1

Γ (1− bj − βjs) , D(s) =
p∏

j=n+1

Γ(aj + αjs).
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In (A1) z−s = exp {−s log |z| − i arg(z)} and arg(z) is not necessarily the prin-

cipal value. The parameters are restricted by the condition P (A) ∩ P (B) =

∅,where

P (A) = {poles of Γ(1− ai + αis)} =
{

1−ai+k
αi

∈ C; i = 1, ..., n, k ∈ N0

}
,

P (B) = {poles of Γ(bi + βis)} =
{
−bi−k

βi
∈ C; i = 1, ...,m, k ∈ N0

}
, N0 =

{0, 1, ...}

The integral (A1) converges if one of the following conditions holds

L = L(c− i∞, c + i∞; P (A), P (B)), |arg z| < ωπ

2
, ω > 0;

L = L(c − i∞, c + i∞; P (A), P (B), |arg z| <
ωπ

2
, ω ≥ 0, cR < −Re(γ);

where

ω =
n∑

j=1

αj −
p∑

j=n+1

αj +
m∑

j=1

βj −
q∑

j=1

βj, R =
q∑

j=1

βj −
p∑

j=1

αj,

γ =
q∑

j=1

bj −
p∑

i=1

ai +
p− q

2
+ 1.

The H-function are analytic for z 6= 0 and multi-valued (single-valued on

the Riemann surface of log z).The H-functions may be represented as

Hm,n
p,q

[
z |(a1,α1)...(ap,,αp)

(b1,β1)...(bq ,βq)

]
=

m∑
i=1

∞∑
k=0

cik
(−1)k

k!βi

z
bi+k

βi (A3)

where

cik =

m∏
j=1,j 6=i

Γ(bj − (bi + k)
βj

βi
)

n∏
j=1

Γ(1− aj + (bi + k)
αj

βi
)

q∏
j=m+1

Γ(1− bj + (bi + k)
βj

βi
)

p∏
j=n+1

Γ(aj − (bi + k)
αj

βi
)

(A4)

whenever R ≥ 0 and the poles in P (A) are simple. Similarly,

Hm,n
p,q

[
z |(a1,α1)...(ap,αp)

(b1,β1)...(bq ,βq)

]
=

m∑
i=1

∞∑
k=0

cik
(−1)k

k!αi

z
− 1+αi+k

αi , (A5)

where
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cik =

m∏
j=1

Γ
(
bj + (1− ai + k)

βj

αi

) n∏
j=1,j 6=i

Γ
(
1− aj + (1− ai + k)

αj

αi

)
q∏

j=m+1

Γ
(
1− bj + (1− ai + k)

βj

αi

) p∏
j=n+1

Γ
(
aj + (1− ai + k)

αj

αi

) (A6)

whenever R ≤ 0 and the poles in P (A) are simple.

In particular, if R > 0, we obtain from (A3) that

H1,n
p,q (z) = H1,n

p,q

[
z |(a1,α1)...(ap,αp)

(b1,β1)...(bq ,βq)

]
=

1

β1

∞∑
k=0

(−1)k

k!

B(sk)

C(sk)D(sk)
z−sk , (A7)

where sk = −b1 + k/β1.In the case R < 0, we obtain from (A3) that

Hm,1
p,q (z) = Hm,1

p,q

[
z |(a1,α1)...(ap,αp)

(b1,β1)...(bq ,βq)

]
=

1

α1

∞∑
k=0

(−1)k

k!

A(sk)

C(sk)D(sk)
z−sk , (A8)

where sk = (k + 1− α1) /α1.

The following identities for the H-function are well-known:

zkHm,n
p,q

[
z |(a1,α1)...(ap,αp)

(b1,β1)...(bq ,βq)

]
= Hm,n

p,q

[
z |(a1+kα1,α1)...(ap+kαp,αp)

(b1+kβ1,β1)...(bq+kβq ,βq)

]
, (A9)

Hm,n
p,q

[
z |(a1,α1)...(ap,αp)

(b1,β1)...(bq ,βq)

]
= kHm,n

p,q

[
zk |(a1,kα1)...(ap,kαp)

(b1,kβ1)...(bq ,kβq)

]
. (A10)
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[2]A. Erdélyi ,W. Magnus ,F. Oberhettinger and F.G. Tricomi , Tables of In-

tegral Transforms. Vol. I , McGraw-Hill , New York , 1954.



Fractional partial differential equation 2589

[3] R. Gorenflo and F. Mainardi, Fractional calculus : integral and differential

equations of fractional order, in: Carpinteri A , Minardi F. (Eds) , Fractals

and Fractional Calculus in continuum Mechanics, Springer Verlag , Wien and

New York , 1997, 223-276. Available from ¡http:// www.fracalmo. org¿.

[4]T. A. M. Langlands , Solution of a modified fractional diffusion equation .

Physica A, 367 (2006), 136-144.

[5]F. Liu ,V.V. Anh ,I. Turner and P. Zhuang , The fractional advection-

dispersion equation. J. Appl. Math. Computing 13(2003), 233-245.

[6]F. Mainardi and G. Pagnini , The role of the Fox-Wright functions in frac-

tional sub-diffusion of distributed order. J. Comput. Appl. Math. (2006), doi:

10. 1016/ j. Cam. 2006. 10. 014.

[7]F. Mainardi and G. Pagnini , The Wright functions as solutions of the time-

fractional diffusion equations. Appl. Math. Comput. 141 (2003), 51-62.

[8]F. Minardi , G. Pagnini and R. Gorenflo , Some aspects of fractional diffu-

sion equations of single and distributed order. Appl. Math. Comput. (2006)

, doi: 10. 1016/ j. amc. 2006. 08. 126.

[9]F. Mainardi ,G. Pagnini and R. K. Saxena , Fox H-functions in fractional

diffusion. J. Comput. Appl. Math. 178 (2005), 321-331.

[10]I. Podlubny , Fractional Differential Equations. Academic Press , New

York , 1999.

[11]A. Saichev and G. Zaslavsky , Fractional kinetic equations: solutions and

applications. Chaos 7(1997), 753-764.

[12]R.K. Saxena ,A.M. Mathai and H.J. Haubold , Solutions of certain frac-

tional kinetic equations and a fractional diffusion equation. ArXiv:0704.1916v1

[math.CA] 15 Apr 2007.

[13]W.R. Schneider and W. Wyss , Fractional diffusion equation and wave

equations. J. Math. Phys. 30 (1989), 134-144.



2590 A. El-Kahlout, T. O. Salim and S. El-Azab

[14]H.M. Srivastava ,K.C. Gupta and S.P. Goyal , The H-functions of One and

Two Variables with Applications, South Asian Publishers, New Delhi-Madras,

1982.

[15]W. Wyss , The fractional diffusion equation. J. Math. Phys. 27(1986),

2782-2785.

[16]R. Yu. and H. Zhang , New function of Mittag-Leffler type and its appli-

cation the fractional diffusion-wave equation. Chaos, Solitons Fract. (2005),

doi: 10. 1016/ j. Chaos. 2005. 08. 151.

Received: March 20, 2008


