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Abstract

From some measured data on the boundary of a domain in two dimensions, we get the
unknown conductivity coefficient in the whole domain by applying Backus-Gilbert
method on some integral identity. Practical procedures are discussed and some
random samples of numerical experiments are displayed.

1-Introduction
It is well known that the conductivity problem:
V.(A(X)Vu)=0,

is the mathematical model of many physical problems such as the steady state
filtration of ground water in a porous media [14 ] , and the electrical impedance
tomography [4,6] . If uand the boundary flux are given, one can determine the
filtration, or the conductivity, A(X) . (The inverse problem).

There are many methods to solve the inverse problem such as the method of
characteristics [12 ], and the method of output least squares [7 ] .Here we use a new
technique based on the combination of Backus-Gilbert method[3 ] with some integral
identity which explicitly relating changes in coefficients to changes in measured data.
The advantage of this method is that refining the reconstructed unknown can be
accomplished with simple additional calculations.
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2- The direct problem and the corresponding integral identity

Consider the situation in the direct problem (2. 1) .Suppose that functions
f eHY?(@U) and geH Y%@U) are given and consider the problem of
determining a function pair {u =u(X;A(X)),A :A(i)} such that all of the following
conditions are satisfied,

V. AX)Vu(x))=0inU ={(x,y):0<x,y <1}
u=f on ouU (2.1)
A(X)Vu.n =g on oU

Here we suppose A =A(X) denotes a strictly positive and suitable smooth (at least

Lipschitz continuous function onU ). This ensures that the boundary value problem
consisting of the first two conditions listed above has a solution at least in a weak
sense, if the coefficient A =A(X) were given. Then we can view the third of the

listed conditions as an additional constraint, which may be used to determine A(X) in
addition tou (X) .

With f eHY?(0U) fixed, suppose that the pair {ul,Al} satisfies the first two
conditions listed above and produces the data ul|au =g,eH ?(@U) and the pair

{u,,A,} is similarly associated with u,|  =g,eH ™?(8U) . Then

V.(A,(X)Vu,(X)-A,(X)Vu,(X))=0 inU
u,-u, =0 on ou
ﬁ,[Al(i)Vul _Az ()?)VUZ()()] =0,—-9g, 0on ou
If we rewrite the partial differential equation in the form
V'[Al()(){vul()() - VUZ ()()}] = _v'{Al()() - Az ()()}VLIZ ()() inU
Then integration by parts and attention to the boundary constraints leads to the
integral identity,

j Ag (s)6(s)ds = j AA (X)V U, (X).VD(X)dX 2.2)

Where @ = ®(X) denotes the solution of the adjoint problem,
V.[A,(X)VO(X)]=0 inU
(2.3)
®=6 onoU
Clearly when the coefficient in the boundary value problem is changed from
A=A (X) to A=A,(X) , there is a corresponding change in the measured output,

from g =g,(X) tog =g,(X). For our purpose, we choose @ =f >0.
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In the next section (3.1), Backus-Gilbert method is presented. It looks far from the
previous discussion, but after we simplify it and apply it on the integral identity in
section (3.2), the idea will be very clear.

3.1. Backus — Gilbert method

Consider the problem of approximating an unknown function
AA (x,y)eH*((0,2)x(0,1)) from a finite set of moments z; ==(AA,0}),.. ..,

where o, e H ™ ((0,1)x(0,2)) are known ( generalized ) functions, i=1,2,...,N.
This problem can be stated as follows: Define
A:H*((0,D)x(0,1))—>R"

AA - A(AA):=((rA,0;)
Find AA € H*((0,1) x(0,1)) such that A(AA) = (g4, tty )
Now, for(x,,Y,) € (0,1)x(0,1), fixed, assume that

N

AA()(o'yo)zz:q)i (X0, Y o)t 3.1

i=1
for 4, =(AA, o). ... and ®; eH*((0,1)x(0,2)) are unknown functions
need to be determined. Then

AA(Xo Y o) =D D (X0, Y) (AA, )

