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Abstract

We obtain the exact distributions of determinants and quotient of
determinants of some submatrices of a Wishart distributed random ma-
trix. We show an application of the obtained representations in testing
hypotheses concerning the covariance matrix of multivariate normal dis-
tribution.
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1 Introduction

Let W be a random matrix with Wishart distribution Wn(m, In), where m > n
and In is the identity matrix of order n. The matrix W can be represented as
a product (see [3])

W = DVD, (1)

where D is a diagonal random matrix, D = diag(
√
τ1, . . . ,

√
τn) and V = (νi,j)

is a symmetric random matrix with units on the main diagonal. The random
variables τi, i = 1, . . . , n are mutually independent, independent of νi,j, 1 ≤
i < j ≤ n and have chi - square distribution, τi ∼ χ2(m), i = 1, . . . , n. The
joint density function of νi,j, 1 ≤ i < j ≤ n has the form

f(yi,j, 1 ≤ i < j ≤ n) =

[
Γ
(

m
2

)]n
Γn

(
m
2

) (detY )
m−n−1

2 , (2)
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if Y is a positive definite matrix, Y =

⎛
⎜⎝

1 · · · y1n
...

. . .
...

y1n · · · 1

⎞
⎟⎠ . By Γn(α) is denoted

the multivariate Gamma function,

Γn(α) = π
n(n−1)

4 Γ (α) Γ

(
α− 1

2

)
. . .Γ

(
α− n− 1

2

)
.

Ignatov and Nikolova in [3], denote by ψ(m,n) the joint distribution of νi,j,
1 ≤ i < j ≤ n with density function of the form (2). For n = 2 the distribution
ψ(m,n) is a univariate distribution with density function

f(y) =
Γ
(

m
2

)
Γ
(

m−1
2

)
Γ
(

1
2

)(1 − y2)
m−3

2 , y ∈ (−1, 1).

Definition 1.1 A random matrix V is said to have distribution ψn(m) with
parameters n, m, n < m, written as V∼ ψn(m), if V is a symmetric matrix
of order n with units on the main diagonal and the joint distribution of the
elements above the main diagonal is ψ(m,n).

Let R be the sample correlation matrix for a sample of size m+ 1 from n
- variate normal distribution Nn(μ,Σ) with unknown mean vector μ. Suppose
that Σ is a diagonal matrix with unknown positive diagonal elements. Then
the distribution of the sample correlation matrix R is ψn(m) (see [7]).

In the present paper we obtain some properties of the distribution ψn(m)
of the matrix V in (1). By equality (1), we get the corresponding properties
of Wishart distribution. In an example, we show an application of the ob-
tained representations in testing hypotheses concerning the covariance matrix
of multivariate normal distribution.

2 Preliminary Notes

Let P (n,�) be the set of all real, symmetric, positive definite matrices of order
n. Let us denote by D(n,�) the set of all real, symmetric matrices of order n,
with positive diagonal elements, which off-diagonal elements are in the interval
(-1,1). There exist a bijection h : D(n,�) → P (n,�), considered in [4], [5]
and [6]. The image of an arbitrary matrix X = (xi,j) from D(n,�) by the
bijection h, is a matrix Y = (yi,j) from P (n,�), such that

yj,j = xj,j , j = 1, . . . , n, (3)

y1,j = x1,j
√
x1,1xj,j , j = 2, . . . , n, (4)
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yi,j =
√
xi,ixj,j

[
i−1∑
r=1

(
xr,ixr,j

r−1∏
q=1

√
(1 − x2

q,i)(1 − x2
q,j)

)

+ xi,j

i−1∏
q=1

√
(1 − x2

q,i)(1 − x2
q,j)

]
, 2 ≤ i < j ≤ n. (5)

The next Proposition can be found in [4] and [6].

Proposition 2.1 Let ξ = (ξi,j) be a random symmetric matrix of order
n with units on the main diagonal. Suppose that ξi,j are independent and
ξi,j ∼ ψ(m− i+ 1, 2), 1 ≤ i < j ≤ n. Let V be the matrix V = h(ξ), where h
is the bijection, defined by (3)-(5). Then the matrix V has distribution ψn(m).

Let A = (ai,j) be a real square matrix of order n. Let α and β be
nonempty subsets of the set {1, . . . , n}. By A[α, β] we denote the subma-
trix of A, composed of the rows with numbers from α and the columns with
numbers from β. Denote by αc the complement of the set α in {1, . . . , n},
i.e. αc = {1, . . . , n}\α. For the matrix A[αc, βc] we use the notation A(α, β).
When β ≡ α, A[α, α] is denoted simply by A[α] and A(α, α) by A(α).

