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Abstract 
 

         In this paper, we consider the exponentiated gamma distribution as an 
important model of life time models and derive Bayesian and non-Bayesian 
estimators of the shape parameter, reliability and failure rate functions in the case of 
complete and type-II censored samples. The mean square errors of the estimates are 
computed. Comparisons are made between these estimators using Monte Carlo 
simulation study. 
 
Mathematics Subject Classification: 62F15; 62G30; 62G05 
Keywords: Bayesian inference; Squared error loss function; LINEX loss function; 
Maximum likelihood function; Reliability; Failure rate; Type-II censoring; 
Exponentiated gamma distribution 
 
 
1. Introduction   
 
         The exponentiated gamma (EG) distribution was introduced by Gupta et al. 
(1998) which has a probability density function (p.d.f.) of the form  
       ,0,0,1)]1(1[)( >>−+−−−= θθθ tttetettf                                       (1.1) 
and a cumulative distribution function (c.d.f.) 

       ,0,0,)]1(1[)( >>+−−= θθ tttetF                                               (1.2) 
where θ  is the shape parameter. It is important to mention that when 1=θ  the EG 
p.d.f. is that of gamma distribution with shape parameter 2=α and scale parameter  
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1=β  i.e. G(2,1). For more details about this distribution, see Shawky and Bakoban 
(2008). 
         The reliability and failure rate functions of EG distribution are given, 
respectively, by  

       ,0,0,)]1(1[1)( >>+−−−= θθ tttetR                                            (1.3) 

 .0,0,1})]1(1[1{1)]1(1[)( >>−+−−−−+−−−= θθθθ tttettetetth  (1.4) 
 
         Bayesian and non-Bayesian estimators were derived for the shape parameter, 
reliability and failure rate functions under complete and type-II censored samples 
from EG distribution.  
 
         In Bayesian estimation, we consider two types of loss functions. The first is 
the squared error loss function (quadratic loss) which is classified as a symmetric 
function and associates equal importance to the losses for overestimation and 
underestimation of equal magnitude. The second is the LINEX (linear-exponential) 
loss function which is asymmetric, was introduced by Varian (1975). These loss 
functions were widely used by several authors; among of them Rojo (1987), Basu 
and Ebrahimi (1991), Pandey (1997), Soliman (2000) and Nassar and Eissa (2004). 
         The quadratic loss for Bayes estimate of a parameter ,β  say, is the posterior 
mean assuming that exists, denoted by .sβ  The LINEX loss function may be 
expressed as  

         ,0,1)( ≠−Δ−Δ∝Δ cccel                                                                         (1.5) 

where .ˆ ββ −=Δ  The sign and magnitude of the shape parameter c  reflects the 
direction and degree of asymmetry, respectively. (If ,0>c  the overestimation is 
more serious than underestimation, and vice-versa). For c  closed to zero, the 
LINEX loss is approximately squared error loss and therefore almost symmetric. 
         The posterior expectation of the LINEX loss function Equation (1.5) is 
         ,1))(ˆ()][exp()ˆexp()]ˆ([ −−−−∝− βββββββββ EccEclE                       (1.6) 

where (.)βE  denoting posterior expectation with respect to the posterior density of 

.β  By a result of Zellner (1986), the (unique) Bayes estimator of ,β  denoted by 

Lβ̂  under the LINEX loss is the value β̂  which minimizes (1.6), is given by 

         )]}.[exp({ln1ˆ βββ cE
cL −−=                                                                        (1.7) 

provided that the expectation )][exp( ββ cE − exists and is finite [ Calabria and 

Pulcini (1996)]. 
         We were interested with maximum likelihood estimation as a classical 
approach among non-Bayesian methods. The maximum likelihood is based on the 
information provided by empirical data. The invariant property was hold to obtain 
maximum likelihood estimators (MLE’s) of reliability and failure rate functions.  
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         In this paper, a discussion of the MLE’s is considered in section 2. In section 
3, Bayesian estimators is obtained. Finally, numerical illustration and comparisons 
are presented in section 4.    
          
