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Abstract

In this paper, we consider the exponentiated gamma distribution as an
important model of life time models and derive Bayesian and non-Bayesian
estimators of the shape parameter, reliability and failure rate functions in the case of
complete and type-I1 censored samples. The mean square errors of the estimates are
computed. Comparisons are made between these estimators using Monte Carlo
simulation study.
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1. Introduction

The exponentiated gamma (EG) distribution was introduced by Gupta et al.
(1998) which has a probability density function (p.d.f.) of the form

f@)=0te -t +1]0 L, 50,050, (1.1)
and a cumulative distribution function (c.d.f.)
F)=[-e ' t+11°, >0, 00, (1.2)

where @ is the shape parameter. It is important to mention that when ¢ =1 the EG
p.d.f. is that of gamma distribution with shape parameter « = 2 and scale parameter
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F=11.e. G(2,1). For more details about this distribution, see Shawky and Bakoban

(2008).
The reliability and failure rate functions of EG distribution are given,
respectively, by

R =1-[l-e "t +17°, 50,00, (1.3)
he)=0te e e+ - ey L £>0,0>0. (L4)

Bayesian and non-Bayesian estimators were derived for the shape parameter,
reliability and failure rate functions under complete and type-11 censored samples
from EG distribution.

In Bayesian estimation, we consider two types of loss functions. The first is
the squared error loss function (quadratic loss) which is classified as a symmetric
function and associates equal importance to the losses for overestimation and
underestimation of equal magnitude. The second is the LINEX (linear-exponential)
loss function which is asymmetric, was introduced by Varian (1975). These loss
functions were widely used by several authors; among of them Rojo (1987), Basu
and Ebrahimi (1991), Pandey (1997), Soliman (2000) and Nassar and Eissa (2004).

The quadratic loss for Bayes estimate of a parameter 3, say, is the posterior

mean assuming that exists, denoted by f,. The LINEX loss function may be

expressed as

I(A) o D —cA—1, ¢ =0, (L5)

where A = 3 — 8. The sign and magnitude of the shape parameter ¢ reflects the

direction and degree of asymmetry, respectively. (If ¢ >0, the overestimation is

more serious than underestimation, and vice-versa). For ¢ closed to zero, the
LINEX loss is approximately squared error loss and therefore almost symmetric.
The posterior expectation of the LINEX loss function Equation (1.5) is

E (B~ Pl = exp(ch)E plexp(-ch)] - (B~ E 5(B)) -1 (16)
where E B () denoting posterior expectation with respect to the posterior density of

LS. By a result of Zellner (1986), the (unique) Bayes estimator of £, denoted by
,BL under the LINEX loss is the value ,3 which minimizes (1.6), is given by

B, =—ngE glep(-cAT} (L7)

provided that the expectation E ﬂ[exp(—cﬂ)] exists and is finite [ Calabria and

Pulcini (1996)].

We were interested with maximum likelihood estimation as a classical
approach among non-Bayesian methods. The maximum likelihood is based on the
information provided by empirical data. The invariant property was hold to obtain
maximum likelihood estimators (MLE’s) of reliability and failure rate functions.
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In this paper, a discussion of the MLE’s is considered in section 2. In section
3, Bayesian estimators is obtained. Finally, numerical illustration and comparisons
are presented in section 4.

2. Maximum Likelihood Estimation

Suppose a type-11 censored sample ¢ = (t,,¢,,...,¢,) Where ¢,is the i" order
statistics. This sample are obtained and recorded from EG( @) distribution with
p.d.f. and c.d.f. given, respectively, by (1.1) and (1.2). The likelihood function (LF)
in this case can be written as:

0W:0) o 0T -y oy, 2.1)
where

T = ﬁl[tl. —Int; —(0-1)Inu,],
l:

up=1-¢ T(@r;), and V =1-e 7 (1+1,).
The logarithm of the LF is given by

L=nt0)«rin0-T+(n-r)In@-r"?). 2.2)
The MLE of 4, denoted by 0, is given by

A —9M -1 r
6’M =ri[(n—-r)(V -1) " In¥V-Xlnu, . (2.3)
i=1

This equation is in implicit form, so it may be solved by using numerical
iteration such as Newton Raphson method by using Mathematica 4.0. For a given
t,the MLE’s of R(r) may be obtained by replacing ¢ by é,, in Equation (1.3),
then MLE’s of H(t)=—InR(¢) can be obtained.