Let X∈D(n,�) and Y = h(X), where h is the bijection, defined by (3)-(5).
We get interesting relations between the elements of the matrices X and Y
(see [4], [5] and [6]):

xi,j =
detY [{1, . . . , i}, {1, . . . , i− 1, j}]√

detY [{1, . . . , i}] detY [{1, . . . , i− 1, j}] , 2 ≤ i < j ≤ n; (6)

(1 − x2
1,j)(1 − x2

2,j) . . . (1 − x2
i,j) =

detY [{1, . . . , i, j}]
yj,j detY [{1, . . . , i}] , 1 ≤ i < j ≤ n;

(7)

detY [{1, . . . , i, j}] = x1,1 . . . xi,ixj,j

( ∏
1≤k<s≤i

(1 − x2
k,s)

)(
i∏

k=1

(1 − x2
k,j)

)
,

(8)

1 ≤ i < j ≤ n.

3 Main Results

Theorem 3.1 Let V∼ ψn(m). Then for all integer i and j, 2 ≤ i < j ≤ n

detV[{1, . . . , i}, {1, . . . , i− 1, j}] ∼ ζ1 . . . ζi−1

√
ζiζi+1,
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where the random variables ζs, s = 1, . . . , i+ 1 are independent, ζ1 ∼ ψ(m −
i + 1, 2) and ζs, s = 2, . . . , i + 1 are beta distributed, ζs ∼ β

(
m−s+1

2
, s−1

2

)
,

s = 2, . . . , i, ζi+1 ∼ β
(

m−i+1
2

, i−1
2

)
.

Proof. Using Proposition 2.1 and the representations (6) and (8), for 2 ≤
i < j ≤ n we have

detV[{1, . . . , i}, {1, . . . , i− 1, j}]
= ξi,j

√
detV[{1, . . . , i}] detV[{1, . . . , i− 1, j}]

= ξi,j

( ∏
1≤k<s≤i−1

(1 − ξ2
k,s)

)√√√√(i−1∏
k=1

(1 − ξ2
k,i)

)(
i−1∏
k=1

(1 − ξ2
k,j)

)

= ξi,j

(
i−1∏
s=2

(
s−1∏
k=1

(1 − ξ2
k,s)

))√√√√(i−1∏
k=1

(1 − ξ2
k,i)

)(
i−1∏
k=1

(1 − ξ2
k,j)

)
. (9)

Denote by ζs, s = 1, . . . , i+ 1 the random variables

ζ1 = ξi,j, ζs =

s−1∏
k=1

(1 − ξ2
k,s), s = 2, . . . , i, ζi+1 =

i−1∏
k=1

(1 − ξ2
k,j).

The random variables ξi,j, 1 ≤ i < j ≤ n are independent, therefore ζs,
s = 1, . . . , i+1 are independent, too. Since ξi,j ∼ ψ(m−i+1, 2), 1 ≤ i < j ≤ n,
it can be shown that 1 − ξ2

i,j ∼ β
(

m−i
2
, 1

2

)
, 1 ≤ i < j ≤ n. It is known, that if

π1 and π2 are independent random variables, π1 ∼ β(α, γ), π2 ∼ β(α + γ, δ),
then π1π2 ∼ β(α, γ + δ). Consequently,

(1 − ξ2
i−1,j)(1 − ξ2

i,j) ∼ β

(
m− i

2
, 1

)
, . . . ,

(1 − ξ2
1,j) . . . (1 − ξ2

i,j) ∼ β

(
m− i

2
,
i

2

)
.� (10)

Corollary 3.1 Let V ∼ ψn(m). Then for all integer i and j, 2 ≤ i < j ≤
n,

detV[{1, . . . , i}, {1, . . . , i− 1, j}]
detV[{1, . . . , i− 1}] ∼ ζ1

√
ζ2 ζ3

and

detV[{1, . . . , i}, {1, . . . , i− 1, j}]
detV[{1, . . . , i}] ∼ ζ1

√
ζ2
ζ3
,

where the random variables ζ1, ζ2 and ζ3 are independent, ζ1 ∼ ψ(m− i+1, 2),
ζ2, ζ3 ∼ β

(
m−i+1

2
, i−1

2

)
.
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Proof. The Corollary follows from Theorem 3.1 and the representation
(8). �

Lemma 3.1 Let V∼ ψn(m). Let i, j be arbitrary integers, 1 ≤ i < j ≤ n.
Suppose that we interchange the places of the i’th and j’th rows in V and then
interchange the places of the i’th and j’th columns. Then the obtained matrix
V′ is distributed again ψn(m).