,...,<AA,O'N>

HSxH S HSXH’S)

:<AAvZ(Di(X01yo)O'i> 7
However, this implies
DD (Xo,Yo) 0 (X, ¥) = 8((x =Xo), (¥ —Y,o)) e H((0,1)x(0,2) 5 -1 3.2)

i=1

Where o((X —X,),(Y —Y,)) is the Dirac distribution at (x,,y,).[1]
since, (A(AA),7)n =(AA,AT (7))

operator A, and
<A(AA)’7>RN - <AA'O-1>HS><H’S ""’<AA’JN >HSxH’S )7

e where A" denotes the transpose of the

Then
A" :RY > H ((0,1)x(0,1))



2628 A. Badran

N
77—>Z7i O;
i=1
Therefore, the equation (3.2) is equivalent to
AT q)(xoyyo) 25(()( _Xo)’(y _yo)) (3-3)
where ‘D(Xo’yo):(q)l(xmyo)f ----- ’q)N (Xo’yo))

To solve the equation (3.3) for ®(x,,y,) , we have to acknowledge that in general
there will be no solution. However, the normal equation [7]:
(AT )* AT CD(XO’ yo) = (AT )* é‘((X _Xo)’(y - yo))

is always uniquely solvable, where
(A") :H((0,2)x(0,1)) > R" is the adjoint of A" and is defined by

T = _/= Ty*
(A"7.G) . =(7.(AT)yG) ,
Note that

(A"7.G)_. =<i}/i o, ,G>
i=1 H

, which implies that

(AT)G = (<O'1,G >H’5 ,...,<O'N ,G >H’5 YeR™

Now,

(AT )*AT &)(Xovyo):(AT )*[zq)i (X0, Yo)oi ] :zq)i (Xo’yo)(AT )*O-i

i-1 i=1

:i% <O-i G >H7s

=S

:Z(Di (XO’yO)(<01’Gi >H,S ""’<O-N 10 >Hfs ):Z D, (Xovyo)(<*] 01,0; >stHfs yeens <‘] Oy 1 0; >stH—s )
and
(ATY S XD, (¥ =Y o)) = (01 ), o r+{On s Oy ), )
= (<J Gl ! 5(X0v)’0)>|_| SyH S ’““’<J O-N ’5(x0,y0)>)

whereJ :H ~°((0,1) x(0,1)) — H *((0,1) x (0,1)), denote the duality isomorphism [11],
defined by
‘] O-(X ’ y) = Zj’k_s <O-’a)k >H75><HS a)k (X ’ y)

k=1
where {@, } denote an orthonormal basis of eigenfunctions in H °((0,1)x (0,1)) with

eigenvalues {4}
In this case,

<‘] o 15(x0,y0)>stH,5 = ;ﬂk_s <O'i on >a)k (X1 Yo)
and

<J 0i: 0 >HS><H’S :Zﬂ'k_s <O-i » O >H’SxHS <O-j O >H’S><HS

k=1

o0
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Finally, to approximate A(x,,y,) , We generate M, . =[<O'i,0j >H] and

d, —[<Ja Sy, y0)>H " },and solve M [ ®(x,,y,) |=d .Then
AK (Xo,Y o) = D(X,Y,) |
s

3.2. Applying Backus — Gilbert method on the integral identity

Before we go forward, let us summarize Backus —Gilbert method. For simplicity, take
N =1.
Then, Backus —Gilbert method says that: To approximate an unknown function

AA(X,Y) at each point (X0, Yo) by knowing a
1
value s = (AR, 07),,. . = | j (AA) o, dxdy , then
0 0
,Ul oo 11
AA(Xo'yo)— L1 . L[ _([O-la)k,l:|a)k,l(XO’yO)
j'ks| |:_[ Jlo'la)m}
k.=l 0 0
{(X0,¥) €U =(0.)x(0,1) (3.4)
Remark (1)
When AA=0 at the boundary of U ,oU, it is reasonable to consider the
eigenfunctions {a)k',(x,y)}:{(sinkﬂx)(sinlﬂy} and the eigenvalues