 
2. Maximum Likelihood Estimation 
 
         Suppose a type-II censored sample ),...,,( 21 rtttt = where it is the thi  order 
statistics. This sample are obtained and recorded from EG(θ ) distribution with 
p.d.f. and c.d.f. given, respectively, by (1.1) and (1.2). The likelihood function (LF) 
in this case can be written as: 
         ,)1();( rnVTert −−−∝ θθθl                                                                       (2.1) 
where 

         ∑
=

−−−=
r

i iuititT
1

],ln)1(ln[ θ  

         ),1(1 it
iteiu +

−
−=  and ).1(1 rt

rteV +−−=  
The logarithm of the LF is given by  
         ).1(ln)(ln);(ln θθθ VrnTrtL −−+−∝= l                                                (2.2)  
The MLE of ,θ  denoted by ,ˆ

Mθ  is given by 

         ∑
=

−−−
−

−=
r

i iuVMVrnrM 1
.lnln1)1

ˆ
)(/[(ˆ θ

θ                                           (2.3) 

         This equation is in implicit form, so it may be solved by using numerical 
iteration such as Newton Raphson method by using Mathematica 4.0. For a given 
,t the MLE’s of )(tR  may be obtained by replacing θ  by Mθ̂  in Equation (1.3), 

then MLE’s of )(ln)( tRtH −=  can be obtained. 
 
 
3. Bayesian Estimation  
 
         The natural family of conjugate prior for θ  is a gamma distribution with p.d.f.  

         .0,0,0,1
)(

)( >>>−−

Γ
= δνθδθνθ

ν

νδ
θ eg                                        (3.1) 

From which the prior mean and variance of θ  are given, respectively, by δν /  and 
./ 2δν   

         Applying Bayes theorem, we obtain from Equations (2.1) and (3.1), the 
posterior density of θ  as 

   ,0,0,0,)1()(1
)(

)()( >>>−−+−−+
+Γ

++
= δνθθθδνθ

ν

νδθ rnVqer
rk

rqtg       (3.2) 
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where   ,
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⎝

⎛
+

−=
rrn

j q
jpjwk                                                               (3.3) 

         ,
1

)]1(1[,ln,ln,)1()( ∏
=

+
−

−==−=⎟⎟
⎠

⎞
⎜⎜
⎝
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and                   
         ).1(1 rtrteV +−−=                                                                                           

Note that ,nr = the constant 1=k  and )( tg θ  approaches to the posterior density 
in a complete sample situation. 
 
Estimation of θ : 
         The Bayes estimate sθ̂ of θ  relative to squared error loss function is given by 

         ,1
1ˆ ξ
δ

νθ
q

rks +
+−=                                                                                         (3.5) 
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Under LINEX loss function, the Bayes estimate Lθ̂ of θ  using Equation (1.5) can be 
obtained as 

         ,0,2ln1ˆ ≠−= c
cL ξθ                                                                                   (3.6) 
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Estimation of )(tR : 
         Consider the reliability )(tRR =  is a parameter itself. Replacing θ  in terms 
of R  by that of Equation (3.2), we obtain posterior density function of R  as 

,10,)
)(11(

)(1)1(1)](1[1)( <<−−
−−−+

+

+
−= RrnRZ

V
RQ

erR
ν)Γ(r

νrQktRg
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                                                                                                                               (3.7)  
where    

,1ln/1,1)1(ln)(1),( −=−−=+= zZRRqZQ ϕδ  and ).1(1)( ttetzz +−−==  (3.8) 
Assuming the quadratic loss is appropriate, the Bayes estimate of the reliability 
function R  is 
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and k and )( jw  are given, respectively, by (3.3) and (3.4). 
Under LINEX loss function, the Bayes estimate of R  using Equation (1.5) is 