Proof. The Lemma follows from the properties of determinants and positive
definite matrices. �

Theorem 3.2 Let V ∼ ψn(m), n > 2. Then for 1 ≤ i < j ≤ n

detV({i}, {j}) ∼ (−1)j−i−1ζ1ζ2 . . . ζn−2

√
ζn−1ζn,

where ζs, s = 1, . . . , n are independent, ζ1 ∼ ψ(m−n+2, 2), ζs ∼ β
(

m−s+1
2

, s−1
2

)
,

s = 2, . . . , n− 1 and ζn ∼ β
(

m−n+2
2

, n−2
2

)
.

Proof. Let us put the i’th and j’th rows of V after its n’th row; the i’th
and j’th columns after the n’th column. We get a new matrix V′,

V′ =

⎛
⎝ V({i, j}) V({i, j}, {i}c) V({i, j}, {j}c)

V({i}c, {i, j}) 1 νi,j

V({j}c, {i, j}) νi,j 1

⎞
⎠ , (11)

where αc denotes the set {1, . . . , n}\α. Applying Lemma 3.1 several times we
get that V′∼ ψn(m). It is not difficult to see that

detV({i}, {j}) = (−1)j−i−1 det V′({n− 1}, {n}). (12)

On the other hand,

detV′({n− 1}, {n}) = det V′({n}, {n− 1})
= detV′[{1, . . . , n− 1}, {1, . . . , n− 2, n}]. (13)

Now applying Theorem 3.1, we complete the proof. �

Corollary 3.2 Let V∼ ψn(m), n > 2. Then the elements νi,j, 1 ≤ i < j ≤
n of the inverse matrix V−1 are identically distributed

νi,j ∼ − ζ1
(1 − ζ2

1)

1√
ζ2ζ3

,

where the random variables ζ1, ζ2, ζ3 are independent, ζ1 ∼ ψ(m−n+2, 2), ζ2, ζ3 ∼
β
(

m−n+2
2

, n−2
2

)
.
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Proof. Let V′ be the matrix in (11). Then detV = detV′. From (12) and
(13) we get

νi,j = (−1)j−i detV({i}, {j})
detV

= −det V′({n− 1}, {n})
det V′

= −det V′[{1, . . . , n− 1}, {1, . . . , n− 2, n}]
detV′ .

The matrix V′ is distributed ψn(m). Hence, from Proposition 2.1 and equalities
(6) and (8) it follows that

detV′[{1, . . . , n− 1}, {1, . . . , n− 2, n}]
detV′

=
ξn−1,n

√
detV′[{1, . . . , n− 1}] detV′[{1, . . . , n− 2, n}]

detV′

=

ξn−1,n

( ∏
1≤k<s≤n−2

(1 − ξ2
k,s)

)√(
n−2∏
k=1

(1 − ξ2
k,n−1)

)(
n−2∏
k=1

(1 − ξ2
k,n)

)
( ∏

1≤k<s≤n−1

(1 − ξ2
k,s)

)(
n−1∏
k=1

(1 − ξ2
k,n)

)

=
ξn−1,n

(1 − ξ2
n−1,n)

1√(
n−2∏
k=1

(1 − ξ2
k,n−1)

)(
n−2∏
k=1

(1 − ξ2
k,n)

) ,

where ξi,j, 1 ≤ i < j ≤ n are independent and ξi,j ∼ ψ(m − i + 1, 2). Let us
denote by ζ1, ζ2 and ζ3 the random variables

ζ1 = ξn−1,n, ζ2 =
n−2∏
k=1

(1 − ξ2
k,n−1), ζ3 =

n−2∏
k=1

(1 − ξ2
k,n).

Then ζ1, ζ2, ζ3 are independent and ζ1 ∼ ψ(m− n + 2, 2). From (10) we have
that ζ2, ζ3 ∼ β

(
m−n+2

2
, n−2

2

)
.�

Using the representation (1), the statements, proved for the distribution
ψn(m) of V, can be easily reformulated for the distribution Wn(m, In). We
shall use several times the following known property of the Gamma and Beta
distributions.