{4, :{(k 7)? +(|7r)2} k.1 =1,2,.... (for the Laplacian operator)

Now, to apply this method on the integral identity (2 .2), put

= [ (9,0¢,y)=0,(¢,y)®@EU,A)dxdy ,and o, =Vu(x,y,A).VO(x,y,A,)
ouU

Then, the integral identity can be written of the form

O'-—.l—\

= [[VA(X,y).0.(x,y)dx dy (3.5)

Therefore, we can apply Backus —Gilbert method and use the equation (3. 4) to get
AA(Xo’yo) a(Xo’yo)EU

Lemma (3.1): AA(Xx,Yy) , defined in (3. 4), satisfies the equation (3. 5)
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Proof:
[ AAGy)o, 0,y daxdy =[] ———5 ziﬂki{jjolwk,.}wk,.(x,y).al(x,wdxdy

4- Practical procedures and applications

What we will do to apply ( 3 .5) is to pick an initial coefficient , say A (x,y) ,
satisfies A, =A at oU where A(x,y) is the unknown coefficient .So ,

AA|, =Aly —A|,, =0 . Then the remark (1) in section (3. 2) is satisfied. Since

we KnowA, (x,y), we get u(x,y,A) and®(x,y;A)=u(x,y;A,), by choosing
®EU)=60=1f ,asadirect problems. Therefore, we calculate both
(i) o, =Vu(x,y;A)VO(x,y;A)=Vu(x,y;A)Vu(x,y,A)
,and
(i) g,(x,y)=Ax,y)Vu(x,y,A).nat oU
Since we can measure the flux,
g(x,y)=A(x,y)vVu(x,y;A).n at oU
we can calculate
w=[(g-9,)0(@U)

ouU

Now, apply (3. 4) to get the next iterate,

1=1

ii[(k 7)?+(l ﬁ)Z](—s)j'j'&l(sin I zx)(sink 7y )dxdy
Ay (X0, Y o) =Ai(Xo, Y o) + 14 = 00

— i sin(k zx,)sin(l zy )
D3 [k z)? + (I ﬁ)z](’s)[”&l(sin [ zx )(sink 7y )dxdy T2
(X0, Yo)eU  (3.6)
From (3. 6), we know A,(x,y),(x,y)eU , so we can get u(x,y;A,)and
d(x,y,A,) ,asadirect problems. As before, we can know
G, =Vu(x,y;A,)VO(x,y,A,)=Vu(x,y;A,).Vu(x,y;A,),
g,(x,y)=A,(x,y)Vu(x,y;A,).n at oU ,and
1= [ (9-9,)0(U)

ouU
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Apply (3. 4) to get the third iterate,
> [tk ) + (12017 [ [ &, (sin 1w )(sink ry )axdy

=11=1

Aa(xovyo)::Az(Xovyo)+ﬂ2 : Sin(kﬂ'XO)Sin(UZ'yo)

ii[(k 7)°+(l ﬂ)z](’s)[jj&z (sinlzx)(sink 7y )dxdy I’

(X, Yo)eU  (3.7)

Continue as before, we get a monotone sequence {An (x,y)} converges to the

unknown coefficient A(x,y) , whenever {,un} converges to zero, according to the

following lemma
Lemma (4.1): According to the initial coefficientA, (x,y),

(i) g, >g imply {A (x,y)} isa decreasing sequence

(i) g, < g implies {A (x,y)} isan increasing sequence

Proof:

If g,(x,y)>g(x,y) then <0 , since ®(@U)=6>0.So from (3. 6),

A,(x,y)=<A(x,y) , since 01zVu(x,y,Al).Vu(x,y,Al)z(g—)lj)er(au)z>O.

o
Then g,(x,y)=<9,(x,y) and g, <0 . Therefore, from (3.7), A,(X,y) <A, (X,y)
and so on .Then {A, (x,y)} is a decreasing sequence. While if

g,(x,y)=<g(x,y), then >0 so, from (3. 6), A,(x,y)>A,(x,y) , then
g,(x,y)>=9,(x,y) and 4, =0 . So, from (3.7), A;(x,y)>A,(x,y) and so on.
Then {A,(x,y)} isan increasing sequence.

