On a General Solution of a Certain Linear

Differential Equation with Variable Coefficients

Namh A. Abid
Al-Zaytoonah University
P.O.Box 130 Amman 11733 - Jordan
namh_abed@yahoo.com

Azmi K. Al-Madi

Al-Zaytoonah University
P.O.Box 130 Amman 11733 - Jordan

Abstract

In this paper a general solution of a certain nth order linear differential equation variable coefficients of the form $$
\begin{equation*} \sum_{j=0}^{n}(-1)^{n-j} \frac{f^{(j)}(x)}{a^{j} j!} y^{(j)}(x)=0 . \tag{1} \end{equation*}
$$ being established. Some properties between the coefficients in (1) are constructed. Mathematics Subject Classification: 65L99

Keywords: Linear differential equations, General solution

1. Introduction

In [1], Bayne and his colleagues have generalized the basic differential equation $y-a y=0$ to nth order equation and they have solved it. In our paper we consider the equation $y^{\prime}-a x y=0$ as a basic equation and generalized it to nth order and solve it. Notice that when $\mathrm{x}=1$, our equation is reduced to the basicequation given in [1], and thus their results are special cases of our results.

It is well known that the differential equation,

$$
\begin{equation*}
y^{\prime}-a x y=0 \tag{2}
\end{equation*}
$$

can be easily solved, see [2]. It follows, from (2), that

$$
\begin{equation*}
\left(y^{\prime}-a x y\right)^{\prime}-a x\left(y^{\prime}-a x y\right)=0 \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
y^{\prime \prime}-2 a x y^{\prime}+\left(a^{2} x^{2}-a\right) y=0 \tag{4}
\end{equation*}
$$

and therefore equation (4) can be easily solved.
In this paper, equation (2) will be generalized to nth order equation, and then we will follow the technique offered by [1] to obtain its general solution. The following theorem is necessary for our main results.

Theorem (1) : Assume that (2) is satisfied. Then

$$
\begin{equation*}
y^{(n)}+f_{n-1} y^{(n-1)}+\ldots+f_{j} y^{(j)}+\ldots+f_{1} y^{\prime}+f_{0} y=0 . \tag{5}
\end{equation*}
$$

Proof: Using induction on n , the result follows at once.
From now on, equation (5) will be denoted by $\mathrm{y}^{(\mathrm{n})}$-equation and our aim is to find those coefficients $\mathrm{f}_{\mathrm{j}}, \mathrm{j}=0,1,2, \ldots, \mathrm{n}$. This will be found in our main results.

2. Main Results

In this section we will prove our main results. It is not so difficult to use the induction on n to prove the following first result.

Theorem (2): If both n and j are even; $n \geq j$, then the coefficient of $y^{(\mathbf{j})}$ in $y^{(\mathbf{n})}$ equation is equivalent to

$$
\begin{gather*}
f_{j}(x)=(-1)^{n-j}\binom{n}{j}\left[a^{n-j} x^{n-j}-a^{n-j-1}\binom{n-j}{2} x^{n-j-2} \cdot 1+\right. \\
\left.a^{n-j-2}\binom{n-j}{4} 1.3 x^{n-j-4}+\ldots+(-1)^{\frac{n-j}{2}} a^{\frac{n-j}{2}} 1.3 .5 \ldots(n-j-1)\right] . \tag{6}
\end{gather*}
$$

Using the same technique, and observe that the constant term equal to zero when j is odd, we have

Theorem (3): If n and j are both odd, then (6) is the coefficient of $\mathrm{y}^{(\mathrm{j})}$ in $\mathrm{y}^{(\mathrm{n})}$ equation.

Theorem (4): If n is even and j is odd, then the sum of all terms except the constant term in (6) is the coefficient of $\mathrm{y}^{(\mathrm{j})}$ in $\mathrm{y}^{(\mathrm{n})}$ - equation.

Theorem (5): If n is odd and j is even, then the sum of all terms except the constant term in (6) is the coefficient of $\mathrm{y}^{(\mathrm{j})}$ in $\mathrm{y}^{(\mathrm{n})}$ - equation.