3. Bayesian Estimation

The natural family of conjugate prior for & is a gamma distribution with p.d.f.

sV L1 -
2(0) = 0V 1e o0

I'(v)
From which the prior mean and variance of @ are given, respectively, by v/ and
v,
Applying Bayes theorem, we obtain from Equations (2.1) and (3.1), the

posterior density of 4 as

, 6>0,v>0,0>0. (3.1)

r+v
(0l = %e”v‘le‘(&qw(l— O 950150650, (3.2)
r+v
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] (r+v)
where & = Z w(])[ Lj : (3.3)
]_ o+ q

w(j) = (—1)1'(” ; FJ, g=—Inu,p=InV,u= lf[l[1— e i i (3.4)

and

V=1-¢ 7 (1+1,).
Note that » = n,the constant £ =1 and g(e\;) approaches to the posterior density
in a complete sample situation.

Estimation of 4:
The Bayes estimate 6, of @ relative to squared error loss function is given by

& (35)
J—(r+v+1)

é _]_r+V
o+q

n—r . Jp
where 51 = > w(j)|1-—"
j=0 o+q
Under LINEX loss function, the Bayes estimate éL of & using Equation (1.5) can be
obtained as
- 1
0y :—Zlnfz, c#0, (3.6)
j—(r‘f‘V)

where fz_k ZW( )( 5Tj5

Estimation of R(¢):
Consider the reliability R = R(¢) is a parameter itself. Replacing & in terms
of R by that of Equation (3.2), we obtain posterior density function of R as
—(0O-De, (R Zo (R
[ l( )]r-H/—le (Q )(01( )(1_ v ¢1( ))n—r

, O0<R<],
(3.7)

where

0=2(5+q).o(R) =In(-R) 1 Z=1/Inz"1, and z=z(1) =1-¢ 7 (L+1). (38)

Assuming the quadratic loss is appropriate, the Bayes estimate of the reliability
function R is

S R RN (3.9)
j=0

p —(r+v) — —(r+v)
where 53 ( —%j ,54:(1—]]?—] )
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and k£ and w(j) are given, respectively, by (3.3) and (3.4).
Under LINEX loss function, the Bayes estimate of R using Equation (1.5) is

A 1
Ry =1-"Ing, =0, (3.10)
()
_1 o0 CS n—r . S_]pZ
where &=k 1y Sy W(])[1+— .

Estimation of H(z) :
To derive the Bayes estimate of the cumulative failure rate function
H(t) =—-InR(¢), we first obtain the posterior density function of H = H(¢), which

can be given by

-H _
_1 Qr+v e 7"+V—l Q¢2(H) Z(DZ(H) n—r
Hit)=k H 1-V ,H >0,
g(Hlt) Tyl H [, (H)] e ( )
(3.11)
where Py = In (1—e_H)_1.
The Bayes estimate of H relative to quadratic loss is
R 1 o™
Hg =k G (3.12)

r(r+v) 1
© —x\-1_r+v-1 —Ox 7Zx\n—r
where Gy = [Inl—e ") "x e = (@A-V"")" "dx.
0

By using the binomial theorem and logarithmic series, after some simplification we
obtain

n-r i(n—r I'(r+v
G =3 .ﬂ—l)’( . ] e
j=0i=1 J )i(Q+i- jZp)
When the LINEX loss function is appropriate, the Bayes estimate of H is

. -1 r+v
A, :-lm(LGZ], %0, (3.13)

¢ L'(r+v)
o0
where G, = [(1- e )¢ v, —0x -y 7x VI
0
By using the binomial theorem, after some simplification we obtain

nzro¢ i+j(n-rifc I'(r+v)
G, = -1 :
2~ Fpi2ot ™ ( j ][ij(QH—ij)HV

4. Simulation Study

We obtained, in the above Sections, Bayesian and non-Bayesian estimates for
the shape parameter 6, reliability, R(¢), and failure rate, H(¢), functions of the
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EG() distribution. We adopted the squared error loss and LINEX loss functions.
The MLE’s are also obtained.

In order to assess the statistical performances of these estimates, a simulation
study is conducted. The mean square errors (MSE’s) using generated random
samples of different sizes are computed for each estimator. The random samples are
generated as follows:

1. For given values of the prior parameters (v,5), generate a random value for 6
from the gamma distribution whose density function given by Equation (3.1).

2. Using @, obtained in step (1), and generate random samples of different sizes:
n =15,25,and50 from the EG(@) distribution by using Newton-Raphson method
to solve the following equation numerically by Mathematica 4.0 since the inverse
transform method can not be applied for EG(8):

U-ft-eTa+1)]f =0,

where T is EG(#) and U is uniform(0,1) distributions. The computations are

carried out for such sample sizes and censored samples of sizes: 12, 20, 40,
respectively.

3. The MLE of the parameter 6, éM,is obtained by iteratively solving the Equation
(2.3). The estimators ﬁM (¢,),and ﬁM (¢,) of the functions R(¢) and H(t) are then
computed at some values ¢,.

4. The Bayes estimates relative to squared error loss, és,fzs,and I:IS given,
respectively, by Equations (3.5), (3.9) and (3.12) and relative to LINEX loss
éL,ﬁL,and ﬁL given, respectively, by Equations (3.6), (3.10) and (3.13), are all
computed.