Applications

In the following examples, we consider:
f(x,00=In(x+2);f (0,y)=In2-y);fLy)=InB-y);f (x,)=In(x +1),0<x,y <1
In example (1), assume the actual (unknown) coefficient A(x,y)=Xx -y +2

Example (1) is divided into two examples (1.1 ) and (I . 2) , according to the choice
of the initial coefficient . In example (I.1), the initial coefficient is:

A(x,y)=a(x)+b(y)+a,(x).b,(y),0<x,y <1
Where:

a,(x)=5x*-4x +2;b,(y) =5y * -4y +2;a2(x)=—%(x —a(x));by(y)=(y -b,(y)),0<x,y <1
In example (I .2), the initial coefficient is:

Al(X’y) :all(x)+bll(y)+a22(x)'b22(y) 0 <x,y <1
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Where:
a, (x)=3x*-2x +2;b,(y) =3y’ -2y +2;a22(><)=—%(x —ay,(x)):b, (y) = (y —by(y))

The only reason for these choices is to guarantee thatA, |, =A|, .

In example (I1), assume the actual (unknown) coefficient:

A(X’y):eZX(l—x)+e2y(l—y)_e2x(1—x)+2y(1—y)
(So,A(0,y)=A(x,00=Ax,)=A1Ly)=1 ,0<x,y <1)
It is reasonable to choose the initial coefficient A;(x,y)=1,0<x,y <1

In example (I11), assume the actual (unknown) coefficient:

A(x,y)=c(x)-d(y)+c(x).d(y),0<x,y <1

Where:

c(x)=10x*-10x +1,d(y)=10y*-10y -1
(So,A(0,y)=A(x,00=A(x,)=AlLy)=1 ,0<x,y <1)

It is reasonable to pick the initial coefficientA (x,y)=1,0<x,y <1.

By applying the previous procedures on a Mat Lab program, we get the following
figures, which indicate that this method may work:
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Ex.(1.17: The Initial Coeficient , mu=00505  n=1
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Ex. [ 1.1) : The Identified Coefficient , mu=00376 , n=3
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Ex. (1,17: The Identified Coefficient, mu=00238 n=5

Ex.(1]: The Actual Coefficient

-0
.
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Ex.( 2] : The Initial Coeficient |, mu= 00207  n=1
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Ex. [ 12): The [dentified Coefficient , mu=00129 n=3
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Ex.(1,2): The Identified Coeflicient , mu = 00077 n=5

Ex.(1]: The Actual Coefficient

-0
.
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Ex. (Il : The Initial Coefficient |, mu = -0.015959

Ex. (II'1: The [dentified Coeficient , mu=-00145 n=2
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Ex. [ Il'1: The Identified Coefficient , mu=-00109 n=3

Ex. [ II): The [dentified Coeficient , mu=-0.0034 n=4
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Ex. [ II'1: The Identified Coefficient , mu=-00066 n=5

Ex. (1) : The ldentified Coefiicient | mu = - 0.0053 | n

1l
(]
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Ex. [ II'1: The Identified Coefficient , mu=-00043 n=7

Ex. [ 1I'1: The [dentified Coeficient , mu=-00035 n=28
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Ex. [ II'1: The Identified Coefficient , mu=-00029 n=4

Ex. (II'): The Identified Coefiicient |, ru=-0.0024  n= 10
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Ex. (Il'): The |dentified Coefficient , mu=-0.0020 , n=11]

Ex (11 : The [dentified Coeccicient , rmu =-0.0017 , n=

—
R
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Ex. (II'): The Identified Coefficient , mu =-0.0014 , n= 13

Ex. (II'): The Identified Coefiicient , ru=-0.0012 , n= 14
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Ex. (II'): The Identified Coefficient , mu =-0.0010 , n= 15