         ,0,5ln11ˆ ≠−= c
cLR ξ                                                                              (3.10) 

where    .
)(
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1)(
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Estimation of )(tH : 
         To derive the Bayes estimate of the cumulative failure rate function 

),(ln)( tRtH −=  we first obtain the posterior density function of ),(tHH =  which 
can be given by  

,0,)
)(21(

)(21)](2[
1

1)( >−−
−−+
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−
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+
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                                                                                                                             (3.11) 
where    .1)1(ln2

−−−= Heϕ  
The Bayes estimate of  H  relative to quadratic loss is 
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By using the binomial theorem and logarithmic series, after some simplification we 
obtain 
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When the LINEX loss function is appropriate, the Bayes estimate of H  is 
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4. Simulation Study 
 
         We obtained, in the above Sections, Bayesian and non-Bayesian estimates for 
the shape parameter ,θ  reliability, ),(tR  and failure rate, ),(tH  functions of the  
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EG(θ ) distribution. We adopted the squared error loss and LINEX loss functions. 
The MLE’s are also obtained. 
        
  In order to assess the statistical performances of these estimates, a simulation 
study is conducted. The mean square errors (MSE’s) using generated random 
samples of different sizes are computed for each estimator. The random samples are 
generated as follows: 
 
1. For given values of the prior parameters ),,( δν  generate a random value for θ  
from the gamma distribution whose density function given by Equation (3.1). 
 
2. Using ,θ  obtained in step (1), and generate random samples of different sizes: 

50and,25,15=n  from the EG(θ ) distribution by using Newton-Raphson method 
to solve the following equation numerically by Mathematica 4.0 since the inverse 
transform method can not be applied for EG(θ ): 
 ,0)]1(1[ =+−−− θTTeU   
where    T  is EG(θ ) and U  is uniform(0,1) distributions. The computations are 
carried out for such sample sizes and censored samples of sizes: 12, 20, 40, 
respectively.  
 
3. The MLE of the parameter ,θ  ,ˆ

Mθ is obtained by iteratively solving the Equation 
(2.3). The estimators )(ˆand),(ˆ

00 tHtR MM  of the functions )(tR  and )(tH  are then 
computed at some values .0t   
 
4. The Bayes estimates relative to squared error loss, ,ˆ,ˆ

ss Rθ and sĤ  given, 
respectively, by Equations (3.5), (3.9) and (3.12) and relative to LINEX loss 

,ˆ,ˆ
LL Rθ and LĤ  given, respectively, by Equations (3.6), (3.10) and (3.13), are all 

computed. 
 
5. The above steps are repeated 1000 times and the biases and the mean square 
errors are computed for different sample sizes n  and censoring sizes ,r  where the 
had-symbol ^ stands for an estimate sM )ˆ(,)ˆ( ⋅⋅ and .)ˆ( L⋅  
      
    The computational (our) results were computed by using Mathematica 4.0. In all 
above cases the prior parameters chosen as 3=ν  and ,3=δ which yield the 
generated value of 9033.1=θ  as the true value. The true values of  )(tR  and ),(tH  
when ,5.00 == tt  are computed to be 989732.0)5.0( =R  and .010321.0)5.0( =H  
The bias (first entries) and MSE’s (second entries) are displayed in Tables 1-3. The 
computations are achieved under complete and censored samples. 
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Table (1): Estimated bias and MSE’s (second entries) of various estimators of  ,θ for different 
sample sizes. 
 
 

Lθ̂  , c=2.5 Sθ̂  Mθ̂  r  n  

 - 0.371594  - 0.203213 0.106335 
    0.204783     0.141229 0.311831 

12 15 

 - 0.375481  - 0.193669 0.134140 
    0.205972     0.141157 0.317469 

15 15 

 - 0.251537  - 0.118097 0.078750 
    0.127528     0.102803 0.170777 

20 25 

 - 0.272212  - 0.142511 0.096342 
    0.132202     0.100493 0.193124 

25 25 

 - 0.147306  - 0.068795 0.042833 
    0.064259     0.057873 0.080929 

40 50 

 - 0.142683  - 0.064418 0.049002 
    0.065716     0.058514 0.078521 

50 50 

 
 

 
 
Table (2): Estimated bias and MSE’s (second entries) of various estimators of  ),(tR for different 
sample sizes. 
 