5. The above steps are repeated 1000 times and the biases and the mean square
errors are computed for different sample sizes » and censoring sizes r, where the

had-symbol » stands for an estimate (*),,, (*),and (%),.

The computational (our) results were computed by using Mathematica 4.0. In all
above cases the prior parameters chosen as v =3 and & =3, which yield the

generated value of ¢ =1.9033 as the true value. The true values of R(z) and H (),
when ¢ =1¢, =0.5, are computed to be R(0.5)=0.989732 and H(0.5) = 0.010321.

The bias (first entries) and MSE’s (second entries) are displayed in Tables 1-3. The
computations are achieved under complete and censored samples.
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Table (1): Estimated bias and MSE’s (second entries) of various estimators of &, for different

sample sizes.
n r 6, 6, 6,, c=25
15 12 0.106335 - 0.203213 - 0.371594
0.311831 0.141229 0.204783
15 15 0.134140 - 0.193669 - 0.375481
0.317469 0.141157 0.205972
25 20 0.078750 - 0.118097 - 0.251537
0.170777 0.102803 0.127528
25 25 0.096342 - 0.142511 -0.272212
0.193124 0.100493 0.132202
50 40 0.042833 - 0.068795 - 0.147306
0.080929 0.057873 0.064259
50 50 0.049002 - 0.064418 - 0.142683
0.078521 0.058514 0.065716

Table (2): Estimated bias and MSE’s (second entries) of various estimators of R(z), for different

sample sizes.
n r R, R, R, , c=-25
15 12 - 0.004007 - 0.019849 - 0.013528
0.000218 0.000714 0.000361
15 15 - 0.003695 - 0.020112 - 0.013742
0.000225 0.000705 0.000355
25 20 - 0.002233 - 0.012524 - 0.009446
0.000120 0.000308 0.000192
25 25 - 0.001984 - 0.011150 - 0.008294
0.000113 0.000289 0.000181
50 40 - 0.001100 - 0.005898 - 0.004860
0.000052 0.000110 0.000080
50 50 - 0.000831 - 0.006174 - 0.005070
0.000046 0.000111 0.000085
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Table (3): Estimated bias and MSE’s (second entries) of various estimators of H (¢), for different
sample sizes.

n r H, H, H, , =25
15 12 0.004148 0.020230 0.013400
0.000231 0.000765 0.000364
15 15 0.003837 0.019766 0.013079
0.000238 0.000723 0.000344
25 20 0.002307 0.012366 0.009129
0.000127 0.000336 0.000203
25 25 0.002051 0.013613 0.010162
0.000118 0.000378 0.000229
50 40 0.001127 0.006168 0.005372
0.000054 0.000106 0.000095
50 50 0.000852 0.006212 0.005064
0.000047 0.000110 0.000084

5. Concluding Remarks

In this paper we have presented the Bayesian and non-Bayesian estimates of
the shape parameter 4, reliability, R(¢), and failure rate, H(¢), functions of the

lifetimes follow the EG( @) distribution. The estimation are conducted on the basis
of complete and type-11 censored samples. Bayes estimators, under squared error
loss and LINEX loss functions, are derived. The MLE’s are also obtained.

Our observations about the results are stated in the following points:

1- Table 1 shows that the Bayes estimates under the quadratic loss
function have the smallest estimated MSE’s as compared with the
estimates under LINEX loss function or MLE’s. This is True for
both complete and censored samples. It is immediate to note that
MSE’s decrease as sample size increases. On the other hand the
Bayes estimates under the LINEX loss function and quadratic loss
function are underestimation, but MLE’s are overestimation. This is
true for both complete and censored samples.

2- Table 2 shows that the MLE’s have the smallest estimated MSE’s as
compared with the Bayes estimates under LINEX loss function or
quadratic loss function. This is True for both complete and censored
samples. It is immediate to note that MSE’s decrease as a complete
sample size increases. On the other hand the Bayes estimates under
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the LINEX loss function have the smallest estimated MSE as
compared with the estimates under quadratic loss function. This is
True for both complete and censored samples. Also, all estimates are
underestimation.

3- Table 3 shows that the MLE’s have the smallest estimated MSE’s as
compared with the Bayes estimates under LINEX loss function or
quadratic loss function. This is True for both complete and censored
samples. It is immediate to note that MSE’s decrease as a complete
sample size increases. Also, the Bayes estimates under the LINEX
loss function have the smallest estimated MSE’s as compared with
the estimates under quadratic loss function. This is True for both
complete and censored samples. On the other hand all estimates are
overestimation.

From the previous observations, we suggest to use Bayes approach under
quadratic loss function for estimating the shape parameter of EG distribution, while
the MLE’s are better for the reliability and failure rate functions.
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