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Abstract 

 
In this paper a general solution of a certain nth order linear differential equation 
variable coefficients of the form 
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being established. Some properties between the coefficients in (1) are constructed.  
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1. Introduction 
 
In [1], Bayne and his colleagues have generalized the basic differential equation 

' 0y ay− = to nth order equation and they have solved it. In our paper we 
consider the equation 0y axy′ − =  as a basic equation and generalized it to nth 
order and solve it. Notice that when x =1, our equation is reduced to the 
basicequation given in [1], and thus their results are special cases of our results.  
 
It is well known that the differential equation,  
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                                           0' =− axyy ,                                                   (2)                                    
can be easily solved, see [2]. It follows, from (2), that 

 
                             0)()( ''' =−−− axyyaxaxyy ,                                         (3) 

or                                                
                             0)(2 22''' =−+− yaxaaxyy ,                                         (4) 
 

and therefore  equation (4) can be easily solved.  
 

In this paper, equation (2) will be generalized to nth order equation, and then 
 

we will follow the technique offered by [1] to obtain its general solution. The 
following theorem is necessary for our main results. 

      
      Theorem (1) :  Assume that (2) is satisfied. Then 
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      Proof: Using induction on n, the result follows at once.  

 
From now on, equation (5) will be denoted by y(n)-equation and our aim is to 
find those coefficients fj, j=0,1,2, … ,n. This will be found in our main results. 

 
 

2. Main Results 
 
In this section we will prove our main results. It is not so difficult to use the 
induction on n to prove the following first result. 
 
Theorem (2):  If both n and j are even; n ≥ j, then the coefficient of y (j) in y(n) –  
equation is  equivalent to   
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Using the same technique, and observe that the constant term equal to zero when 
j is odd, we have 
 
Theorem (3): If n and j are both odd, then (6) is the coefficient of y(j) in y(n)-  
equation. 
 
Theorem (4):  If n is even and j is odd, then the sum of all terms except the  
constant term in (6)  is the coefficient of y(j) in y(n) - equation. 
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Theorem (5):  If n is odd and j is even, then the sum of all terms except the 
 constant term in (6) is the coefficient of y(j) in y(n)- equation. 
 
Remark (1):  Let fj(x) be the coefficient of y(j) in y(n) -equation and f j-1 be the 
coefficient of  y(j-1)in y(n) -equation,   then it follows, from (6), that 
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Using the identity 
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Using Remark (1), we have  
 
Corollary (1):  If f(x) is the coefficient of y in the nth order differential equation, 
then        
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is the coefficient of y(j) in y(n) - equation. 
 



2622                                                                           N. A. Abid and A. K. Al-Madi 
 
 

3. General Form 
 
In this section we will use equation (2) to obtain a general form that can  
be easily solved. For this purpose, write 

 

                       y(1)-axy = f1y(1)+f0y = A1(x,y)= 0, then 
 
                      (A1(x,y))' -ax A1(x,y) = A2(x,y),say,=0, 
    that means  
                      A2(x,y) = y" –2axy ' + (a2x2-a) = f2y(2)+ f1y(1) +f0y =0. 
    Thus, if  
                      An-1(x,y) = fn-1y(n-1)+ fn-2y(n-2) +… + f2y(2)+ f1y(1) +f0y =0, 
    then 
                                  (An-1(x,y))' - ax An-1(x,y) = An(x,y),say,=0 
 
    or 
        fn(x)y(n)+ fn-1(x)y(n-1) +… + fj(x)y(j)+ … + f1(x)y(1) +f0(x)y =  
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Therefore, if we write f(x) instead of f0(x) (the coefficient of y in (9)),  
and using Remark (1), one can be using simple induction on n to see that 
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 which by (9) implies the following result  

 
Theorem (6):  If y' – axy = 0, then for any integer n ≥ 1, we have 
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where f(x) is the coefficient of y in (9). 
The following result gives the general solution of equation (1).   
 
Theorem (7): let  
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    then the general solution of (12) is given by :  
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Proof: We shall use induction on (n) to show that (13) is satisfied.  
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    For n=2,equation (12) will reduce to:  
                                ( ) .02 22 =−+′−′′ yaxayaxy                                          (14)                                  

         or 

                                ( ) ( ) .0=−′−′−′ axyyaxaxyy                                                 
 
    Hence equation (14) has, 

                                    ( ),21
2
1 2

cxcey
ax

+=
⎟
⎠
⎞

⎜
⎝
⎛

                            
 

as a general solution, and the result is true for the case n=2. Let the result be 
true for the integer (n), and that  
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This equation can be written as 
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it follows, from the case when n=2, that 
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as a general solution of equation (16) . We use induction hypothesis to have  
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as a general solution of (17). This completes the proof. 
 
Using the same technique as in Theorem (7), we have: 
 

 
Theorem (8): The general solution to  
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where g is a continuous function, is given by  
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