Proposition 3.1 Let π1 and π2 be independent random variables, π1 is
Gamma distributed G(α, λ) and π2 ∼ β (α− δ, δ). Then π1π2 ∼ G(α− δ, λ).

Theorem 3.3 Let W∼Wn(m, In). Then for 2 ≤ i < j ≤ n

detW[{1, . . . , i}, {1, . . . , i− 1, j}] ∼ ζ1 . . . ζi
√
ζi+1ζi+2,
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where the random variables ζs, s = 1, . . . , i+ 2 are independent, ζ1 ∼ ψ(m −
i+ 1, 2), ζs ∼ χ2(m− s+ 2), s = 2, . . . , i+ 1, ζi+2 ∼ χ2(m− i+ 1).

Proof. From the representation (1) it can be seen that

detW[{1, . . . , i}, {1, . . . , i− 1, j}]
= τ1 . . . τi−1

√
τiτj detV[{1, . . . , i}, {1, . . . , i− 1, j}].

The random variables τ1, . . . ,τn are independent and τi ∼ χ2(m). From
Theorem 3.1 we have that

detV[{1, . . . , i}, {1, . . . , i− 1, j}] ∼ ζ1 . . . ζi−1

√
ζiζi+1,

where ζs, s = 1, . . . , i + 1 are independent, ζ1 ∼ ψ(m − i + 1, 2), ζs ∼
β
(

m−s+1
2

, s−1
2

)
, s = 2, . . . , i, ζi+1 ∼ β

(
m−i+1

2
, i−1

2

)
. Now applying Propo-

sition 3.1, we complete the proof. �

Corollary 3.3 Let W∼ Wn(m, In). Then for all integer i and j, 2 ≤ i <
j ≤ n

detW[{1, . . . , i}, {1, . . . , i− 1, j}]
detW[{1, . . . , i− 1}] ∼ ζ1

√
ζ2 ζ3

and

det W[{1, . . . , i}, {1, . . . , i− 1, j}]
detW[{1, . . . , i}] ∼ ζ1

√
ζ2
ζ3
,

where ζ1, ζ2, ζ3 are independent, ζ1 ∼ ψ(m− i+ 1, 2), ζ2, ζ3 ∼ χ2(m− i+ 1).

Proof. From the representation (1) it can be seen that

detW[{1, . . . , i}, {1, . . . , i− 1, j}]
detW[{1, . . . , i− 1}] =

√
τiτj

detV[{1, . . . , i}, {1, . . . , i− 1, j}]
detV[{1, . . . , i− 1}] ,

detW[{1, . . . , i}, {1, . . . , i− 1, j}]
detW[{1, . . . , i}] =

√
τj
τi

detV[{1, . . . , i}, {1, . . . , i− 1, j}]
detV[{1, . . . , i}] .

Now using Corollary 3.1 and Proposition 3.1, the Theorem follows. �

Theorem 3.4 Let W∼ Wn(m, In). Then for all integer i and j, 1 ≤ i <
j ≤ n

detW({i}, {j}) ∼ (−1)j−i−1ζ1ζ2 . . . ζn−1

√
ζnζn+1,

where the random variables ζk, k = 1, . . . , n+ 1 are independent, ζ1 ∼ ψ(m−
n + 2, 2), ζk ∼ χ2(m− k + 2), k = 2, . . . , n, ζn+1 ∼ χ2(m− n + 2).
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Proof. From the representation (1) it can be seen that

detW({i}, {j}) = τ1 . . . τi−1τi+1 . . . τj−1τj+1 . . . τn
√
τiτj detV({i}, {j}).

According to Theorem 3.2,

detV({i}, {j}) ∼ (−1)j−i−1ζ1ζ2 . . . ζn−2

√
ζn−1ζn,

where ζs, s = 1, . . . , n are independent, ζ1 ∼ ψ(m−n+2, 2), ζs ∼ β
(

m−s+1
2

, s−1
2

)
,

s = 2, . . . , n− 1 and ζn ∼ β
(

m−n+2
2

, n−2
2

)
. Now applying Proposition 3.1, we

complete the proof. �

Corollary 3.4 Let W∼Wn(m, In). Then the element wi,j on i’th row and
j’th column of the inverse matrix W−1, 1 ≤ i < j ≤ n, is distributed

wi,j ∼ −ζ1
(1 − ζ2

1)

1√
ζ2ζ3

,

where the random variables ζ1, ζ2, ζ3 are independent, ζ1 ∼ ψ(m − n + 2, 2),
ζ2, ζ3 ∼ χ2(m− n + 2).