Remark (1): Let $f_{j}(x)$ be the coefficient of $y^{(\mathrm{j})}$ in $y^{(n)}$-equation and f_{j-1} be the coefficient of $y^{(j-1)}$ in $y^{(n)}$-equation, then it follows, from (6), that

$$
\begin{align*}
& -\frac{f_{j-1}^{\prime}}{a j}=-\frac{(-1)}{a j}{ }^{(n-j+1)}\binom{n}{j-1} \frac{d}{d x}\left[a^{n-j+1} x^{(n-j+1)}-\right. \\
& \left.-a^{n-j}\binom{n-j+1}{2} x^{(n-j-1)} \cdot 1+a^{n-j-1}\binom{n-j+1}{4} 1.3 \cdot x^{(n-j-3)}-\ldots\right] \\
& =\frac{(-1)^{(n-j)}}{a j}\binom{n}{j-1}\left[a^{n-j+1}(n-j+1) x^{(n-j)}-a^{n-j}(n-j-1)\binom{n-j+1}{2} x^{(n-j-2)} \cdot 1+\right. \\
& \left.a^{n-j-1}(n-j-3)\binom{n-j+1}{4} 1.3 x^{(n-j-4)}\right] \tag{7}
\end{align*}
$$

Using the identity

$$
\binom{n-j+1}{2 k}(n-j-2 k+1)=(n-j+1)\binom{n-j}{2 k} ; k=0,1,2, \ldots, \frac{n-j}{2} ;
$$

($\mathrm{n}-\mathrm{j}$) even, we have

$$
\begin{aligned}
& \quad-\frac{f_{j-1}^{\prime}}{a j}=\frac{(-1)^{n-j}}{a j}(n-j+1)\binom{n}{j-1}\left[a^{n-j+1} x^{n-j}-a^{n-j}\binom{n-j}{2} x^{n-j-2} \cdot 1+\right. \\
& \left.a^{n-j-1}\binom{n-j}{4} 1 \cdot 3 \cdot x^{n-j-4}+\ldots\right] \\
& =(-1)^{n-j}\binom{n}{j}\left[a^{n-j} x^{n-j}-a^{n-j-1}\binom{n-j}{2} x^{n-j-2} \cdot 1+\ldots\right]=f_{j} .
\end{aligned}
$$

Using Remark (1), we have
Corollary (1): If $f(x)$ is the coefficient of y in the nth order differential equation, then

$$
\begin{equation*}
(-1)^{n-j} \frac{f^{(j)}(x)}{a^{j} j!} \tag{8}
\end{equation*}
$$

is the coefficient of $y^{(\mathrm{j})}$ in $\mathrm{y}^{(\mathrm{n})}$ - equation.

3. General Form

In this section we will use equation (2) to obtain a general form that can be easily solved. For this purpose, write

$$
\begin{aligned}
& y^{(1)}-a x y=f_{1} y^{(1)}+f_{0} y=A_{1}(x, y)=0 \text {, then } \\
& \left(A_{1}(x, y)\right)^{\prime}-a x A_{1}(x, y)=A_{2}(x, y), \text { say }=0,
\end{aligned}
$$

that means

$$
A_{2}(x, y)=y^{\prime \prime}-2 a x y^{\prime}+\left(a^{2} x^{2}-a\right)=f_{2} y^{(2)}+f_{1} y^{(1)}+f_{0} y=0
$$

Thus, if

$$
\mathrm{A}_{\mathrm{n}-1}(\mathrm{x}, \mathrm{y})=\mathrm{f}_{\mathrm{n}-1} \mathrm{y}^{(\mathrm{n}-1)}+\mathrm{f}_{\mathrm{n}-2} \mathrm{y}^{(\mathrm{n}-2)}+\ldots+\mathrm{f}_{2} \mathrm{y}^{(2)}+\mathrm{f}_{1} \mathrm{y}^{(1)}+\mathrm{f}_{0} \mathrm{y}=0
$$

then

$$
\left(A_{n-1}(x, y)\right)^{\prime}-a x A_{n-1}(x, y)=A_{n}(x, y), s a y,=0
$$

or

$$
\begin{array}{r}
\mathrm{f}_{\mathrm{n}}(\mathrm{x}) \mathrm{y}^{(\mathrm{n})}+\mathrm{f}_{\mathrm{n}-1}(\mathrm{x}) \mathrm{y}^{(\mathrm{n}-1)}+\ldots+\mathrm{f}_{\mathrm{j}}(\mathrm{x}) \mathrm{y}^{(\mathrm{j})}+\ldots+\mathrm{f}_{1}(\mathrm{x}) \mathrm{y}^{(1)}+\mathrm{f}_{0}(\mathrm{x}) \mathrm{y}= \\
\sum_{j=0}^{n} \mathrm{f}_{\mathrm{n}-\mathrm{j}}(\mathrm{x}) \mathrm{y}^{(\mathrm{n}-\mathrm{j})}=0 . \tag{9}
\end{array}
$$