Ex. (I} : The Actual Coefficient
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Ex. (') : The Initial Coeficient , mu = 04857 , n=1

Ex. (1) : The ldentified Coefficient , mu=03156 , n="2

-0

- .
="
.
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Ex. (1) : The ldentified Coefficient , mu=0.1960  n=3

I
1
a1 1 [ [
1
1

-1
]
'
]

L
T
'
]
'
]
.
'
'
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Ex. (1) The Identified Coefficient , mu=00926 ,n=~5&
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Ex. (1) The Identified Coefficient , mu=00498 , n=7

Ex. (1) : The ldentified Coefficient , mu=00373 , n=28
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Ex.( Il'): Tha Actual Coefficient

_ar"'
1

Comments

Regarding to the previous results, in examples (1) and (lll) the flux
g,(x,y)corresponding to the initial coefficient A (x,y)is greater than the actual

flux, corresponding to the actual coefficientA(x,y). So, the sequence
{u,}={mu} is a positive decreasing convergent sequence to zero and

decreasing

as g —&rasng 0 A _%oeing A according to lemma (4.1, (i)). While in
example (I1),9,(x,y)<9(x,y). So, {x,}is a negative increasing convergent
sequence to zero and as g, —<®9_, 0 A g, A according to lemma (4.1,

(if)).

In this method, it is required to know the value of the actual coefficient on the
boundary. Thanks to Nachman in [10] who make it reasonable by using the boundary
conditions.

By choosing, a reasonable eigen values and the corresponding eigen functions
(different from the Laplacian operator), this method may be also work for coefficients
with less smoothness, such as piecewise continuous. [2]

Regarding to the idea of this method, it was just born and no one can say that we
solved all the theoretical concepts about it. However, we can say that the method may
work.




2652 A. Badran

References
(1) R.A.Adams, Sobolev Spaces, Academic Press, New York. (1975)

(2) K.Astala and L. Paivarinta, Calderon's inverse conductivity problem in the plane
Ann.Math.163(2006), 265-99

(3) G.Backus and F.Gilbert, resolving power of gross earth data, the Geophys. J. R.
astr. Soc. 16, (1968) , 169-205.,

(4) D.C. Barber and B.H. Brown, Progress in electrical impedance tomography,
Inverse problems in partial differential equations, SIAM, Philadelphia, PA, (1990) ,
151-164

(5) P.DuChateau, Monotonicity and uniqueness results in identifying an unknown
coefficient in a nonlinear diffusion equation, SIAM J. Appl.M, vol 41(1981), 310-
323.

(6) M .Cheney, D.lsaacson and J.C. Newell Electrical impedance tomography SIAM
Rev 41(1999), 85-101

(7) K.Kunisch, A review of some recent results on the output least squares
formulation of parameter estimation problem, Automatica 24(1988), 531 — 539.

(8) A. K. Louis and P.Maass, A mollifier method for linear operator equations of the
first kind, Inverse Problems 6(1990), 427 -440

(9). K. Louis and P.Maass, Smoothed projection methods for the moment problem,
Numer. Math. 59(1991), 277-294

(10) Adrian I. Nachman, Global uniqueness for a two-dimensional inverse boundary
value problem, Ann. Of Math. (2)143, no1(1996), 71-96

(11) F. Nattere, A Sobolev space Analysis of picture reconstruction, SIAM J.APPL.
MATH, vol. 39, No. 3(1980), 402-411

(12) Richter G.R. an inverse problem for steady state diffusion equation, SIAM J.
Appl.Math.41(1981),210-221.

(13) Vainikko G. on the discretization and regularization of ill-posed problems with
noncompact operators, Numer.Funct. Anal. And Optimiz.13(1992) ,381-396

(14) G. Vainikko and K. Kunisch. Identifiability of the Transmissivity Coefficient in
an Elliptic Boundary Value Problem, Zeitschrift fur Analysis und ihre Anwendungen
Vo0l.12(1993), 327-341.

Received: March 20, 2008