Proof. From the representation (1) it can be seen that

wi,j =
(−1)j−i detW({i}, {j})

detW
=

(−1)j−i

√
τiτj

detV({i}, {j})
detV

=
νi,j

√
τiτj

,

where νi,j is the (i, j) element of the matrix V−1. Now applying Corollary 3.2
and Proposition 3.1, we complete the proof. �

The next Proposition (see [4], [6]) follows from Proposition 2.1, the repre-
sentation (1) and equalities (3)-(5).

Proposition 3.2 Let ξ = (ξi,j) be a random symmetric matrix of order
n. Suppose that ξi,j, 1 ≤ i ≤ j ≤ n are independent, ξi,j ∼ ψ(m − i + 1, 2)
for 1 ≤ i < j ≤ n and ξi,i ∼ χ2(m), i = 1, . . . , n. Let W be the matrix
W = h(ξ), where h is the bijection, defined by (3)-(5). Then the matrix W
has distribution Wn(m, In).

Let W∼ Wn(m, In). From Proposition 3.2 we have that W = h(ξ), where
ξ = (ξi,j) is a random symmetric matrix, ξi,j ∼ ψ(m−i+1, 2) for 1 ≤ i < j ≤ n
and ξi,i ∼ χ2(m), i = 1, . . . , n. From equation (8) for i = n− 1 and j = n, we
get that

detW = ξ1,1 . . . ξn,n

( ∏
1≤k<s≤n

(1 − ξ2
k,s)

)
. (14)
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Using (3) we obtain that

trW = ξ1,1 + · · ·+ ξn,n. (15)

The Wishart distribution arises frequently in multivariate statistical anal-
ysis. In an example below we show an application of the obtained representa-
tions.

Example 3.1 Let xi = (xi,1, . . . xi,n)t, i = 1, . . . , m be a random sample of
size m (m > n) from n - variate normal distribution with unknown mean vector
μ and unknown positive definite covariance matrix Σ. We are interested in
testing the null hypothesis H0 : Σ = Σ0 against the alternatives H1 : Σ 	= Σ0,
where Σ0 is a fixed positive definite matrix. By a linear transformation of
the observations (see [2]), we can reduce the task to testing the hypotheses
H0 : Σ = In against H1 : Σ 	= In. Let us denote the transformed observations
by yi, i = 1, . . . , m. The likelihood ratio criterion for testing H0 : Σ = In is
given by (see [2])

λ =
( e
m

)mn
2

(detS)
m
2 e−

1
2
trS, (16)

where S =
n∑

i=1

(yi − ȳ)(yi − ȳ)t, ȳ = 1
m

m∑
i=1

yi. Under H0, the distribution of

the sample covariance matrix S is Wn(m− 1, In). Using (14) and (15), λ can
be written in the form

λ =
( e
m

)m n
2

( ∏
1≤k<s≤n

(1 − ξ2
k,s)

)m
2
(

n∏
k=1

ξ
m
2

k,k e
− 1

2
ξk,k

)
,

where ξk,s, 1 ≤ k ≤ s ≤ n are independent, ξk,s ∼ ψ(m − k, 2) for k 	= s
and ξk,k ∼ χ2(m − 1). From Proposition 2.1 and equality (8) we have that if
V ∼ ψn(m− 1) then

detV =
∏

1≤k<s≤n

(1 − ξ2
k,s).

From (10) it follows that ∏
1≤k<s≤n

(1 − ξ2
k,s) ∼ ζ1 . . . ζn−1,

where ζi, i = 1, . . . , n−1 are independent and ζi∼ β
(

m−i−1
2

, i
2

)
. Consequently,

λ ∼
( e
m

)mn
2

(ζ1 . . . ζn−1)
m
2 ν1 . . . νn, (17)
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where νi, i = 1, . . . , n are mutually independent, independent of ζi, i =
1, . . . , n− 1 and are identically distributed,

νi ∼ ξ
m
2 e−

1
2
ξ, ξ ∼ χ2(m− 1).

The relation (17) is an exact representation of λ as a product of independent
random variables. Using (16), for simulating of each value of λ we have to
generate a n × n covariance matrix and calculate its determinant. With the
representation (17), we get each value of λ by 2n− 1 independent realizations
of chi-square and beta random variables.
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