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Abstract

Due to the Lagrange interpolation polynomials do not converge uni-
formly to arbitrary continuous functions, in this paper, a new interpo-
lation polynomial is constructed by using the weighted average method
to the interpolated functions. It is proved that the interpolation poly-
nomial not only converges uniformly to arbitrary continuous functions,
but also has the best approximation order and the highest convergence
order.
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1. Introduction

It is known that the Lagrange interpolation polynomials are well used in
Natural Science, Engineering Science and so on. However, from the famous
theorem of Bernstein[1], we also know that the Lagrange interpolation polyno-
mials do not converge uniformly to arbitrary continuous functions. And thus,
for many scholars, one of the interesting works is how to improve the conver-
gence and the convergence order of the interpolation polynomials. Till now,
significant works have been made, see the review articles for the relative works
by Shen [2] and Xie [3]. Further references may be found in [4∼6]. To improve
the convergence of Ln(f ; x), a new class of interpolation polynomials, denoted
by Fn(f ; x), is constructed in this paper by using the weighted average method
to the interpolating functions. It is shown that the new interpolation polyno-
mial not only converges uniformly to f(x) ∈ C l

[−1,1], (0 ≤ l ≤ 4), but also has
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the best approximate order, moreover, and that the highest convergence order
of Fn(f ; x) can not exceed 1/n5.

2. Construction of Interpolation polynomial and main results

Let f(x) ∈ C l
[−1,1], (0 ≤ l ≤ 4), x = cos θ(θ ∈ [0, π]), where C l

[−1,1] is a space
of continuous functions with continuous derivative of degree l. It is easy to
show that

xk = cos θk = cos
2k + 1

2n + 1
π, k = 0, 1, 2, · · · , n (1)

are zero nodes of the Jacobi orthogonal polynomial

(1 + x)Pn(x) = (1 + cos θ)cos
(2n + 1)θ

2

/
cos

θ

2
. (2)

Consequently, the basic Lagrange interpolation functions are given by

μk(x) = (−1)k+1
(1 + x)Pn(x)

√
2(1 − xk)

(2n + 1)(x − xk)
k = 0, 1, · · · , n − 1,

μn(x) = (−1)n Pn(x)

2n + 1
. (3)

The interpolation polynomial Fn(f ; x) is constructed as follows:
Let

�5
hf(xk) =

1

25

5∑
i=0

(
5
i

)
f(xk+i−2), (4)

where h = π
n
, [a] mean the integer part of a,

(
5
i

)
= 5!

i!(5−i)!
, moreover,

�5
hf(xk) is the central difference of degree 5 of f(x) at the node xk with the

step h = π
n

and xk = cos θk = cos 2k+1
2n+1

π. However, the following information
must be presented

(i) From cos θj = cos θ−j−1 as k + i − 2 = −j(j = 0, 1), assume that

f(xj) = f(x−j−1);

(ii) From cos θn+j = cos θn−j as k + i − 2 = n + j(j = 0, 1), assume that

f(xn+j) = f(xn−j).

Consequently, Fn(f ; x) is denoted by

Fn(f ; x) =
n∑

k=0

Bkμk(x), (5)
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where Bk = f(xk) + Δ5
hf(xk). In this paper, we obtain

Theorem 1 For f(x) ∈ Cj
[−1,1], (0 ≤ j ≤ 4), the following expression is

valid for any x ∈ [−1, 1], i.e.,

|Fn(f ; x) − f(x)| = O
(
En(f) +

1

nj
ω(f (j),

1

n
) +

1

nj+1

)
, (6)

where O is independent of n, x, f, f ′, · · · , f (4), En(f) is the minimum deviation
with f(x), ω(f (j), δ) is the modulus of continuity of f (j)(x).

3. Proof of Theorem

From the classical interpolation theory, we know that, for any f(x) ∈
Cj

[−1,1], (0 ≤ j ≤ 4), there exists a algebraic polynomial p(x) ∈ Pm such that

|p(x) − f(x)| ≤ En(f), (7)

where Pm is a set of algebraic polynomials with degree m and m ≤ n. On
the other hand, from one of the properties of the Lagrange interpolation poly-
nomial, namely, a polynomial p(x) ∈ Pm, (m ≤ n) coincides with its own
interpolation polynomial, so we have

n∑
k=0

(
p(xk) + Δ5

hp(xk)
)
· μk(x) = p(x) + Δ5

hp(x). (8)

From Eq.(8), we obtain

Fn(f ; x) − f(x) =
n∑

k=0
(f(xk) + Δ5

hf(xk)) · μk(x) − f(x)

=
n∑

k=0

(
f(xk) − p(xk) + Δ5

hf(xk) − Δ5
hp(xk)

)
· μk(x)

+
n∑

k=0

(p(xk) + Δr
hp(xk)) · μk(x) − f(x)

= W1 + W2. (9)

For W1, it is not difficult to show that

W1 =
n∑

k=0

(f(xk) − p(xk))

(
1

25

5∑
i=0

(
5
i

)(
μk(x) + (−1)3+iμk+i−2(x)

))
. (10)

Moreover, W1 is split into three expressions, as follows,

W1 =

{
s−2∑
k=0

+
n−r−2+s∑

k=s−1

+
n∑

k=n−r−1+s

⎫⎬
⎭♣
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= W11 + W12 + W13, (11)

where ♣ denotes

(f(xk) − p(xk))

(
1

25

5∑
i=0

(
5
i

)(
μk(x) + (−1)3+iμk+i−2(x)

))
.

Using the method in [5], for any x ∈ [−1, 1], the following expression is valid,
i.e.,

n−4∑
k=3

(
1

25

5∑
i=0

(
5
i

) ∣∣∣μk(x) + (−1)3+iμk+i−2(x)
∣∣∣
)

= O(1), (12)

and thus

W12 = O (En(f)) . (13)

Since μk(x) = O(1)[4], (k = 0, 1, 2, · · · , n), from Eq.(8), we have

W11 = O (En(f)) , W13 = O (En(f)) . (14)

Combining Eqs.(13) and (14), we obtain

W1 = O (En(f)) . (15)

For W2, we have

W2 = {(pn(x) − f(x)) + (Δr
hpn(x) − Δr

hf(x))} + Δr
hf(x)

= W21 + W22. (16)

From Eq.(7), it leads to

W21 = O (En(f)) . (17)

To obtain an exact estimation of W22, let H(θ) = f(cos θ). It is not difficult
to show that the following expression is valid

H(j)(θ) =
djH(θ)

dθj
=

j∑
b=1

γbf
(b) · cosb1 θ sinb2 θ

Δ
=

j∑
b=1

γbδb(θ), (18)

where b = b1 + b2, and γb is a constant. Using the similar method in [5] (
Eq.(14)), so we have

W22 = O
(

1

nj+1
+

1

nj
ω(f (j),

1

n
)
)

. (19)

In sum Theorem 1 is valid. Furthermore, it is not difficult to show that the
following results are also valid by using Theorem 1
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Corollary 1 For any f(x) ∈ C[−1,1] and for any x ∈ [−1, 1], the following
expression is valid uniformly, i.e.,

lim
n→∞ Fn(f ; x) = f(x).

Corollary 2 For arbitrary functions with any derivatives, the highest con-
vergence order of Fn(f ; x) can not exceed 1/n5.
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