 

LR̂  , c=-25 SR̂  MR̂  r  n  

 - 0.013528  - 0.019849  - 0.004007 
   0.000361 0.000714     0.000218 

12 15 

 - 0.013742  - 0.020112  - 0.003695 
   0.000355 0.000705     0.000225 

15 15 

 - 0.009446  - 0.012524  - 0.002233 
    0.000192 0.000308     0.000120 

20 25 

 - 0.008294  - 0.011150  - 0.001984 
    0.000181 0.000289     0.000113 

25 25 

 - 0.004860  - 0.005898  - 0.001100 
    0.000080 0.000110     0.000052 

40 50 

 - 0.005070  - 0.006174  - 0.000831 
    0.000085 0.000111     0.000046 

50 50 
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Table (3): Estimated bias and MSE’s (second entries) of various estimators of  ),(tH for different 
sample sizes. 
 
 

LĤ  , c=25 SĤ  MĤ  r  n  

0.013400 0.020230 0.004148 
0.000364 0.000765 0.000231 

12 15 

0.013079 0.019766 0.003837 
0.000344 0.000723 0.000238 

15 15 

0.009129 0.012366 0.002307 
0.000203 0.000336 0.000127 

20 25 

0.010162 0.013613 0.002051 
0.000229 0.000378 0.000118 

25 25 

0.005372 0.006168 0.001127 
0.000095 0.000106 0.000054 

40 50 

0.005064 0.006212 0.000852 
0.000084 0.000110 0.000047 

50 50 

 
 
5. Concluding Remarks 
 
         In this paper we have presented the Bayesian and non-Bayesian estimates of 
the shape parameter ,θ  reliability, ),(tR  and failure rate, ),(tH  functions of the 
lifetimes follow the EG(θ ) distribution. The estimation are conducted on the basis 
of complete and type-II censored samples. Bayes estimators, under squared error 
loss and LINEX loss functions, are derived. The MLE’s are also obtained. 
         Our observations about the results are stated in the following points: 
 

1- Table 1 shows that the Bayes estimates under the quadratic loss 
function have the smallest estimated MSE’s as compared with the 
estimates under LINEX loss function or MLE’s. This is True for 
both complete and censored samples. It is immediate to note that 
MSE’s decrease as sample size increases. On the other hand the 
Bayes estimates under the LINEX loss function and quadratic loss 
function are underestimation, but MLE’s are overestimation. This is  
true for both complete and censored samples. 

 
2- Table 2 shows that the MLE’s have the smallest estimated MSE’s as 

compared with the Bayes estimates under LINEX loss function or 
quadratic loss function. This is True for both complete and censored 
samples. It is immediate to note that MSE’s decrease as a complete 
sample size increases. On the other hand the Bayes estimates under 
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the LINEX loss function have the smallest estimated MSE as 
compared with the estimates under quadratic loss function. This is 
True for both complete and censored samples. Also, all estimates are 
underestimation. 

 
 
3- Table 3 shows that the MLE’s have the smallest estimated MSE’s as 

compared with the Bayes estimates under LINEX loss function or 
quadratic loss function. This is True for both complete and censored 
samples. It is immediate to note that MSE’s decrease as a complete 
sample size increases. Also, the Bayes estimates under the LINEX 
loss function have the smallest estimated MSE’s as compared with 
the estimates under quadratic loss function. This is True for both 
complete and censored samples. On the other hand all estimates are 
overestimation. 

 
    From the previous observations, we suggest to use Bayes approach under 
quadratic loss function for estimating the shape parameter of EG distribution, while 
the MLE’s are better for the reliability and failure rate functions.  
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