Therefore, if we write $f(x)$ instead of $f_{0}(x)$ (the coefficient of y in (9)), and using Remark (1), one can be using simple induction on n to see that

$$
\begin{equation*}
\mathrm{f}_{\mathrm{n}-\mathrm{j}}(\mathrm{x})=(-1)^{j} \frac{f^{(n-j)}(x)}{a^{n-j}(n-j)!}, \tag{10}
\end{equation*}
$$

which by (9) implies the following result
Theorem (6): If $\mathrm{y}^{\prime}-\mathrm{axy}=0$, then for any integer $\mathrm{n} \geq 1$, we have

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{n-j} \frac{f^{(j)}(x)}{a^{j} j!} y^{(j)}(x)=0 \tag{11}
\end{equation*}
$$

where $f(x)$ is the coefficient of y in (9).
The following result gives the general solution of equation (1).
Theorem (7): let

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{(j)} \frac{f^{(n-j)}(x)}{a^{n-j}(n-j)!} y^{(n-j)}=0, \tag{12}
\end{equation*}
$$

then the general solution of (12) is given by :

$$
\begin{equation*}
\mathrm{y}(\mathrm{x})=e^{\left(\frac{1}{2} a x^{2}\right)} \sum_{j=1}^{n} \frac{1}{(n-j)!} c_{j} x^{(n-j)} . \tag{13}
\end{equation*}
$$

Proof: We shall use induction on (n) to show that (13) is satisfied.

For $\mathrm{n}=2$, equation (12)_will reduce to:

$$
\begin{equation*}
y^{\prime \prime}-2 a x y^{\prime}+\left(a^{2} x^{2}-a\right) y=0 . \tag{14}
\end{equation*}
$$

or

$$
\left(y^{\prime}-a x y\right)^{\prime}-a x\left(y^{\prime}-a x y\right)=0 .
$$

Hence equation (14) has,

$$
y=e^{\left(\frac{1}{2} a x^{2}\right)}\left(c_{1} x+c_{2}\right)
$$

as a general solution, and the result is true for the case $n=2$. Let the result be true for the integer (n), and that

$$
\begin{equation*}
\sum_{j=0}^{n+1}(-1)^{j} \frac{f^{(n-j+1)}(x)}{a^{n-j+1}(n-j+1)!} y^{(n-j+1)}=0 . \tag{15}
\end{equation*}
$$

This equation can be written as

$$
\begin{align*}
& \left(\sum_{j=0}^{n}(-1)^{j} \frac{f^{(n-j)}(x)}{a^{n-j}(n-j)!} y^{(n-j)}\right)^{\prime}- \\
& \quad \operatorname{ax}\left(\sum_{j=0}^{n}(-1)^{j} \frac{f^{(n-j)}(x)}{a^{n-j}(n-j)!} y^{(n-j)}\right)=0, \tag{16}
\end{align*}
$$

it follows, from the case when $n=2$, that

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{(j)} \frac{f^{(n-j)}(x)}{a^{n-j}(n-j)!} y^{(n-j)}=0, \tag{17}
\end{equation*}
$$

as a general solution of equation (16). We use induction hypothesis to have

$$
\begin{equation*}
y=e^{\left(\frac{1}{2} a x^{2}\right)}\left[\frac{1}{n!} x^{n}+\frac{1}{(n-i)!} x^{(n-1)}+\ldots \ldots . .+c_{n} x+c_{n+1}\right] \tag{18}
\end{equation*}
$$

as a general solution of (17). This completes the proof.
Using the same technique as in Theorem (7), we have:

Theorem (8): The general solution to

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{j} \frac{f^{(n-j)}(x)}{a^{n-j}(n-j)!} y^{(n-j)}=g(x) \tag{19}
\end{equation*}
$$

where g is a continuous function, is given by

$$
\begin{equation*}
y=e^{\left(\frac{1}{2} a x^{2}\right)} \iint \ldots \int g(x) e^{\left(\frac{-1}{2} a x^{2}\right)} d x \ldots \ldots . . d x \tag{20}
\end{equation*}
$$

References

[1] R.E. Bayne, J.E. Joseph, M.H. Kwack, and T.H. Lawson, A Note on Linear Differential Equations with Constant Coefficients, Missouri Journal Of Mathematical Articles, 10, Issue \#1 (1-5), Winter 1998.
[2] W.E. Boyce and R.C. DiPrima, Elementary Differential Equations, Wiley, New York, 2000.

Received: March 24, 2008

